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We investigate a rare instance of an exactly solvable nonequilibrium many-body problem. In particular, we
derive an exact solution for the nonequilibrium dynamics of an initially localized single hole in a fully anisotropic
antiferromagnetic Bethe lattice, described by the t − Jz model. The solvability of the model relies on the fractal
self-similarity of Bethe lattices, making it possible to compute the full motion of the hole as it moves through
the lattice, as well as exactly characterizing the resulting effect on spin-spin correlation functions. We find that
the hole remains bound to its initial position with large aperiodic oscillations in the hole density distribution.
We track this back to the irregular pattern of the eigenenergies of the magnetic polaron ground state and string
excitations, which we also determine exactly.
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I. INTRODUCTION

The study of quantum many-body systems often rely on
approximate descriptions such as mean-field [1–3] and vari-
ational treatments [4,5], or on extensive numerical analyses
such as quantum Monte Carlo [6–10]. For this reason, in-
stances in which the many-body dynamics can be solved
exactly [11–14] are important to get precise insights into these
systems, and may offer new ways to approximate related mod-
els. An important class of such systems are given by Bethe
lattices (Fig. 1), whose geometry is uniquely defined by the
number of nearest neighbors. The name of these fascinating
fractal structures are given in honor of the groundbreaking
work of Hans Bethe on the Bethe ansatz [15], being exact
descriptions of, e.g., ferro- and antiferromagnetism in these
particular lattices [11]. Related studies have shown that the
free quantum walk of a single particle in Bethe lattices may
also be solved exactly [16–21], which has been used to model
amorphous solids [22–27] and the hopping of ions in ice [28].

In this article, we fuse these ideas to describe the motion
of a single dopant in an antiferromagnetic Bethe lattice. In
particular, we show that the nonequilibrium dynamics of a
single hole hopping with amplitude t in an antiferromagnetic
environment with nearest-neighbor spin-z coupling Jz can be
solved exactly at zero temperature. Previously, an exact solu-
tion for the local hole Green’s function, corresponding to the
lowest-order coefficient in the many-body wave function, was
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found [29,30]. Here, we show that the full many-body wave
function can be calculated, not only in the nonequilibrium
case, but also for an important set of many-body eigenstates,
i.e., the magnetic polaron ground state and the so-called string
excitations [31–36]. The appearance of magnetic polarons is
a result of the inherent competition between the delocaliza-
tion of the hole and the emergent magnetic frustrations. Such
processes also give rise to induced interactions between two
holes, which may provide a mechanism for high-temperature
superconductivity [37–39]. Due to recent advances in quan-
tum simulation using optical lattices [40–59], systems in
which these quasiparticles arise can now be realized and
probed with unprecedented detail [51,52,60]. Consequently,
magnetic polarons and the associated motion of holes in
antiferromagnetic environments are also receiving renewed
theoretical inquiries [61–69]. In particular, our present paper
is related to the so-called string theory of magnetic polarons
[62], in which the hole is effectively described as moving in a
Bethe lattice.

The exact solvability of the anisotropic t − Jz model in
Bethe lattices presented in this paper comes about as a result
of the fractal self-similarity of the Bethe lattices. In particular,
every time the hole hops, the system in the forward direc-
tion of motion looks the same as at the previous site. This
underlying structure means that the wave function, expressed
as a superposition of states with an increasing number of
spin excitations, also attains a self-similar form, in which the
coefficients of the wave function are related by quite sim-
ple recursion relations. This structure is very closely related
to the approximate magnetic polarons states [36,68,70] and
nonequilibrium wave function [69] for the full t − J model on
square lattices. In fact, the present solution can also be un-
derstood in the context of the retraceable path approximation
[16], which becomes exact in Bethe lattices.
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FIG. 1. Single dopant in Bethe lattices. A single hole (grey cir-
cle) is initialized at the center of an otherwise perfectly ordered
antiferromagnetic Bethe lattice, showcased by coordination numbers
q = 1, 2, 3, 4 nearest neighbors in (a) through (d). Here, red (blue)
circles denote spin-↑ (spin-↓) fermions.

The article is organized as follows. Section II describes
the structure of the antiferromagnetic ground state, and the
hopping Hamiltonian in the presence of holes. Section III
introduces the Holstein-Primakoff transformation, making it
possible to give a concise description of the many-body states.
Section IV gives the derivation of the exact solution for
the nonequilibrium many-body wave function. Section V de-
scribes the exact ground state and string excitations, before
Sec. VI characterizes the nonequilibrium hole and spin dy-
namics as a function of inverse interaction strength Jz/t and
coordination number q.

II. ISING ANTIFERROMAGNETS IN BETHE LATTICES

We consider spin 1/2 fermions hopping in Bethe lattice
structures with q nearest neighbors, as exemplified in Fig. 1.
We assume that the nearest-neighbor spin-spin interactions are
of the Ising type,

ĤJ = Jz

∑
〈i,j〉

[
Ŝ(z)

i Ŝ(z)
j − n̂in̂j

4

]
, (1)

and antiferromagnetic (Jz > 0). The Schwinger-fermion rep-
resentation of spin 1/2 as usual reads

Sj = 1

2

∑
σ,σ ′

ĉ†
j,σ σσσ ′ ĉj,σ ′ (2)

with σ = (σx, σy, σz ) a vector of the Pauli matrices. The anti-
ferromagnetic ground state is, thus, achieved by having every
neighboring spin pointing in opposite directions. Choosing
a specific lattice site as the central reference point, we then
speak of the depth d of a given site, as the number of hops it
takes to go to that site. Correspondingly, the total depth dtot of

the lattice is the maximum number of jumps that can be made
from the central site. In Figs. 1(c) and 1(d), the cases of q = 3
and q = 4 respectively, the total depth of the shown lattices
is dtot = 5. The total number of sites in a Bethe lattice with q
nearest neighbors and total depth dtot is

N (q, dtot ) = 1 + q
dtot−1∑

j=0

(q − 1) j = 1 + (q − 1)dtot − 1

q − 2
. (3)

In the case of q = 2, the Bethe lattice collapses to a one-
dimensional chain [Fig. 1(b)], and the expression N = 1 +
dtot can be found from Eq. (3) by applying l’Hospital’s
rule to the limit q → 2. Generally, the number of nearest-
neighbor links is simply N − 1, and the antiferromagnetic
energy contribution from each of these is −Jz/2. Therefore,
the ground-state energy for an Ising antiferromagnet in a
Bethe lattice is simply

E0(q, dtot ) = −[N (q, dtot ) − 1]
Jz

2
. (4)

Since the number of sites at a depth d + 1 is q − 1 times larger
than the number of sites at depth d , and since the spins at
d + 1 point opposite to the spins at d , the lattice has a nonzero
total spin

S(z)
tot (q, dtot ) = −1

2

[
1 − q

dtot−1∑
j=0

(1 − q) j

]

= −1

2
(1 − q)dtot , (5)

assuming that the central site has S(z) = −1/2. This charac-
terizes the underlying antiferromagnetic ground state. Below
half-filling, we assume that the fermionic particles can hop
between nearest-neighbor sites with amplitude t ,

Ĥt = −t
∑
〈i,j〉,σ

[c̃†
i,σ c̃j,σ + H.c.], (6)

where c̃†
j,σ = ĉ†

j,σ (1 − nj), and the factor 1 − nj restrains the
Hilbert space to states with maximally one fermion per lattice
site.

III. THE HOLSTEIN-PRIMAKOFF TRANSFORMATION

The Holstein-Primakoff transformation is performed to
give a more efficient description of the system just below
half-filling, in terms of bosonic spin excitation operators ŝi,
and fermionic hole operators ĥi. To perform the transforma-
tion, it is first useful to define two sublattices corresponding
to the sites that in the absence of holes host spins point-
ing up and down respectively. More precisely, fermions
on every site at an odd-numbered depth, d = 1, 3, 5, . . . ,
initially has spin-↑, and is defined to lie on sublattice
A. Similarly, every site at an even-numbered depth, d =
0, 2, 4, . . . , belong to sublattice B, having spin-↓ fermions.
We may, then, define the Holstein-Primakoff transformation
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according to

A : Ŝ−
i = ŝ†

i F (ĥi, ŝi), c̃i,↓ = ĥ†
i Ŝ+

i ,

c̃i,↑ = ĥ†
i F (ĥi, ŝi), Ŝz

i =
[

1

2
− ŝ†

i ŝi

]
[1 − ĥ†

i ĥi],

B : Ŝ+
j = ŝ†

j F (ĥj, ŝj), c̃j,↑ = ĥ†
j Ŝ−

j ,

c̃j,↓ = ĥ†
j F (ĥj, ŝj), Ŝz

j =
[

ŝ†
j ŝj − 1

2

]
[1 − ĥ†

j ĥj], (7)

with F (ŝ, ĥ) =
√

1 − ŝ†ŝ − ĥ†ĥ. Consequently, the spin-spin
interaction is rewritten as

ĤJ = −Jz

∑
〈i,j〉

[1 − ĥ†
i ĥi]

[(
1

2
− ŝ†

i ŝi

)(
1

2
− ŝ†

j ŝj

)
+ 1

4

]

· [1 − ĥ†
j ĥj]. (8)

This expression fully accounts for the presence of holes, in
which case the nearest-neighbor spin coupling is naturally 0.
Similarly, the hopping Hamiltonian becomes

Ĥt = t
∑
〈i,j〉

F (ŝi)F (ŝj)[ĥ
†
j ĥiŝj + ĥ†

i ĥjŝi] + H.c. (9)

Here, due to the fermionic statistics of the holes, we may
use that F (ŝi, ĥi)ĥi = F (ŝi, 0)ĥi. Additionally, we simplify the
notation by writing F (ŝ) = F (ŝ, 0) = √

1 − ŝ†ŝ. Equation (9)
shows that as the hole hops through the lattice, it may do
so by absorbing or emitting spin excitations. The factors of
F (ŝi)F (ŝj) constrains this process, so that there is always
either 0 or 1 spin excitation on each site, yielding the exact
hardcore constraint.

IV. THE EXACT NON EQUILIBRIUM
WAVE FUNCTION

We are now ready to efficiently formulate the exact
nonequilibrium wave function. We will focus on Bethe lattices
with more than 1 nearest neighbors, q � 2, as the case of
q = 1 corresponds to a system of only two sites. We assume
that the hole is initially located at the central site of the Bethe
lattice. Note that in the thermodynamic limit, dtot → ∞, any
site in the lattice is equivalent. Therefore, this choice for the
initial state is actually the general starting point for quench-
ing the system from the antiferromagnet ground state into a
state with a single localized hole. A lattice site at depth d
is written as jd = 0, j1, . . . , jd . Here, j1 = 1, 2, . . . , q, and
jl = 1, 2, . . . , q − 1 for l � 2 describe the sites at each depth,
similar to Ref. [11]. In this manner, jd gives the full path from
the central site j0 = 0 to the specific site of interest at depth d .
Two sites jd and ld+1 at depth d and d + 1 are, thus, nearest
neighbors only if ld+1 = jd , ld+1. This construction allows us

to write the full nonequilibrium wave function at time τ as

|�(τ )〉 = C(0)(τ ) · ĥ†
0 |AF〉 + C(1)(τ )

∑
j1

ĥ†
j1

ŝ†
0 |AF〉

+ C(2)(τ )
∑

j2

ĥ†
j2

ŝ†
0ŝ†

j1
|AF〉 + . . .

= C(0)(τ )ĥ†
0 |AF〉 +

dtot∑
d=1

C(d )(τ )
∑

jd

ĥ†
jd

d−1∏
l=0

ŝ†
jl

|AF〉 .

(10)

In this expression, the lattice site at depth d is always con-
strained to be next to the one at depth d − 1: jd = jd−1, jd .
Note that the coefficients of the wave function C(d ) cannot
depend on the exact path to the lattice point, jd = j1, . . . , jd ,
only the depth d of that point. The underlying reason is that
the system is symmetric in all these paths, and that the initial
wave function, |�(τ = 0)〉 = ĥ†

0 |AF〉, is as well. This gives a
remarkable simplification of the treatment, as it describes the
dynamics in a system whose size grows exponentially with the
depth [see Eq. (3)], in terms of a linear number of coefficients
C(0), . . . ,C(dtot ).

A. General time-dependent solution

To progress on solving for the coefficients of the nonequi-
librium wave function, we introduce the retarded and ad-
vanced wave functions

|�(τ )〉 = |�R(τ )〉 + |�A(τ )〉
= e−η|τ |[θ (τ ) |�(τ )〉 + θ (−τ ) |�(τ )〉], (11)

allowing us to regularize the Fourier transformation to fre-
quency space with the positive infinitesimal η > 0, and the
Heaviside step function θ (τ ). Consequently, we may express
the Schrödinger equation, i∂τ |�(τ )〉 = Ĥ |�(τ )〉, as

(ω + iη) |�R(ω)〉 = +i |�(τ = 0)〉 + Ĥ |�R(ω)〉 ,

(ω − iη) |�A(ω)〉 = −i |�(τ = 0)〉 + Ĥ |�A(ω)〉 . (12)

As these equations are complex conjugate of each other, it fol-
lows that |�A(ω)〉 = [|�R(ω)〉]∗. We denote the coefficients
of the retarded state R(d )(ω). The dynamical coefficients in
Eq. (10) are then retrieved from R(d )(ω) by a Fourier transfor-
mation

C(d )(τ ) =
∫

dω

2π
e−i(ω+iη)τ · 2Re[R(d )(ω)]. (13)

Using Eq. (12), the equations of motion for the retarded state
coefficients become

(ω + iη)R(0)(ω) = i + E (0)
J R(0)(ω) + qtR(1)(ω),

(ω + iη)R(d )(ω) = E (d )
J R(d )(ω) + tR(d−1)(ω)

+ (q − 1)tR(d+1)(ω),

(ω + iη)R(dtot )(ω) = E (dtot )
J R(dtot )(ω) + tR(dtot−1)(ω). (14)

The term i in the equation for R(0)(ω) comes directly from
the term i |�(τ = 0)〉 in Eq. (12). Furthermore, the mag-
netic energy cost E (d )

J comes from applying the spin-spin
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(a) (b)

(c) (d)

FIG. 2. Broken antiferromagnetic spin bonds. As the hole moves
into the Bethe lattice [(a)–(d)], a number of antiferromagnetic spin
bonds are broken along the way (red lines), illustrated here in the
case of q = 3. (a) At d = 0, there are q = 3 broken bonds, giving a
spin energy of E (0)

J = E0 + qJz/2. (b) For d = 1, there are q − 1 = 2
further broken bonds, so E (1)

J = E (0)
J + (q − 1)J/2. [(c),(d)] For d �

2, the spin bonds along the path of the hole are repaired. As a result,
there are q − 1 new spin bonds broken and 1 repaired, yielding q −
2 = 1 in the present case. Therefore, E (d+1)

J = E (d )
J + (q − 2)Jz/2 for

d � 1.

interaction Hamiltonian in Eq. (8) to the dth term in the wave
function. Finally, the hopping Hamiltonian simply relates the
coefficient at depth d to the coefficients at depth d − 1 and
d + 1. At d = 0, there are q nearest neighbors at depth d = 1.
All subsequent depths d � dtot − 1, however, only has q − 1
nearest neighbors at depth d + 1 and a single neighbor one
depth up, d − 1. This leads to the terms (q − 1) · t · R(d+1)(ω)
and 1 · t · R(d−1)(ω) for 1 � d � dtot. Finally, by assumption
the bottom depth is dtot , and so R(d ) = 0 for d > dtot.

The value of E (d )
J may be understood recursively, starting

from d = 0. Here, the hole is located at the central site, and
there are q broken antiferromagnetic spin bonds of strength
Jz/2, as indicated in Fig. 2(a). Note that Eq. (8) implies that a
hole at a site has the same magnetic energy cost as a spin exci-
tation at that site. Therefore, E (0)

J = E0(q, d ) + qJz/2, where
E0(q, d ) is the ground-state energy of the Ising antiferromag-
net [Eq. (4)]. When the hole is at depth d = 1, as shown
in Fig. 2(b), there are q − 1 additional broken bonds. So
E (1)

J = E (0)
J + (q − 1)Jz/2. At every subsequent depth d � 2

[Figs. 2(c) and 2(d)], the spin bonds along the path of the hole
are repaired. Therefore, each hop is associated with q − 1 new
broken bonds and 1 repaired bond. The magnetic energy cost
for d � 2 is, thus, (q − 2)Jz/2 for every step in depth. In this

way,

E (d )
J = [(q − 1) + (d − 1)(q − 2)]

Jz

2
, (15)

for 1 � d � dtot − 1. Here, we let E (d )
J → E (d )

J − E (0)
J , mea-

suring all energies with respect to E (0)
J . Finally, at depth dtot

the absence of neighbors at dtot + 1 in principle results in a
surface effect, in which there is no additional magnetic energy
cost for the hole to hop to the surface, E (dtot )

J = E (dtot−1)
J . While

this presumably has an effect on the dynamics for small lat-
tices, we focus on the behavior for large total depths, dtot � 1,
and ignore the surface effects. With the magnetic energy costs
for the hole to hop to the dth depth in place [Eq. (15)], we
can now solve the equations of motion in Eq. (14) iteratively.
Specifically, the equation for R(dtot ) simply yields

R(dtot )(ω) = t

ω + iη − E (dtot )
J

R(dtot−1)(ω)

= t · G(dtot )(ω) · R(dtot−1)(ω). (16)

Continuing this process for dtot � d � 1, we get the recursion
relation

R(d )(ω) = t · G(d )(ω) · R(d−1)(ω),

G(d )(ω) = 1

ω + iη − E (d )
J − (q − 1)t2 · G(d+1)(ω)

, (17)

defining G(dtot+1)(ω) = 0. We refer to G(d )(ω) as the retarded
Green’s function at depth d . Finally, inserting the solution
from d = 1 into the equation for R(0), we get R(0)(ω) =
iG(0)(ω), with

G(0)(ω) = 1

ω + iη − qt2 · G(1)(ω)
. (18)

Using the recursion relation in Eq. (17) in reverse, we obtain
the general result for the coefficients of the retarded wave
function in frequency space

R(0)(ω) = iG(0)(ω),

R(d )(ω) = iG(0)(ω) · t d ·
d∏

l=1

G(l )(ω), 1 � d � dtot. (19)

We end this subsection by connecting the coefficients of the
wave function to a specific set of many-body correlation func-
tions. Specifically, we have that

R(0)(τ ) = θ (τ ) 〈AF| ĥ0e−iHτ ĥ†
0 |AF〉 ,

R(d )(τ ) = θ (τ ) 〈AF| ĥjd

d−1∏
l=0

ŝjl e
−iHτ ĥ†

0 |AF〉 . (20)

This more clearly demonstrates that the dth coefficient of the
wave function is the probability amplitude of the hole to be at
depth d at site jd with d spin excitations after a time τ .

B. Thermodynamic limit

In the thermodynamic limit, dtot → ∞, the recursion re-
lation for the retarded Green’s functions in Eq. (17) can be
written as a self-consistency equation for a single Green’s
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function G1(ω). Specifically, we can write G(d )(ω) = G1(ω −
E (d )

J ) for d � 1, where

G1(ω) = 1

ω − (q − 1)t2 G1
(
ω − (q − 2) Jz

2

) . (21)

For brevity, in this subsection we let ω + iη → ω. Similarly,
we get the Green’s function for the central site, d = 0, to be

G0(ω) = 1

ω − qt2 G1
(
ω − (q − 1) Jz

2

) . (22)

Inspired by Ref. [29], we anticipate that the G1 Green’s func-
tion can be expressed in terms of Bessel functions. In fact,
using the ansatz G1(ω) = −1/(

√
q − 1t ) · Y (ω)/Y (ω + (q −

2)J/2), the resulting recursive relation for the Y functions
coincide with that for the Bessel functions of the first kind.
This results in

G1(ω) = − 1√
q − 1t

J
(ω)
( 4

√
q−1t

(q−2)Jz

)
J
(ω)−1

( 4
√

q−1t
(q−2)Jz

) , (23)

for q � 3, with 
(ω) = −2ω/(q − 2)Jz. This generalizes the
result in Ref. [29], where the q = 4 Bethe lattice is effectively
used as an approximate description of a two-dimensional
square lattice, and coincides with what is found in Ref. [30].
We can now use the simple fraction of Bessel functions in
Eq. (23) together with G(d )(ω) = G1(q, ω − E (d )

J ) for d �
1, to find the explicit expression for the coefficients of the
nonequilibrium many-body wave function in the thermody-
namic limit,

R(d )(ω) = iG0(ω)

(−√
q − 1)d

·
J

(ω−E (d )

J )

( 4
√

q−1t
(q−2)Jz

)
J

(ω−E (1)

J )−1

( 4
√

q−1t
(q−2)Jz

) , (24)

where the magnetic energy cost for a hole at depth d , E (d )
J , is

given in Eq. (15). In the limit of infinitely strong interactions,
Jz/t → 0+, Eq. (21) leads to a second-order equation for G1,
yielding

G1(ω)
J→0+= ω

2(q − 1)t2

(
1 −

√
1 − 4(q − 1)t2

ω2

)
. (25)

This results in the hole Green’s function

G0(ω)
J→0+= 1

ω
[
1 − q

2(q−1)

(
1 −

√
1 − 4(q−1)t2

ω2

)] . (26)

Equations (25) and (26) together with Eq. (19) describes a
free quantum walk of a single particle in Bethe lattices [18], as
one might expect in this extreme limit, where spin interactions
play no role.

V. EXACT GROUND STATE AND STRING EXCITATIONS

The present methodology allows us to extract a certain
set of many-body eigenstates on top of the nonequilibrium
wave function derived in Sec. IV A. This constitutes the depth
symmetric states

|�n〉 = C(0)
n ĥ†

0 |AF〉 +
dtot∑

d=1

C(d )
n

∑
jd

ĥ†
jd

d−1∏
l=0

ŝ†
jl

|AF〉 , (27)

which are all dtot + 1 states for which the coefficients of
the wave function only depend on the depth d of the hole,
and not the particular point jd at which it is located. Put in
another manner, they are all the states that can be reached
dynamically by immersing a single hole at the center of the
lattice, i.e., the ones for which 〈�n|�(τ )〉 �= 0. In the limit
of weak interactions, Jz � t , the many-body ground state is
just the lowest-order term, ĥ†

0 |AF〉, as the hopping of the
hole is strongly suppressed. Conversely, in the limit of infinite
interactions, Jz/t → 0+, the energy should go to that of a
free particle, which in a Bethe lattice is −2

√
q − 1t . This is

indeed the case for our solution, shown explicitly in Sec. V B.
Therefore, we expect |�0〉 to be the true many-body ground
state for any value of Jz/t � 0. This is in contrast to the case
of regular lattices, in which this type of states, so-called string
excitations, do not approach the correct limiting value at very
small values of Jz/t . Instead, as a precursor to the Nagaoka
limit at J = 0 [71], a ferromagnetic polaron is expected to
emerge [72].

A. General time-independent solution

The static Schrödinger equation

εn |�n〉 = Ĥ |�n〉 (28)

simply corresponds to removing the i |�(τ = 0)〉 term in
Eq. (12), and replacing the frequency ω + iη with the eigen-
state energy εn. As a result, we simply have to remove the
term i in the equations of motion in Eq. (14) for the nonequi-
librium case, and the same recursive relation in Eq. (17) for
the nonequilibrium coefficients, therefore, applies to these
eigenstates. Explicitly,

C(d )
n = t · G(d )(εn) · C(d−1)

n , (29)

with the Green’s functions G(d ) evaluated at the quasiparticle
pole εn. Inserting the result at depth d = 1 into the equation of
motion at depth d = 0, we get

εn · C(0)
n = qt2 · G(1)(εn) · C(0)

n ⇒ εn = �(0)(εn). (30)

Here, �(0)(ω) = qt2 · G(1)(ω) is the self-energy associated
with the Green’s function G(0)(ω) in Eq. (18). This equa-
tion simply states the fact that the poles of G(0) are eigenstate
energies of the system, the lowest of which gives the true
ground state of the system. To find the lowest-order coeffi-
cient of the nth state C(0)

n , we compute the full norm of the
wave function, |�n〉. Repeated use of the recursion relation in
Eq. (29) yields

1 = 〈�n|�n〉 = ∣∣C(0)
n

∣∣2 + q
dtot∑

d=1

(q − 1)d−1
∣∣C(d )

n

∣∣2

= ∣∣C(0)
n

∣∣2[
1 + qt2(G(1)(εn)

)2 + q(q − 1)t4

× (G(1)(εn)G(2)(εn))2 + . . .
]

= ∣∣C(0)
n

∣∣2
[1 + qt2(G(1)(εn))2[1 + (q − 1)t2G(2)[1 + . . . ]]].

Investigating the quasiparticle residue, Zn = [1 −
∂ω�(0)(ω)|ω=εn ]−1, shows that the expression within the
square brackets above is simply Z−1

n . In turn, C(0)
n = √

Zn,
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FIG. 3. Spectral functions A(ω) for 4 indicated values of the
number of nearest neighbors q. (a) For q = 2, the particles sit in
a 1D chain [Fig. 1(b)], and there is a continuous spectrum above
the quasiparticle pole at energy ε0 = Jz/2 − √

(Jz/2)2 + (2t )2. For
higher values of q [(b)–(d)], the spectrum consists of a series quasi-
particle peaks, scaling with (Jz/t )2/3 at strong interactions (colored
lines).

whereby we may write the eigenstate coefficients as

C(0)
n = √

Zn,

C(d )
n = √

Zn · t d ·
d∏

l=1

G(l )(εn), 1 � d � dtot. (31)

In the thermodynamic limit, these coefficients can, in com-
plete analogy to the nonequilibrium case investigated in
Sec. IV B, also be written as fractions of Bessel functions.
This has previously been established for the ground state in
Ref. [73], where the Bethe lattice description is used as a
variational ansatz for the square lattice case. In Fig. 3, we plot
the spectral function A(ω) = −2Im G0(ω), computed in the
thermodynamic limit from Eq. (22). This reveals the poles of
G0, and thereby the eigenstate energies εn. In the special case
of q = 2 [74], the system is one-dimensional and the spectral
function splits into a quasiparticle pole at

ε0 = Jz

2
−

√
4t2 + J2

z

4
. (32)

and a continuum of states residing between Jz/2 ± 2t ; see also
Fig. 3(a). This describes the effect known as spin-charge sep-
aration, which has been intensely studied both theoretically
and experimentally in one-dimensional systems [54,75–80].
In the present case, as the charge degree of freedom moves
(the hole), a single spin excitation is created and remains at
the original site of the hole. Due to intense previous studies of
these effects, we will not go any further with it in the present
paper.

For more nearest neighbors, q � 3, a series of quasipar-
ticles peaks arises [see Figs. 3(b)–3(d)]. In Sec. V B, we
show that at strong interactions, their energies all scale with
(Jz/t )2/3. The origin of this scaling is that the system in this
limit can be rephrased as a continuum model, in which the
hole moves in a linear potential with strength Jz. While such
a rephrasing in a regular lattice is approximate [31,33,62],
this becomes exact in Bethe lattices as we shall unfold in
Sec. V B. In the limit of weak interactions on the other hand,
Jz � t , the hole becomes immobile and the nth eigenstate is
completely localized at the nth depth with an energy simply
given by the magnetic energy cost, εn → E (n)

J = [(q − 1) +
(n − 1)(q − 2)]Jz/2 [Eq. (15)] for n � 1. In fact, to order
O(t2/Jz ), only the magnetic polaron ground state and the first
string excitation are affected and attain the energies

ε(±) = (q − 1)Jz

4

[
1 ±

(
1 + q

2

[
4t

(q − 1)Jz

]2)]
. (33)

Here, ε0 = ε(−) and ε1 = ε(+) are the ground and lowest string
excitation energies respectively.

The method used here to find the explicit coefficients
of these eigenstates is similar to Refs. [36,70], where the
approximate magnetic polaron eigenstates within the SCBA
[33–35] are found. We finally note that these many-body
eigenstates can in principle be used to completely characterize
the full nonequilibrium dynamics. Specifically, 〈�n|�(τ )〉 =
〈�n| e−iĤτ ĥ†

0 | AF 〉 = e−iεnτ 〈�n| ĥ†
0 | AF 〉 = √

Zn · e −iεnτ .
Therefore, the dynamics is the quantum interference of the
polaron ground state and the string excitations. While this
lends insight into the conceptual nature of the dynamics,
it does not actually simplify the characterization of the
underlying hole motion.

B. Continuum limit for strong interactions

In this subsection, we describe in detail the continuum
limit arising for Jz/t → 0+ and a number of nearest neighbors
q � 3. In addition to the dominant (Jz/t )2/3 contribution to
the energy found previously [33,62,81], we also variationally
determine a term linear in Jz, which allows us to accurately
describe the limiting behavior of the quasiparticle residue
for Jz/t → 0+. Additionally, we explicitly compare the exact
eigenstates found in Sec. V A to the strong-coupling limit
investigated here.

We begin by transforming the equations of motion to an ef-
fective one-dimensional setting valid for the depth symmetric
eigenstates found in the previous Sec. V A. To this end, we de-
fine ψ (0) = C(0), and ψ (d ) = (−1)d

√
q(q − 1)d−1 · C(d ) for

d � 1, similar to the approach in Ref. [62]. In this manner, the
wave function fulfills a one-dimensional normalization con-
dition:

∑
d |ψ (d )|2 = 1. With this in hand, the equations of

motion become

εψ (0) = −√
qtψ (1),

εψ (1) = E (1)
J ψ (1) − √

qtψ (0) −
√

q − 1tψ (2),

εψ (d ) = E (d )
J ψ (d ) −

√
q − 1t[ψ (d − 1) + ψ (d + 1)], (34)

where the lower equation is valid for d � 2. We may now for-
mulate the continuum model by taking this lower equation and
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rephrase it as a continuous equation in the limit of Jz � t .
This is possible, because the wave function spreads out over
an ever increasing number of lattice sites in this limit, as we
shall explicitly see in Sec. VI. Here, it is first beneficial to
rewrite this equation according to

ε̃ψ (d ) = (q − 2)Jz

2
√

q − 1t
d · ψ (d )

− [ψ (d − 1) − 2ψ (d ) + ψ (d + 1)], (35)

using Eq. (15), and defining
√

q − 1t · ε̃ = [ε + 2
√

q − 1t].
Next, we let d = x/λ and introduce a rescaled wave function
φ(x) = ψ (x/λ)/

√
λ. Inserting this in Eq. (35) and dividing

out λ2, we get

ε̃

λ2
φ(x) = (q − 2)Jz

2
√

q − 1t

x

λ3
φ(x)

− φ(x − λ) − 2φ(x) + φ(x + λ)

λ2
. (36)

To eliminate Jz/t , we set λ = [(q − 2)Jz/(2
√

q − 1t )]1/3. For
Jz/t → 0+, the fraction in the second line of Eq. (36) ap-
proaches the second-order derivative. Setting a = ε̃/λ2, we,
hereby, obtain

aφ(x) = x · φ(x) − d2φ

dx2
, (37)

which is accurate up to order λ2 ∝ (Jz/t )2/3. The wave
function φ(x) fulfills the continuous normalization condition∫ ∞

0 dx|φ(x)|2. Letting y = x − a, we get the Airy equation

0 = y f (y) − d2 f

dy2
, (38)

for y � −a, where f (y) = φ(y + a). The solutions to this
equation can thus be written as a superposition of the Airy
functions f (y) = A · Ai(y) + B · Bi(y). Since Bi(y) blows
up for y → ∞, B = 0. Furthermore, the continuous one-
dimensional description, which is exact for Jz/t → 0+, entails
that φ(x) must vanish for x < 0, and therefore also at x = 0.
In turn, −a must be a zero of the Airy function Ai(y). In this
way, we obtain the sought set of eigenstates in the strongly
interacting limit

ψn(d ) =
√

λ · φn(λd ) =
√

λ · AnAi(λd − an). (39)

The nth eigenstate is, thus, defined by the nth order zero
of the Airy function −an. Also, A−2

n = ∫ ∞
0 dx |Ai(x − an)|2

ensures normalized eigenstates. For any nonzero value of Jz/t ,
the eigenstates remain nonzero at the origin, d = 0. This turns
out to yield a correction linear in Jz/t . To accommodate for
this, we let d → d − d0 in Eq. (39) and use d0 as a variational
parameter. A rather lengthy calculation (see Appendix A)
yields the variational energy for the nth eigenstate

εvar
n = −2

√
q − 1t

(
1 − an

2
λ2

)
+ cq(d0)Jz, (40)

with cq(d0) = (1 + (q − 2)[d0 + 2(
√

q(q − 1)−1 − 1)d0(1 −
d0) + (d0 + 1/2)2])/2. The two first terms yield the exact
asymptotic behavior [81] with the dominant λ2 ∝ (Jz/t )2/3

scaling. The term proportional to Jz is variationally deter-
mined, yielding a value of d0 = 1/(2 − 3

√
(q − 1)/q). The

FIG. 4. Eigenstates for strong interactions. The hole density is
plotted as function of depth for four indicated interaction strengths
[(a)–(d)] and q = 4 nearest neighbors. We compare the numerically
calculated eigenstates from Eq. (31) to the strongly interacting limit,
Eq. (39) with d → d − d0, for the three lowest string excitation states
in red (ground state), green (first excited state), and blue (second
excited state).

resulting energies of the three lowest energies are plotted as
colored lines in Fig. 3 for q = 3, 4, and 5. The corresponding
eigenstates for q = 4 are plotted in Fig. 4, showing the ap-
proach to the strongly interacting limit. Whereas the behavior
at large depths is already captured very well at Jz/t = 0.16,
the convergence of the full wave function requires very strong
interactions of around Jz/t = 0.02.

The presence of a nonzero d0 allows us to to calculate
the residues Zn in this asymptotic strong-coupling limit. This
yields

Zn = |ψn(d = 0)|2 � λ · [AnAi(−λd0 − an)]2. (41)

This can be greatly simplified by expanding the Airy
function. In fact, Ai(−λd0 − an) → (−λd0)Ai′(−an), for
λ ∝ (Jz/t )1/3 → 0. Furthermore, using the integral relation∫ ∞

0 dx [Ai (x − x0)]2 = x0 [Ai (−x0)]2 + [Ai′ (−x0)]2 =
[Ai′(−an)]2, and that A−2

n = ∫ ∞
0 dx[Ai(x − an)]2 =

[Ai′(−an)]2 for (Jz/t )1/3 → 0, we get the very simple
asymptotic behavior of the residues

Zn → λ · [An(−λd0)Ai′(−an)]2 = λ3d2
0

= q − 2

2
√

q − 1

1(
2 − 3

√
q−1

q

)2 · Jz

t
, (42)

linear in Jz/t as argued previously [33]. Additionally, we find
it to be independent of the eigenstate n, essentially because the
energy shifts due to a nonzero d0, εvar

n − εn is independent of
n. Consequently, this variational approach strongly suggests
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FIG. 5. Residue for strong interactions. The residue is plotted for
three lowest energy states as a function of interaction strength: the
ground state in red, the first excited state in green, and the second
excited state in blue. This is compared to the linear behavior in
Eq. (42) (black dashed), confirming the universal linear trend at
strong enough interactions.

that the residues of all string excitation states approach this
universal value, which is confirmed by our numerical calcula-
tions in Fig. 5 for q = 4 nearest neighbors. Consequently, the
quasiparticles remain well defined for any Jz/t > 0. Note that
the deviations between the full result and the continuum limit
at first glance seem larger for the residues in Fig. 5 than for the
overall eigenstates in Fig. 4. However, a closer inspection of
Fig. 4 reveals that the short-range part of the eigenstates, and
in particular the residue Zn = | 〈�n| ĥ†

0 |AF〉 |2, only approach
the continuum limit at very low values of Jz/t , as we might
expect from comparing to a continuum limit. In more detail,
while the long-range part of the eigenstates are determined by
the (Jz/t )2/3 term in the energy [see Eq. (40)], the finite value
of the residue arises due to the linear term, and is, therefore,
more prone to higher-order corrections.

VI. NON EQUILIBRIUM HOLE AND SPIN DYNAMICS

In this section, we describe the main results for the
nonequilibrium dynamics. In Sec. VI A, we investigate the
hole dynamics, whereas the nonequilibrium spin-spin corre-
lation dynamics is studied in Sec. VI B.

A. Hole dynamics

The density of holes at certain depth d is readily computed
from the coefficients of the many-body wave function as

nh(d = 0, τ ) = |C(0)(τ )|2,
nh(d, τ ) = q(q − 1)d−1 · |C(d )(τ )|2, d � 1. (43)

Here, C(d )(τ ) is calculated from Eq. (13). The results for
q = 4 and Jz = 0.2t are shown in Fig. 6 in the vicinity of
the initial position of the hole. Since C(d )(τ ) is the Fourier
transform of 2Re[R(d )(ω)], given in Eq. (19), the appearance
of heavy oscillations in these local densities can be understood
from the presence of a plethora of spectral peaks, Fig. 3(d),
corresponding to the string excitations found in Sec. V A.
Furthermore, the presence of a hole at depth d is always
accompanied by d overturned spins, see Eqs. (10) and (20),
and, therefore, entails a spin string of length d . As a result, the

FIG. 6. Local densities. We plot the local density of holes in the
vicinity of its original position, d = 0, for 4 indicated depths (insets)
in the case of q = 4 nearest neighbors, and a spin-spin coupling
Jz = 0.2t (blue lines). This is further compared to the limit of infinite
interactions, J/t → 0+, where the hole moves like a free particle
(black lines). While the initial stage shows a clear dampening of
regular oscillations, associated with a free quantum walk, for any
nonzero Jz/t large aperiodic oscillations start to kick at later times,
in the present case of Jz/t = 0.2 around τ = 10/t .

hole density distribution is equal to the probability distribution
for the so-called string length, which has been investigated
previously in a two-dimensional square lattice both theoreti-
cally [62,73] and experimentally [52].

To better understand this complex many-body scenario, we
calculate the average depth of the hole,

ls(τ ) =
∑

d

d · nh(d, τ ). (44)

We denote it ls, as it also gives the average length of overturned
spins, or simply the string length, at time τ . This is plotted
in Fig. 7(a) as a function of time for three indicated coor-
dination numbers. Solving the equations of motion at short
times, reveals that the initial dynamics is a free quantum walk
independent of the inverse interaction strength Jz/t , with

ls = qt2 · τ 2 + O[(t · τ )4]. (45)

It is actually fairly easy to show [69] that the initial motion of
an initially localized hole within the t − J model has to be that
of a free quantum walk, even in the presence of anisotropic
spin couplings.

At long times, our results reveal that the string length un-
dergoes heavy oscillations around a well-defined mean value,

l∞
s =

∑
d

d · 〈nh(d )〉τ , (46)
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FIG. 7. String length vs coordination number. (a) The string
length ls(τ ) = ∑

d d · nh(d, τ ) as a function of time for three differ-
ent coordination numbers, q = 4, 8, 16. For τ � 1/

√
qt , all curves

collapse to an initial ballistic behavior of the hole, corresponding
to ls = qt2 · τ 2. At long times, the string length has heavy oscilla-
tions around a well-defined mean value l∞

s shown in dashed lines.
This mean value is plotted in (b) as a function of the coordination
number q for three different values of Jz/t , and compared to the
weak-coupling result (dashed lines).

where

〈nh(d )〉τ = lim
T →∞

1

T

∫ T

0
dτ nh(d, τ ). (47)

Physically, this finite asymptote reflects that the hole remains
bound to its initial position. The time-averaged hole distri-
bution in Eq. (47) is shown in Fig. 8 for a set of indicated
inverse interaction strengths Jz/t , and compared to the hole
distribution for the polaron ground state and the two lowest
string states (see Sec. V A). It is evident that for strong cou-
pling, Jz � t , the dynamical wave function is significantly
more spread out than its equilibrium counterparts. This is a
natural consequence of the fact that the average energy of
the quenched system 〈�(τ )| H |�(τ )〉 = 0 [relative to E (0)

J =
qJz/2 + E0(q, d )] is much larger than the ground-state energy
∼ − 2

√
q − 1t . Additionally, the shape of the time-averaged

distribution changes quite dramatically with decreasing Jz/t .
Indeed, below Jz = 0.4t the hole is no longer found with the
highest probability at its original site, but rather one of its
nearest neighbors. In Fig. 7(b), we compare the asymptotic
string length l∞

s to the weak-coupling result,

l∞
s → 8q

(q − 1)2
·
(

Jz

t

)−2

, (48)

FIG. 8. Time-averaged hole distribution. In black squares is
shown the time-averaged hole density distribution 〈nh(d )〉τ [Eq. (47)]
compared to the hole distribution for the first 3 eigenstates (colored
markers) as a function of the depth d and for 4 indicated interaction
strengths. The coordination number is set to q = 4.

valid for Jz/t � 1. To further investigate the dependency on
the interaction strength, we plot the string length dynamics
in Fig. 9(a) for several indicated values of Jz/t . As can be
expected, the hole travels further into the Bethe lattice for
decreasing values of Jz/t . The motion is generally aperiodic,
due to the irregular spacing of the energy levels εn evident
in Fig. 3. The only exception is in the limit of very weak
interactions, Jz � t , in which the hole is restricted to hop
back and forth between depths d = 0 and d = 1, resulting
in periodic motion with an angular frequency given by the
energy difference between the polaron ground state and the
lowest string excitation,

ε1 − ε0 → (q − 1)
Jz

2

(
1 + q

2

[
4t

(q − 1)Jz

]2)
, (49)

approaching the magnetic energy cost of going to depth
d = 1, E (1)

J = (q − 1)Jz/2, as Jz � t . In the opposite ex-
treme of Jz/t = 0+, the dynamics is characterized by a free
quantum walk of the hole as anticipated by Eqs. (25) and
(26). In Figs. 9(b) and 9(c), we further characterize the
full dependency on the inverse interaction strength, Jz/t .
Whereas the two string lengths are simply proportional in the
weak-coupling limit with l∞

s = 2 · l0
s , they feature remark-

ably different scaling behaviors for strong coupling. In fact,
for any number of nearest neighbors, q � 3, our power-law
fits at strong interactions, Jz/t � 1, reveal that l∞

s = f ∞(q) ·
(Jz/t )−1. On the contrary, the scaling law for the eigenstates
are dramatically different, as we may derive explicitly from
the strong-coupling states derived in Sec. V B.

Explicitly, we can use that the nth eigenstate is
asymptotically given by ψn(d ) = √

λφn(λ(d − d0)) =√
λAn · Ai(λ(d − d0) − an). Here, we also include the
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(b)

(c)

(a)

FIG. 9. String length vs interaction strength. (a) The string length
is plotted as a function of time for q = 4 for four indicated inverse
interaction strengths, Jz/t , with long time averages l∞

s shown as
dashed lines. In the limit of infinitely strong interactions, Jz/t = 0+,
the hole motion is a free quantum walk [black-solid line]. (b) The
long time averages l∞

s is plotted as a function of interaction strength
and further compared to the string length in the magnetic polaron
ground state l0

s (c) for three indicated values of the coordination num-
ber q. At weak coupling, l∞

s = 2 · l0
s ∝ (Jz/t )−2 (black-short-dashed

lines). At strong coupling, they feature different power-law scalings
(black-long-dashed lines) with l∞

s ∝ (Jz/t )−1 and l0
s ∝ (Jz/t )−1/3.

effect of a nonzero shift d0. We then get

ln
s =

∑
d

d · |ψn(d )|2 = λ
∑

d

d · |φn(λ(d − d0))|2

=
∑

x�−λd0

( x

λ
+ d0

)
|φn(x)|2�x.

Here, we use x = λ(d − d0), whereby �x = λ. The term
proportional to d0 is simply the normalization of the wave
function, and so just yields d0. The remaining terms can, in the
limit of strong interactions λ ∝ (Jz/t )1/3 → 0+, be rephrased

as an integral. This yields

ln
s → d0 + 1

λ

∫ ∞

0
dx x|φn(x)|2

= d0 + 1

λ

∫ ∞

0
dx xA2

n[Ai(x − an)]2

= d0 + 1

λ
· 2an

3
A2

n[Ai′(−an)]2 = d0 + 2an

3λ
. (50)

In the last line, we first use an integral relation for the
Airy functions:

∫ ∞
0 dx xA2

n[Ai(x − x0)]2 = (2x0[Ai(−x0)]2 −
Ai(−x0)Ai′(−x0) + 2x0[Ai′(−x0)]2)/3, and that −x0 = −an

is a zero of the Airy function. Finally, we use that the
normalization constant is given by A−2

n = [Ai′(−an)]2. This
expression, hereby, yields a dominant λ−1 ∝ (Jz/t )−1/3 scal-
ing of the string length for all eigenstates. Additionally, the
increase in string length for eigenstates with higher energy is
simply linearly related to the increase in the zeros of the Airy
function an. In Fig. 9, Eq. (50) is compared to the numerically
obtained string length for the ground state for three different
values of the number of nearest neighbors, showing excellent
agreement at strong coupling.

We note that to get converging results for the thermody-
namic limit in the case of q = 4 and very strong interactions
of Jz = 0.05t , we need to go to a total depth of at least dtot =
200. In this case, the Bethe lattice consists of N (q = 4, dtot =
200) � 1095 sites [Eq. (3)]. This far exceeds the total number
of atoms in the observable universe [82], and exemplifies the
enormity of the simplification achieved when reducing the
description of an exponential number of sites in the Bethe
lattice with just a linear number of coefficient C(d ).

B. Spin dynamics

In the present subsection, we investigate the dynamics of
the spin-spin correlation function

CS (d, τ ) = 4 〈�(τ )
∣∣ Ŝ(z)

0 Ŝ(z)
jd

∣∣�(τ )〉 . (51)

This describes the tendency of the spin at the origin, d = 0,
to align (CS > 0) or antialign (CS < 0) with a spin at depth d .
Note that the depth symmetry of the dynamics entails that CS

only depends on the depth d of the second spin. The advent
of quantum simulation platforms enables the study of such
quantities, as has been seen in two-dimensional square lattices
both in [51] and out of equilibrium [57]. On the other hand,
the actual computation of these correlators often present an
astonishing theoretical feat. In the presently-studied Bethe
structures, however, the full knowledge of the many-body
wave function enables the precise and efficient investigation
of the spin-spin correlator in Eq. (51).

To see this more concretely, we link CS to the coeffi-
cients of the many-body wave function. In the absence of a
hole, the system is a perfect antiferromagnetic state, resulting
in C(0)

S (d ) = 4 〈AF| Ŝ(z)
0 Ŝ(z)

jd
|AF〉 = (−1)d . This overall sign

expresses the perfectly staggered antiferromagnetism. In the
presence of a hole, we now link CS (d, τ ) to the hole density.
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Consider, then, first the case where the hole is located between
depths 0 and d , 0 < dh < d . In this case, the z component of
the spin at d = 0 is just +1/2, while the z component of the
spin at depth d is (−1)d−1/2. In turn, we get a contribution
of (−1)d−1 · P(0<dh <d, τ ) to CS (d, τ ). Here, P(0<dh <

d, τ ) = ∑
0<dh<d nh(dh, τ ) is the probability to find the hole

between depths 0 and d at time τ .
Next, if the hole has passed depth d , the above cor-

relation flips sign if the hole has passed the specific site
jd . If not, then the correlation does not flip. The rela-
tive probability to have passed jd is just 1/q(q − 1)d−1.
If the hole passes jd , there is, thus, a contribution of
(−1)d · P(dh >d, τ )/q(q − 1)d−1. If it does not pass jd , it
contributes with (−1)d−1 · P(dh >d, τ )(1 − 1/q(q − 1)d−1).
Here, P(dh >d, τ ) = ∑

dh>d nh(dh, τ ) is the probability for
the hole to have passed depth d .

Finally, if the hole is at the specific depth d , the correlator
CS (d, τ ) vanishes if the hole is at site jd . The contribu-
tion from this scenario is, therefore, only (−1)d−1 · P(dh =
d, τ )(1 − 1/q(q − 1)d−1), coming from the instance where
the hole is not at jd . In total then, the nonequilibrium spin-spin
correlator in Eq. (51) is

CS (d, τ ) = (−1)d−1

[
P(0 < dh < d, τ ) + P(dh > d, τ )

×
(

1 − 2

q(q − 1)d−1

)
+ P(dh = d, τ )

×
(

1 − 1

q(q − 1)d−1

)]
= (−1)d−1

×
[

1−nh(0, τ )− nh(d, τ ) + 2
∑

dh>d nh(dh, τ )

q(q − 1)d−1

]
.

(52)

This expression is valid for any d � 1. For d = 0, we
simply have CS (d = 0, τ ) = 1 − nh(d = 0, τ ). In Eq. (52),
we use that the total probability of finding the hole
away from the origin is 1 minus the hole density
at d = 0: P(0<dh <d, τ ) + P(dh =d, τ ) + P(dh >d, τ ) =
P(dh >0, τ ) = 1 − nh(dh = 0, τ ). At τ = 0, it follows that
CS (d, τ = 0) = 0, which also has to be the case physically,
because there is no spin at d = 0 initially. At later times, as
nh(0, τ ) diminishes, the spin-spin correlations can be strongly
affected in the vicinity of d = 0. If, e.g., the hole is entirely
located at d = 1, CS (d = 1, τ ) = 1 − 1/q > 0. This has the
opposite sign of the spin correlations in the absence of holes,
and is simply a result of removing the original spin-↓ fermion
at d = 0, and letting the resulting hole travel to d = 1 (see
Fig. 2).

We investigate this mechanism in more detail in Fig. 10
by plotting the full dynamics of the spin-spin correlator
[Eq. (52)] relative to the spin correlator in the absence of
holes. Throughout the entire dynamics, we observe the men-
tioned flip in correlation for any d � 1. Furthermore, for weak
to intermediate interactions we observe heavy oscillations
originating in the density oscillations (Fig. 6). At very strong
interactions, approaching the free quantum walk of the hole,
the relative spin correlation reaches an asymptotic value of

FIG. 10. Spin dynamics. The time-dependent spin-spin correla-
tion function CS (d, τ ) = 4 〈�(τ )| Ŝ(z)

0 Ŝ(z)
jd

|�(τ )〉 [Eqs. (51) and (52)]

relative to the spin correlation in the absence of a hole C (0)
S (d ) =

(−1)d for indicated depths d [(a)–(d)]. This is shown in the case
of weak (J = 2t , blue lines), intermediate (J = 0.5t , green lines),
strong (J = 0.2t , orange lines), and very strong interactions (J =
0.1t , red lines), as well as in the quantum walk limit of J/t → 0+

(black lines). Note that for all d � 1, the spin correlation has flipped
sign with respect to the value in the absence of holes.

CS (d, τ )/C(0)
S (d ) → −1 + 2/q(q − 1)d−1 at long timescales,

τ � 1/t . This is because the hole in this case will al-
ways leave any finite region of the Bethe lattice, so that∑

dh>d nh(dh, τ ) → 1 in Eq. (52), while nh(0, τ ), nh(d, τ ) →
0. Finally, by carefully analyzing the possible extremal values
of CS (d, τ )/C(0)

S (d ), we find that

CS (d = 0, τ )

C(0)
S (d = 0)

∈ [0, 1],

CS (d = 1, τ )

C(0)
S (d = 1)

∈ [−1 + 1/q, 0],

CS (d � 2, τ )

C(0)
S (d � 2)

∈ [−1, 0], (53)

used as the axis limits on the second axes in Fig. 10. This
result is not limited to the t − Jz model investigated in the
present paper, but holds in general. It only depends on the
depth symmetry of the wave function in Eq. (10), and may
be derived by varying CS (d, τ )/C(0)

S (d ) with respect to the
coefficients C(d ) of the wave function given that the norm of
the wave function is preserved, 〈�|�〉 = 1. Indeed, we see
that CS does not necessarily explore all the possible values,
evident in the cases of d = 1 and d = 2, Figs. 10(b) and 10(c)
respectively.

In this way, we see how we may we characterize both the
hole and spin dynamics exactly and very efficiently in these
Bethe lattice structures.
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VII. CONCLUSIONS AND OUTLOOK

In this article, we have found exact solutions to the
nonequilibrium many-body dynamics and a certain class of
eigenstates of a single hole in antiferromagnetic Bethe lattices,
described by the fully anisotropic t − Jz model. The found
eigenstates include the magnetic polaron ground state as well
as the ubiquitous string excitations. The latter are in this case
exact many-body eigenstates with a vanishing spectral width
in contrast to the t − Jz model in regular crystal lattices [30],
as well as in the presence of transverse spin-coupling present
in the full t − J model [33,34].

As our methodology yields the full many-body wave
function, any correlation function can be calculated very ef-
ficiently, illustrated by the investigated spin-spin correlation
dynamics. The exact solvability of the model is a result of
the fractal self-similarity of Bethe lattices, which we have
shown leads to simple recursion relations for the coefficients
of the wave function. In particular, the self-similarity of the
lattice reduces the number of independent coefficients in the
wave function from being exponential to linear in the depth,
greatly reducing its complexity. We anticipate that it should
be possible to extend the present methodology to nonzero
temperatures. In this case, we see two possible routes for-
ward, either by expressing the system dynamics in terms of
a full density matrix, or by translating the methodology to
finite temperature quantum field theory. In either case, under-
standing the impact of temperature in these highly idealized
lattices may further our understanding of the same phenomena
in regular crystal lattices. Finally, the exploration of pairing
of two holes is essential to improve our understanding of
the mechanisms behind high-temperature superconductivity.
The massive simplification found in the Bethe lattices for a
single hole in the present paper, may lead to interesting new
insights into this scenario, which we hope to explore in the
future.
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APPENDIX: VARIATIONAL ENERGY AT STRONG
INTERACTIONS

In this section, we derive the variational energy in Eq. (40).
We use

ψn(d ) =
√

λAn · Ai(λ(d − d0) − an) =
√

λφn(x), (A1)

where x = λ(d − d0), and λ = [(q − 2)Jz/(2
√

q − 1)t]1/3.
The variational parameter is thus the reference depth d0. Using
the equations of motion in Eq. (34), we obtain the variational

energy functional

εvar
n =

∑
d�1

E (d )
J |ψn(d )|2 − 2

√
q − 1t

∑
d�1

ψn(d )ψ (d + 1)

− 2
√

qt · ψn(0)ψ (1)

=
∑
d�1

E (d )
J |ψn(d )|2 − 2

√
q − 1t

∑
d�0

ψn(d )ψ (d + 1)

− 2t (
√

q −
√

q − 1) · ψn(0)ψn(1). (A2)

This expression can already be used to numerically determine
d0. However, as we shall now show, it is actually possible to
determine it analytically. Let us first investigate the contribu-
tion from the magnetic energy cost

εvar
n,1 =

∑
d�1

E (d )
J |ψn(d )|2 = Jz

2

∑
d�1

[1 + (q − 2)d]|ψn(d )|2

= Jz

2
[1 + (q − 2)d0][1 − |ψn(0)|2]

+ (q − 2)
Jz

2

∑
d�1

(d − d0)|ψn(d )|2. (A3)

Here, we separate out the contribution from d0. From Eq. (42),
we get |ψn(0)|2 ∝ Jz/t . This term, therefore, yields a con-
tribution at order (Jz/t )2 and may be dropped. The term
proportional to (d − d0) will superficially yield a term of
order Jz · l (n)

s ∝ (Jz/t )2/3 [see Eq. (50)]. However, as we shall
see shortly, there is a corresponding term from the hopping
Hamiltonian that cancels this.

To evaluate this sum, containing ψn(d )ψn(d + 1), we
expand ψn(d + 1) to second order, ψn(d + 1) = ψn(d ) +
∂dψn + ∂2

d ψn/2. The first of these terms, therefore, contribute
with −2

√
q − 1t · ∑

d |ψn(d )|2 = −2
√

q − 1t . Further, us-
ing the defining differential equation for the Airy function
[Eq. (38)], we get ∂2

d ψn = λ2[λ(d − d0) − an]ψn(d ). Hence,
the contribution from the second-order derivative is

−
√

q − 1t · λ2
∑

d

ψn(d )∂2
d ψn(d )

= −
√

q − 1t · λ2
∑

d

[λ(d − d0) − an]|ψn(d )|2

= +
√

q − 1t · an ·
(

(q − 2)Jz

2
√

q − 1t

)2/3

− (q − 2)
Jz

2

∑
d�0

(d − d0)|ψn(d )|2. (A4)

The first term in this expression yields the term at order
(Jz/t )2/3 to the energy in Eq. (40). The second term cancels
all contributions in the lower line of Eq. (A3) for d � 1.
The remaining term is, thus, proportional to |ψn(d )|2, and is
therefore proportional to (Jz/t )2 and may be dropped. We now
move on to the contribution from the first derivate ∂dψn. This
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yields

∑
d

ψ (d )∂dψn = λ2
∑

x�−λd0

φn(x)∂xφn(x)

= λ
∑

x�−λd0

�x · φn(x)∂xφn(x), (A5)

using �x = λ. To evaluate this sum, we transform the sum to
an integral using the midpoint rule. This yields

∑
d

ψ (d )∂dψn → λ

∫ ∞

−λd0−λ/2
dx φn(x)∂xφn(x)

= λ

[ ∫ ∞

0
dx φn(x)∂xφn(x)

−
∫ −λ(d0+1/2)

0
dx φn(x)∂xφn(x)

]

� −λ

∫ −λ(d0+1/2)

0
dx x|[∂yφn(y)]y=0|2

= −λ3

2

(
d0 + 1

2

)2

. (A6)

The use of the midpoint rule results in the shift of the integra-
tion limit from −λd0 to −λd0 − λ/2, i.e., half an interval of
�x. Consequently, the error made in transforming the sum to
an integral is of order (λ(d0 + 1/2))3 and may be neglected.
The collected contribution from these hopping terms is

thus

εvar
n,2 = −2

√
q − 1t +

√
q − 1t · an ·

(
(q − 2)Jz

2
√

q − 1t

)2/3

+
√

q − 1t · λ3

(
d0 + 1

2

)2

= εn + (q − 2)
Jz

2

(
d0 + 1

2

)2

. (A7)

Here, we neglect the term −(q − 2) Jz

2

∑
d�0(d − d0)|ψn(d )|2,

canceling the lower term in Eq. (A3). Finally, we investigate
the term proportional to ψn(0)ψn(1), present due to the fact
that the hopping between d = 0 and d = 1 is fundamentally
different than for d � 1. Expanding the wave functions to
lowest-order yields

εvar
n,3 = −2t (

√
q −

√
q − 1) · ψn(0)ψn(1)

= 2t (
√

q −
√

q − 1) · λ3d0(1 − d0), (A8)

using that A2
n|Ai′(−an)|2 = 1. All in all, we get the variational

energy

εvar
n = εn + [1 + (q − 2)d0] · Jz

2

+ (q − 2)

(
d0 + 1

2

)2

· Jz

2

+ 2(q − 2)

(√
q

q − 1
− 1

)
d0(1 − d0) · Jz

2
, (A9)

where εn = −2
√

q − 1t (1 − anλ
2/2). The result in Eq. (A9)

coincides with Eq. (40).
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