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Optical conductivity of semi-Dirac and pseudospin-1 models: Zitterbewegung approach
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We present a method to calculate the optical conductivity of semi-Dirac and pseudospin models based on
the evaluation of quasiparticle velocity correlators which also describe the phenomenon of Zitterbewegung.
Applying this method to the semi-Dirac model with merging Dirac cones and gapped dice and Lieb lattice
models we find exact analytical expressions for optical longitudinal and Hall conductivities. For the semi-Dirac
model the obtained expressions allow us to analyze the role of spectrum anisotropy, Van Hove singularities, and
Dirac cones in longitudinal conductivity. In addition, we predict signatures of topological phase transition with
changing gap parameter in such a system that are manifested in dc transport at low temperatures. For the dice and
Lieb lattices we emphasize the role of the spectral gap, which defines frequency thresholds related to transitions
to and from a flat band.
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I. INTRODUCTION

The optical studies of electronic systems are one of the
main sources of information about charge dynamics in dif-
ferent condensed matter systems: high-Tc superconducting
cuprates [1,2], graphene [3–8], and topological insulators [9],
together with Dirac and Weyl materials [10–12]. Recently it
was shown [13] that in crystals with special space symme-
try groups more complicated quasiparticle spectra could be
realized with no analogs in high-energy physics where the
Poincaré symmetry provides strong restrictions. Some such
systems possess strictly flat (dispersionless) bands [14–16]
with high degeneracy potentially leading to a large enhance-
ment of some physical quantities.

In the present paper we develop a method to calcu-
late frequency-dependent optical and Hall conductivities in
low-energy models containing also different types of quasi-
particles. The presented method is based on the solution of
the Heisenberg equations for the time-dependent quasiparticle
velocity operators, which also describe the phenomenon of
Zitterbewegung (trembling motion) [17,18]. The formulation
of this method is very similar to the proper time approach
of Schwinger [19], and the obtained expressions extend pre-
viously derived formulas for longitudinal conductivity from
Refs. [20,21]. We rewrite the Kubo formula through quasi-
particle velocity correlators and use the solutions of the
Heisenberg equations. We demonstrate the applicability of
the described method to the semi-Dirac model and gapped
pseudospin-1 models of the dice and Lieb lattices. As a result,
we obtain closed-form analytic expressions, which in turn
are used to investigate the dependence of conductivities on
frequency, gap size, and temperature.

The phenomenon of Dirac points merging in two-
dimensional materials has received much attention in the
literature [22–24]. Such a system was realized experimentally

in optical lattices [25] and in microwave cavities [26]. The
analytical and numerical calculations of optical conductivity
for semi-Dirac systems were discussed in several recent pa-
pers [27–32]. Quite recently the magnetoconductivity of the
semi-Dirac model was studied [33].

The dice model is a tight-binding model of two-
dimensional fermions living on the T3 (or dice) lattice where
atoms are situated both at the vertices of a hexagonal lattice
and the hexagons centers [34,35]. Since the dice model has
three sites per unit cell, the electron states in this model are
described by three-component fermions and the energy spec-
trum of the model is comprised of three bands. Two of them
form Dirac cones and the third band is completely flat and has
zero energy [36,37]. The T3 lattice has been experimentally re-
alized in Josephson arrays [38,39] and metallic wire networks
[40], and its optical realization by laser beams was proposed
in Refs. [36,41]. The optical and Hall conductivities for the
α-T3 model were studied in Refs. [42–45]. We show that our
method allows one to obtain fully analytic expressions for the
case of the model with the Sz gap, thus extending the previous
results.

Another example of a pseudospin-1 system considered in
this paper is the gapped low-energy model of the Lieb lat-
tice [46]. Due to the presence of flat bands in the spectrum
[46–48], the Lieb lattice served as a platform for theoretical
studies of many strongly correlated phenomena, including
ferromagnetism [49,50] and superconductivity [51,52]. The
Lieb lattice was realized in many experimental setups: arrays
of optical waveguides [53,54] via the surface state electrons of
Cu(111) confined by an array of carbon monoxide molecules
[55], in a vacancy lattice in a chlorine monolayer on Cu(100)
surface [56], and in covalent organic frameworks [57,58].

The paper is organized as follows: In Sec. II we present the
most general formulas for the optical and Hall conductivity
in terms of quasiparticle velocity correlators. In Sec. III we
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apply the method for a simple but physically reachable semi-
Dirac model with merging Dirac cones. Next, we apply the
described approach to calculate the optical conductivity of the
gapped dice model. For this purpose in Sec. IV A we solve
the Heisenberg equations for the dice model with gap and
discuss properties of the quasiparticle dynamics. Combining
the results with general formulas for conductivity in Sec. IV B,
we find the optical and Hall conductivity and analyze their
dependence on external frequency. Finally, in Sec. V we per-
form similar calculations for the Lieb lattice model, whose
underlying matrix algebra is much more complicated. In the
Appendixes we present the details of Kubo formula transfor-
mations and evaluation of conductivity integrals.

II. EXPRESSION FOR CONDUCTIVITY THROUGH
PARTICLE VELOCITY CORRELATORS

The method described below is an extension of the ap-
proach used in Ref. [17] for an arbitrary pseudospin model
with different dispersions. We start the derivation from the
Kubo formula for a frequency-dependent electrical conduc-
tivity tensor written in the following form [21]:

σμν (ω) = i

(ω + iε)V

×
[
〈τμν〉 − i

h̄

∫ ∞

0
dtei(ω+iε)t Tr (ρ̂[Jμ(t ), Jν (0)])

]
,

(1)

where V is the volume (area) of the system, ρ̂ = exp(−βH )/Z
is the density matrix with the Hamiltonian H in the grand
canonical ensemble, Z = Tr exp(−βH ) is the partition func-
tion, β = 1/kBT , and Jμ are the current operators. The
diamagnetic or stress tensor 〈τμν〉 in the Kubo formula
(1) is a thermal average of the operator defined as τμν =
∂2H/∂ (Aμ/c)∂ (Aν/c). In the case of a linear dispersion law
the term with 〈τμν〉 in Eq. (1) is absent. In what follows we set
h̄ = 1 and restore it in the final expressions.

The important symmetry properties of the conductivity are

Re σμν (ω) = Re σμν (−ω), (2)

Im σμν (ω) = − Im σμν (−ω). (3)

Using the representation of conductivity tensors through the
correlation functions of currents (see Ref. [20] and Ap-
pendix A) and expressing them in terms of time-dependent
particle velocity correlators, we arrive at the following general
expressions:

Re σ{μ,ν}(ω) = e2

2ω

∫ ∞

−∞
dEρ(E )[ f (E ) − f (E + ω)]

×
∫ ∞

−∞
dteiωt 〈v{μ(t )vν}(0)〉E , (4)

where the velocity operator vμ(t ) = eiHtvμ(0)e−iHt . Here we
define the microcanonical average of an operator Â at given
energy E as

〈Â〉E = Tr[δ(E − Ĥ )Â]

Tr[δ(E − Ĥ )]
, (5)

where Tr[δ(E − Ĥ )] = ρ(E )V and ρ(E ) is the density of
states (DOS). It is easy to check that the last expression is
real using

〈v{μ(−t )vν}(0)〉∗E = 〈v{μ(t )vν}(0)〉E . (6)

Expression (4) for T = 0 is in accordance with Ref. [59]
for diagonal conductivity. The numerator in Eq. (5) can be
represented using the Fourier transformation:

Tr[δ(E − Ĥ )Â] = V

2π

∫ ∞

−∞
dseiEs Tr [e−iĤsÂ]

= V

2π

∫ ∞

−∞
dseiEs

∫
d2 p

(2π )2
tr [e−iH (p)sÂ(p)].

(7)

Similarly, for the imaginary antisymmetric part of conductiv-
ity we have

Im σ[μ,ν](ω) = e2

2ω
Im
∫ ∞

−∞
dEρ(E )[ f (E ) − f (E + h̄ω)]

×
∫ ∞

−∞
dteiωt 〈v[μ(t )vν](0)〉E . (8)

We note that the integral over t is purely imaginary due to the
property 〈v[μ(−t )vν](0)〉∗E = −〈v[μ(t )vν](0)〉E .

To calculate Im σ{μ,ν}(ω) and Re σ[μ,ν](ω) we use the
Kramers-Kronig relation [Eq. (A8)]. Equations (4) and (8)
together with Eqs. (5) and (7) allow one to obtain the final
result after two Fourier transformations.

III. OPTICAL CONDUCTIVITY
OF THE SEMI-DIRAC MODEL

In this section we analyze the conductivity of the semi-
Dirac model, which was extensively used to describe the low-
energy physics of phosphorene [27,30–32,60,61]. The main
feature of such a model is that it mixes linear and quadratic
terms in the Hamiltonian:

Hsemi = (
 + ap2

x

)
σx + vpyσy. (9)

The dispersion defined by this Hamiltonian consists of two
bands:

ε± = ±
√(

ap2
x + 

)
2 + v2 p2

y. (10)

The spectrum described by Eq. (10) is presented in Fig. 1. By
tuning the gap parameters, one can achieve completely differ-
ent types of spectrum: fully gapped, one band-touching point,
or two band-touching points separated by 2

√
/a distance

along px momentum.
Writing the Heisenberg equations for this Hamiltonian, we

find

v(t ) = dx
dt

= −i[x(t ), Hsemi(t )] = (2apx(t )σx(t ), vσy(t )),

(11)
d pi

dt
= −i[pi, Hsemi] = 0. (12)

From the first equation we find that velocity depends on
momentum px(t ), which does not evolve as a result of the
second equation: px(t ) = px(0). Also, velocity depends on the
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FIG. 1. Spectrum given by the Hamiltonian Hsemi in Eq. (9). The values of the gap parameter are (a)  = 1, (b)  = 0, and (c)  = −1.
We choose units v = 1, a = 1. Panel (a) represents a fully gapped regime, while panel (c) corresponds to the regime with two Dirac cones
separated by 2

√
/a along the x direction.

Pauli matrices, which evolve with time according to another
Heisenberg equation:

dσ(t )

dt
= −i[σ(t ), Hsemi] = 2[ p̃(0) × σ(t )]. (13)

Here we used notation p̃(0) = [ + ap2
x, vpy, 0] and the fact

that the commutator of the Pauli matrices is [σi(t ), σ j (t )] =
2iεi jkσk (t ). The multiplication symbol indicates the vector
product of p̃ and σ. The initial condition for the Pauli ma-
trices is σ(0) = (σx, σy, σz ); thus the operator σ(0) is in the
Schrödinger picture, i.e., it is time independent.

Equation (13) describes the time evolution of the pseu-
dospin degree of freedom in terms of Pauli matrices acting
on states in Hilbert space. Such an unusual temporal evolu-
tion of matrix operators first appeared in the original paper
by Schrödinger [62] on the Zitterbewegung of the elec-
tron described by the Dirac Hamiltonian. It is clear from
Eq. (13) that the pseudospin vector σ(t ) precesses around the
vector p. Below we demonstrate that similar Heisenberg equa-
tions describe the dynamics of pseudospin degree of freedom
for other matrix types depending on effective Hamiltonian
of quasiparticles.

The Heisenberg equation above gives a system of differ-
ential equations for matrices σ̇i(t ) = Pi jσ j (t ), Pi j = 2εik j p̃k ,
whose solution is

σi(t ) = (ePt )i j ( p̃)σ j (0), (ePt )i j ( p̃)

=

⎛
⎜⎜⎜⎝

p̃2
y cos(2 p̃t )+p̃2

x

p̃2
p̃x p̃y (1−cos(2 p̃t ))

p̃2
p̃y sin(2 p̃t )

p̃

p̃x p̃y (1−cos(2 p̃t ))
p̃2

p̃2
x cos(2 p̃t )+p̃2

y

p̃2 − p̃x sin(2 p̃t )
p̃

− p̃y sin(2 p̃t )
p̃

p̃x sin(2 p̃t )
p̃ cos(2 p̃t )

⎞
⎟⎟⎟⎠.

(14)

Here we denoted p̃ =
√

p̃2
x + p̃2

y. The time-dependent velocity

is obtained from these solutions by combining them with
Eq. (11). The velocity vi(t ) contains Zitterbewegung terms
which stem from the oscillatory terms (the cosine and sine
terms) in Eq. (14).

The Zitterbewegung phenomenon was first regarded as
a relativistic effect related to the Dirac equation and de-
scribes trembling or oscillatory motion of the center of a
free wave packet [62,63]. The appearance of Zitterbewegung

phenomena in graphene and other two-dimensional con-
densed matter systems [17,18,64] indicates that the effect is
not purely relativistic, originating from interband transitions
between states with positive and negative energy. The direct
experimental observation of the Zitterbewegung became re-
cently possible in a Bose-Einstein condensate of ultracold
atoms [65].

We now proceed by calculating the traces of velocity prod-
ucts with the matrix exponential of the Hamiltonian as they
appear in Eq. (7). Due to the anisotropy in the electron disper-
sion, the conductivity is also anisotropic; therefore, we present
the results of its calculation in separate sections.

A. Optical conductivity in the x direction

We start with the evaluation of the real part of optical
conductivity in the x direction. For this purpose we start with
the calculation of trace which has the form as in Eq. (7):

Tr [e−iHsemisvx(t )vx(0)]

=
∫

d2 p

(2π )2

8a2 p2
x

ε2+

× (
v2 p2

y cos ((s − 2t )ε+) + (
ap2

x + 
)

2 cos (sε+)
)
.

(15)

Next we substitute this result into the expression for the real
part of the xx longitudinal conductivity (4), and calculate the
Fourier transforms over t and s. The result has the form of a
double integral:

Re σxx(ω)

= e2

ω

∫ ∞

−∞

dE

2π
[ f (E ) − f (E + ω)]

∫
d2 p

2a2 p2
x

ε2+

× [
δ(E + ε+)

(
v2 p2

yδ(ω + 2ε−) + δ(ω)
(
ap2

x + 
)2)

+ δ(E + ε−)
(
v2 p2

yδ(ω + 2ε+) + δ(ω)
(
ap2

x + 
)2)]

.

(16)

The procedure of integration over momentum depends on
the sign of the  parameter and is described in detail
in Appendix B. The main trick in the calculation is to
introduce modified polar coordinates, which take into
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FIG. 2. Real part of longitudinal interband ac conductivity in x and y directions (top and bottom plots) as a function of frequency for
the fixed values of gap  for the semi-Dirac model. The frequency is measured in units of ω0 = v2/a. The normalization parameters are

σ0 = e2√
a

2π h̄v
for the x direction and σ0 = e2v

2π h̄
√

a for the y direction. The values of the gap parameter are (a) /ω0 = 1, (b) /ω0 = 0, and
(c) /ω0 = −1.

account the anisotropy of dispersion (10) in each case  <

0,  = 0, and  > 0 with the proper regions of integra-
tion. As a result, we were able to express all integrals
in terms of complete elliptic integrals. The results for the
real part of interband ac and intraband dc conductivities
are

Re σ inter
xx (ω)

= sgn ω
e2

2π h̄

√
2|ω|a
4v

[
f
(
−ω

2

)
− f

(ω

2

)]

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2�(|| − |ω/2|)Ixx
3 (2/|ω|)

+2�(|ω/2| − ||)Ixx
1 (2/|ω|),  < 0

16π3/2

5
√

2�2( 1
4 ) ,  = 0,

2�(|ω/2| − )Ixx
1 (2/|ω|),  > 0.

(17)

The integrals Ixx
1 , Ixx

3 , and similar integrals occurring below
are defined in Appendix B; they are given in terms of complete
elliptic integrals of the first and second kinds.

We plot the conductivity Re σ inter
xx (ω) as a function of ω

at different values of  in the upper plots of Fig. 2. In all
plots we set Ta = 0.1, and absorb v and a parameters into
normalization constant σ0. As is seen, the behavior of the
conductivities at small frequencies, ω < 2||, is radically
different for  > 0 and  < 0: the case  > 0 corresponds to
the insulating phase while  � 0 corresponds to the metallic
phase.

The analytic expression (17) allows one to get asymptotes
at small and large ω; for example, in the most interesting case,
 < 0, they are

Re σ inter
xx (ω) � e2

2π h̄

⎧⎨
⎩

√||a
v

πω

8T cosh2 μ

2T
, ω → 0,

√
ωa
v

4π3/2

5�2( 1
4 ) , ω → ∞.

(18)

In the intraband part of conductivity with δ(ω) the result
contains an integral over energy,

Re σ intra
xx (ω) = δ(ω)

e2√a

4π h̄vT

∫ ∞

−∞

dE |E |3/2

cosh2
(E−μ

2T

)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2�(|| − |E |)Ixx
4 (/|E |)

+2�(|E | − ||)Ixx
2 (/|E |),  < 0,

3π3/2

10
√

2�2( 5
4 ) ,  = 0,

2�(|E | − )Ixx
2 (/|E |),  > 0.

(19)

The integral over energy can be evaluated analytically only in
the special case of zero temperature, T → 0. We plot Re σ intra

xx
as a function of the gap parameter  in Fig. 3. One can ob-
serve the monotonous decrease with growing  for all values
of chemical potential.

B. Optical conductivity in the y direction

For the longitudinal conductivity along the y direction the
technical details of calculation are very similar to the σxx case.
They are presented in Appendix B. The results for interband
ac optical conductivity are

Re σ inter
yy (ω)

= sgn ω
e2

2π h̄

v

4
√

2|ω|a
[

f
(
−ω

2

)
− f

(ω

2

)]

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2�(|| − |ω/2|)Iyy
4 (2/|ω|)

+2�(|ω/2| − ||)Iyy
2 (2/|ω|),  < 0,

�2( 1
4 )

3
√

2π
,  = 0,

2�(|ω/2| − )Iyy
2 (2/|ω|),  > 0.

(20)

They are presented in Fig. 2 in the lower panels for all three
different cases of . As is seen in the lower panel in Fig. 2(c),
the optical conductivity in the y direction diverges at the
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FIG. 3. Real part of (a) xx and (b) yy intraband dc conductivities as functions of the gap  for different values of chemical potential. The
temperature is equal to T = 0.1ω0 in both cases with ω0 = v2/a. The pronounced peak at μ = 0 in (b) manifests the possibility of dc transport
through the charge-neutrality point.

point ω = −2 for  < 0. This divergence was also observed
in numerical calculations in Refs. [29,31]. Using our exact
expressions, we can derive asymptotic expansions in the in-
tegrals Iyy

2 (2/|ω|) and Iyy
4 (2/|ω|) at ω = 2|| for negative

. Expanding the integrals near this point up to leading order,
we find

Iyy
2 (2/|ω|)ω→2||+ ≈ 1√

2
log

2||
ω − 2|| + const, (21)

Iyy
4 (2/|ω|)ω→2||− ≈ 1√

2
log

2||
|2| − ω

+ const. (22)

The logarithmic singularity has the same amplitudes from
both sides. In Ref. [31] this singularity was related to the
joint density of states for initial and final states involved in
an optical transition; hence the Van Hove singularity appears
at ω = 2||, while the density of states itself has a Van Hove
logarithmic singularity at ω = ||. The density of states for
the considered system was derived in Ref. [24]; it is expressed
also in terms of complete elliptic integrals of the first and
second kinds.

We also present the asymptotes for the case  < 0 at small
and large ω:

Re σ inter
yy (ω) � e2

2π h̄

⎧⎨
⎩

v√||a
πω

32T cosh2 μ

2T
, ω → 0,

v√
ωa

�2( 1
4 )

24
√

π
, ω → ∞.

(23)

For intraband dc optical conductivity we find

Re σ intra
yy (ω) = δ(ω)

e2

16π h̄T

∫ ∞

−∞

dE

cosh2
(E−μ

2T

) v
√|E |√

a

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2�(|| − |E |)Iyy
3 (/|E |)

+2�(|E | − ||)Iyy
1 (/|E |),  < 0,

√
2�2( 1

4 )
3
√

π
,  = 0,

2�(|E | − )Iyy
1 (/|E |),  > 0.

(24)

Interband and intraband conductivities were studied recently
in Ref. [30] at zero temperature, where the authors obtained
also asymptotic expressions at small and large frequencies.

We checked that their asymptotics follow straightforwardly
from our analytical results for T = 0 while at finite temper-
ature we get a different dependence for Re σ inter

yy (ω) when ω

goes to zero.
Finally, in Fig. 3 we plot intraband parts as functions of the

gap  for different values of chemical potential. The interest-
ing feature presented in Fig. 3(b) is the appearance of a small
peak near  = 0 on the negative side at small chemical poten-
tials. This peak can be related to the crossing of saddle point
level with chemical potential. At zero chemical potential this
peak appears only at small  values and attain a maximum for
 ≈ 0, which shows that temperature-broadened Van Hove
singularities intersect with the Fermi level and allow transport
even at zero frequency. Such a signature can be used as a man-
ifestation of the regime that is close to topological transition
with  in dc transport measurements.

IV. OPTICAL CONDUCTIVITY OF GAPPED DICE MODEL

A. Solution of the Heisenberg equations for
the quasiparticle in a dice model

The T3 (dice) lattice is schematically shown in Fig. 4(a).
The corresponding tight-binding Hamiltonian is expressed
through the function fk = −√

2t (1 + e−ika2 + e−ika3 ) with
equal hoppings t between atoms C (green hubs) and A and B
(red and blue rim sites) [35,36] and the corresponding energy
spectrum is [37]

ε0 = 0,

ε± = ±
√

2t[3 + 2(cos(a1k) + cos(a2k) + cos(a3k))]1/2,

(25)

where a1 = (1, 0)a and a2 = (1/2,
√

3/2)a are the basis
vectors of the triangle sublattices and a3 = a2 − a1 with the
lattice constant denoted by a.

There are two values of momentum where fk = 0 and all
three bands meet. They are situated at the corners of the
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(a) (b) (c)

FIG. 4. (a) A schematic plot of the lattice of the dice model. The red points display the A sublattice atoms, the blue points describe the B
sublattice, and the green points define the C sublattice. The vectors a1 = (1, 0)a and a2 = (1/2,

√
3/2)a are the basis vectors of triangular

sublattices. (b) The Lieb lattice with the corresponding sublattices, basis vectors, and elementary cell. (c) Possible interband transitions which
contribute to optical conductivity and define frequency thresholds.

hexagonal Brillouin zone:

K = 2π

a

(
1

3
,

1√
3

)
, K ′ = 2π

a

(
−1

3
,

1√
3

)
. (26)

For momenta near the K and K ′ points, the function fk is linear
in p = k − ξK, i.e., fk = vF (ξ px − ipy), vF = √

3ta/2 is the
Fermi velocity, and ξ = ± is the valley index. In addition, we
set h̄ = 1 for convenience. The low-energy Hamiltonian near
the K (K ′) ξ = ±1 three-bands-touching point reads

Hdice = vF (pxSx + ξ pySy + pzSz ), (27)

with a constant gap vF pz, and pseudospin-1 matrices Si are

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (28)

These matrices form a closed algebra with respect to commu-
tator operation: [Si, S j] = iεi jkSk .

The Sz-type term in the Hamiltonian Hdice describes the
spectral gap, which can be opened by adding on-site poten-
tial on A and B sites [66], in the Haldane model [44], or

dynamically generated in special cases of electron-electron
interactions [67] and in the Floquet setup under circularly
polarized radiation [68,69].

Let us perform analysis for the K (ξ = 1) valley, and
then account for the K ′ valley with proper sign changes.
The Heisenberg equations for the coordinate and momentum
operators in this case take the form

v(t ) = dx
dt

= −i[x(t ), Hdice] = vF S(t ), (29)

d p
dt

= −i[p(t ), Hdice] = 0. (30)

Again, using the solution of the second equation, which states
p(t ) = p(0), we arrive at the following Heisenberg equa-
tion for matrices Si:

dSi(t )

dt
= −i[Si(t ), Hdice] = iPi jS j (t ), (31)

with

Pi j = ivF εi jk pk = ivF

⎛
⎝ 0 pz −py

−pz 0 px

py −px 0

⎞
⎠. (32)

The solution of this equation has the form

Si(t ) = (eiPt )i jS j (0), (33)

where the matrix exponential is

(eiPt )i j =

⎛
⎜⎜⎝

(p2
y+p2

z ) cos (ptvF )+p2
x

p2
px py (1−cos (ptvF ))−ppz sin (ptvF )

p2
px pz (1−cos (ptvF ))+ppy sin (ptvF )

p2

px py (1−cos (ptvF ))+ppz sin (ptvF )
p2

(p2
x+p2

z ) cos (ptvF )+p2
y

p2
py pz (1−cos (ptvF ))−ppx sin (ptvF )

p2

px pz (1−cos (ptvF ))−ppy sin (ptvF )
p2

ppx sin (ptvF )−py pz cos (ptvF )+py pz

p2
(p2

x+p2
y ) cos (ptvF )+p2

z

p2

⎞
⎟⎟⎠. (34)

Here we used the notation p =
√

p2
x + p2

y + p2
z . The eigenvalues of the matrix P are ±vF p, 0. The matrix exponential greatly

simplifies for the gapless case with pz = 0 [compare with Eq. (14)]:

(eiPt )i j (pz = 0) =

⎛
⎜⎜⎝

p2
y cos (ptvF )+p2

x

p2
px py (1−cos (ptvF ))

p2
py sin (ptvF )

p
px py (1−cos (ptvF ))

p2

p2
x cos (ptvF )+p2

y

p2 − px sin (ptvF )
p

− py sin (ptvF )
p

px sin (ptvF )
p cos (ptvF )

⎞
⎟⎟⎠. (35)
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Thus, from the solutions (33) and (34) we find the time-
dependent velocity operators:

vx(t ) = vF

((
p2

y + p2
z

)
cos (ptvF ) + p2

x

p2
Sx

+ px py(1 − cos (ptvF )) − ppz sin (ptvF )

p2
Sy

+ px pz(1 − cos (ptvF )) + ppy sin (ptvF )

p2
Sz

)
,

(36)

vy(t ) = vF

(
px py(1 − cos (ptvF )) + ppz sin (ptvF )

p2
Sx

+
(
p2

x + p2
z

)
cos (ptvF ) + p2

y

p2
Sy

+ py pz(1 − cos (ptvF )) − ppx sin (ptvF )

p2
Sz

)
.

(37)

Below we insert these results into Eqs. (4) and (8) to evaluate
the longitudinal and Hall conductivities. Again, we see that
the velocities vi(t ) contain Zitterbewegung terms which stem
from the oscillating terms.

B. Longitudinal and Hall conductivities
in massive dice model

Substituting the obtained velocities into Eqs. (5) and (7)
and performing Fourier transform over pairs of (s, E ) and
(t, ω) variables, we find

Ft,s Tr [e−iHsvx(t )vx(0)]

= πv2
F δ(E )

(
p2 + p2

z

2p2

)
(δ(ω − pvF ) + δ(ω + pvF ))

+ πv2
F δ(E+pvF )

(
p2+p2

z

2p2
δ(ω−pvF )+ p2−p2

z

p2
δ(ω)

)

+ πv2
F δ(E−pvF )

(
p2+p2

z

2p2
δ(ω+pvF )+ p2−p2

z

p2
δ(ω)

)
,

(38)

Ft,s Tr [e−iHsv[x,(t )vy](0)]

= v2
F pz

ip
[δ(ω − pvF )δ(E + pvF )

− δ(ω + pvF )δ(E − pvF )

− δ(E )δ(ω + pvF ) − δ(ω − pvF )], (39)

where the double Fourier transform is defined as

Ft,s f (t, s) =
∫ ∞

−∞

dt ds

(2π )2
eiωt+iEs f (t, s). (40)

Using the first expression in the general formula for
longitudinal conductivity, we find

Re σxx(ω) = e2

4h̄

[
δ(ω)

∫ ∞

−∞

dE

4T cosh2
(E−μ

2T

)
× E2 − 2v2

F

|E | �(|E | − vF ) + ω2 + 2v2
F

2ω2

× �(|ω| − vF )[ f (−|ω|) − f (|ω|)]
]
, (41)

where we relabeled pz =  > 0 and took into account the
presence of two valleys that contribute equally. Note that
the term proportional to �(|ω| − vF ) defines the energy
threshold after which the transitions from and to the flat band
become possible. However, no special threshold is present
for transitions between the two dispersive bands, which
means that only transitions through the flat band are possible.
This was already pointed out for the gapless dice model in
Refs. [42,45]. In addition we note that in the gapless limit
the obtained expression agrees with that obtained for arbitrary
pseudospin models with the same matrix algebra [Si, S j] =
iεi jkSk in Ref. [70].

Similarly, for the imaginary part of the Hall conductivity in
one valley we find

Im σ[x,y](ω) = e2 pzvF

4h̄ω
�(|ω| − vF |pz|)[ f (|ω|) − f (−|ω|)].

(42)

Note that the Hall conductivity is proportional to the gap pa-
rameter pz and the sum over two valleys with different signs of
pz will lead to the zero total Hall conductivity. This is because
the system is T invariant, and the operation of T invariance
interchanges K and K ′ valleys [66]. These conductivities are
shown in Fig. 5 for different values of chemical potential and
temperature.

Using the Kramers-Kronig relations, one can evaluate the
real part of the Hall conductivity [see Eq. (D8)]. At zero
temperature we find the following expression:

Re σxy(ω) = −e2vF pz

4π h̄ω
log

∣∣∣∣max(|μ|, vF |pz|) + ω

max(|μ|, vF |pz|) − ω

∣∣∣∣. (43)

At the energy ω = max(|μ|, vF |pz|), there is a logarithmic di-
vergence in the Hall conductivity. For large energies, ω → ∞,
this expression approaches zero as ∼1/ω2. This expression is
very similar to those obtained in graphenelike systems (see,
for example, Refs. [71,72]). The dc limit ω → 0 leads to
the quantized Hall conductivity Re σxy = −e2sign(pz )/h for
|μ| � vF |pz| in the absence of a magnetic field [73].

V. OPTICAL CONDUCTIVITY OF THE LIEB MODEL

In this section we evaluate the optical conductivity of the
gapped Lieb model [46] using the method presented above.
The main complication arises in solving Heisenberg equa-
tions for matrices: due to commutation relations the whole set
of the Gell-Mann matrices enters the calculation. Below we
show how one can still perform the calculation and arrive at
a relatively simple expression for the conductivity. We start
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FIG. 5. [(a), (b)] The real part of optical conductivity for gapped dice and Lieb lattices given by Eqs. (41) and (52) at temperature T =
0.1vF . (c) The real part of intraband dc conductivity which is the same for both lattices (for a dice lattice in a single valley).

with a description of the main properties of the Lieb lattice
and corresponding low-energy model.

A. Lieb lattice and low-energy model

The Lieb lattice is schematically shown in Fig. 4(b). It
consists of three square sublattices, with atoms placed in the
corners and in the middle of each side of big squares forming
a line-centered-square lattice. The tight-binding Hamiltonian,
described in Ref. [46], reduces to the following low-energy
model near the center of the Brillouin zone (BZ), kx,y = π

a +
qx,y:

HLieb =
⎛
⎝vF vF qx 0

vF qx −vF vF qy

0 vF qy vF

⎞
⎠, (44)

where the site energies are set as εB = εC = −εA = vF . In
terms of the Gell-Mann λ matrices the Hamiltonian takes the
form

HLieb = vF

[
λ1qx + λ6qy + 

(
λ0

3
+ λ3 − λ8√

3

)]
. (45)

Here λ0 is the 3 × 3 unit matrix. The energy dispersions
defined by this Hamiltonian are given by three bands; one is a
flat band and the other two are dispersive bands [see Fig. 4(c)]:

ε0 = vF , ε± = ±vF

√
2 + q2

x + q2
y . (46)

Let us check the T invariance of this Hamiltonian. The oper-
ator T should contain complex conjugation, the change of the

sign of both momenta, and the proper matrix transformation
in sublattice space:

T̂ H (q)T̂ −1 = H (−q), T̂ = FK̂ . (47)

In the absence of the gap the matrix F has the form

F =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠. (48)

Thus we conclude that the gap presented in Ref. [46] does
not break T invariance. Consequently, the Hall conductivity is
zero in this model in the absence of a magnetic field.

B. Solution of the Heisenberg equations

The Heisenberg equations for the coordinate and momen-
tum operators are very similar to that obtained in previous
sections: velocities evolve with time as the corresponding
matrices in the Hamiltonian near qx and qy, and the momenta
do not evolve at all. The nontrivial part comes from the equa-
tion that describes the evolution of matrices. The system of
equations for the Gell-Mann matrices has the form

dλi(t )

dt
= −i[λi(t ), HLieb] = vF Ai jλ j (t ), (49)

where we used the commutation relations [λi, λk] = 2i fik jλ j

with fik j being the structure constants of the su(3) algebra;
hence the matrix Ai j has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0 0 qy 0 0 0
2 0 −2qx −qy 0 0 0 0
0 2qx 0 0 0 0 −qy 0
0 qy 0 0 0 0 −qx 0

−qy 0 0 0 0 qx 0 0
0 0 0 0 −qx 0 2 0
0 0 qy qx 0 −2 0 −√

3qy

0 0 0 0 0 0
√

3qy 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

For the eigenvalues of the matrix vF Ai j we find

a1,2 = 0, a3,4 = ±2ipvF ,

a5,6 = ±ivF ( + p), a7,8 = ±ivF (p − ), (51)

where we defined p =
√

q2
x + q2

y + 2. The initial conditions

for velocities are vx(0) = vF λ1, vy(0) = vF λ6. After calcula-
tion of the matrix exponent exp[At], we find velocities at time
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t by taking the corresponding rows in the resulting matrix: the
first for vx and the sixth for vy. The solutions for vx and vy

are defined as vectors in the Gell-Mann basis [see Eqs. (E1)
and (E2) in Appendix E). The identity matrix is not present
because it does not evolve with time and the coefficient be-
fore this matrix is zero. Next we evaluate the conductivity
using the obtained solutions vx,y(t ) and previously established
method.

C. Optical conductivity

Performing trace evaluation and using the double-Fourier
transform, we arrive at the following final answer for the
optical conductivity of the Lieb lattice in the x direction (see
Appendix E):

Re σxx(ω) = e2

4h̄

[
δ(ω)

∫ ∞

−∞

dE

4T cosh2
(E−μ

2T

) E2 − 2v2
F

|E |
× �(|E | − vF ) + �(|ω| − 2vF )

×
[

22v2
F

ω2

(
f

(
−|ω|

2

)
− f

( |ω|
2

))

+ f (vF − |ω|) − f (vF )

2

]

+ f (vF ) − f (vF + |ω|)
2

]
. (52)

For the conductivity in the y direction we find the same
answer.

The physical meaning of the terms in Eq. (52) is the
following: The first term corresponds to intraband dc con-
ductivity, the second term describes interband transitions
through the gap, which is why the threshold is 2v f , and
the last term corresponds to transitions between flat and
upper dispersive bands. This conductivity is presented in
Fig. 5 in comparison with the gapped dice model. Qual-
itatively, the behavior of conductivities in both models is
similar.

The interesting difference compared to the dice model con-
ductivity (41) is the presence of both dispersive-to-dispersive
band transitions and dispersive-to-flat band transitions in the
interband ac part of optical conductivity [schematically shown
in Fig. 4(c)].

VI. CONCLUSIONS

In the present paper we further developed the approach of
Refs. [17,18] for calculating longitudinal and Hall conduc-
tivities of systems with arbitrary pseudospin and dispersion
law of quasiparticles. The conductivities are written through
quasiparticle velocity correlators at time t for states of energy
E which also describe the phenomenon of Zitterbewegung.
For noninteracting systems the Heisenberg equations for
velocities can be solved, which allows one to significantly re-
duce the complexity of the conductivity calculation and obtain
in some cases closed-form analytic expressions. The method
under consideration is well adapted also to the presence of
impurities in the system. The velocity correlators in this

case can be computed numerically utilizing a time-dependent
Schrödinger equation with averaging over impurities [21,74].

We applied this method to evaluate the optical conduc-
tivity of the semi-Dirac model, which is an example of
low-energy theory with anisotropic spectrum. We obtained
exact expressions which allowed us to identify the signatures
of topological phase transition with gap closing and merging
Dirac points. The previously unobserved result is the peak in
the intraband dc conductivity along the y direction at zero
chemical potential when the two Dirac cones nearly merge
with each other. Physically, one would expect that this is
related to the intersection of broadened Van Hove singularities
with the Fermi level. Such an intersection leads to the appear-
ance of a number of propagating states carrying a nonzero
current. At low temperatures, nonzero transport through the
charge-neutrality point may indicate the appearance of a topo-
logical phase transition.

In addition, we analyzed two gapped pseudospin-1 mod-
els that correspond to dice and Lieb lattices. The optical
conductivities for the considered gap parameters were not
studied previously. The key physical difference that we
observed is the fact that in the gapped Lieb model all
transitions between three bands (dispersive to flat, flat to
dispersive, and between two dispersive) contribute to the
optical conductivity at large frequencies, while in the dice
lattice only transitions to and from a flat band play a
role.
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APPENDIX A: DERIVATION OF GENERAL
CONDUCTIVITY EXPRESSIONS

FROM KUBO FORMULA

1. Expression of the conductivity tensor through retarded
correlation function

It is well known that the conductivity (1) can be written
through the Fourier transform of the retarded correlation func-
tion �r

μν (t ) = −iθ (t )〈[Jμ(t )Jν (0)]〉:

σμν (ω) = iKμν (ω + iε)

ω + iε
,

Kμν (ω + iε) =〈τ 〉
V

δμν + �r
μν (ω + iε)

V
. (A1)

The function �r
μν (ω) can be obtained by analytical con-

tinuation from its imaginary time expression (�r
μν (ω) =

�μν (iωm → ω + iε)). For noninteracting fermions, using the
Matsubara diagram technique for evaluating a τ -ordered
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product of operators, we get

�μν (iωm) = 1

β

∞∑
n=−∞

Tr

[
jμ

1

i�n − H0
jν

1

i�n − iωm − H0

]
.

(A2)
In the energy representation it takes the form

�μν (iωm) = 1

β

∑
α,β

jαβ
μ jβα

ν

×
∞∑

n=−∞

1

(i�n − Eβ )(i�n − iωm − Eα )
. (A3)

The summation over the Matsubara frequencies can be easily
performed; thus we get

�μν (iωm) =
∑
α,β

jαβ
μ jβα

ν

f (Eα ) − f (Eβ )

Eα − Eβ + iωm
, (A4)

where f (E ) is the Fermi-Dirac distribution function, f (E ) =
1/(exp(β(E − μ)) + 1). We now write

Jαβ
μ Jβα

ν = Jαβ

{μ Jβα

ν} + Jαβ

[μ Jβα

ν] , (A5)

where J{μJν} ≡ (JμJν + JνJμ)/2 and J[μJν] ≡ (JμJν −
JνJμ)/2 denote symmetric and antisymmetric parts of the
tensor JμJν , respectively. Using Hermiticity of the current it is
easy to show that the symmetric part J{μJν} is a real quantity
while the antisymmetric part J[μJν] is the purely imaginary
one. Therefore, after performing analytical continuation
over frequency, we find the real symmetric part of
σμν ,

Re σ{μ,ν}(ω) =πe2

V ω

∑
α,β

v
αβ

{μ v
βα

ν}

× [ f (Eα ) − f (Eβ )]δ(Eα − Eβ + ω), (A6)

where we used the relation jμ = −evμ between the current
density and the velocity (e > 0). Accordingly, for the imagi-
nary antisymmetric part of σμν we have

Im σ[μ,ν](ω) = πe2

V ω

∑
α,β

Im
(
v

αβ

[μ v
βα

ν]

)
× [ f (Eα ) − f (Eβ )]δ(Eα − Eβ + ω). (A7)

To restore the remaining imaginary and real parts we can use
the Kramers-Kronig relationships,

Im σ{μ,ν}(�) = − 1

π
P.v.

∫ ∞

−∞

dω Re σ{μ,ν}(ω)

ω − �
,

Re σ[μ,ν](�) = 1

π
P.v.

∫ ∞

−∞

dω Im σ[μ,ν](ω)

ω − �
. (A8)

Writing

δ(Eα − Eβ + ω) =
∫ ∞

−∞
dEδ(E − Eα )δ(E − Eβ + ω),

(A9)

we have for the symmetric part

Re σ{μ,ν}(ω) = πe2

V ω

∑
α,β

∫ ∞

−∞
dEv

αβ

{μ v
βα

ν} δ(E − Eα )

× δ(E − Eβ + ω)[ f (Eα ) − f (Eβ )]

= πe2

V ω

∫ ∞

−∞
dE [ f (E − ω) − f (E )]

× Tr[v{μδ(E − H )vν}δ(E − H − ω)].

(A10)

In the last line we replaced the eigenvalues Eα,β by the Hamil-
tonian and the sum over eigenstates by the trace over quantum
numbers describing the system eigenstates. Similarly, for the
imaginary antisymmetric part we find

Im σ[μ,ν](ω) =πe2

V ω

∫ ∞

−∞
dE [ f (E − ω) − f (E )] Im

× Tr[v[μδ(E − H )vν]δ(E − H − ω)].
(A11)

Using the relation between traces and velocity correlators av-
eraged at fixed energy (see Appendix A 2), we find the results
presented in the main text, Eqs. (4) and (8).

2. Relation between trace and time-dependent
velocity operators

Let us consider the term Tr[vμδ(E − H )vνδ(E − H − ω)]
in expressions (A10) and (A11) for interband ac conductivity.
Also, Jμ(t ) is the actual current measured experimentally; the
corresponding total current-density is obtained by differenti-
ating the Hamiltonian with respect to the vector potential,

Jμ(r, t ) = − δH

δ(Aμ(r, t )/c)
. (A12)

Using the representation for the first δ function,

δ(E − H ) = 1

2π

∫ ∞

−∞
dtei(E−H )t , (A13)

and the cyclic property of a trace, then changing the variable
of integration E → E + ω, we can write

Tr[vμδ(E − H )vνδ(E − H − ω)]

= 1

2π

∫ ∞

−∞
dteiωt Tr[δ(E − H )vμ(t )vν (0)]. (A14)

Defining the microcanonical average of an operator Â at given
energy E ,

〈Â〉E = Tr[δ(E − Ĥ )Â]

Tr[δ(E − Ĥ )]
, (A15)

where Tr[δ(E − Ĥ )] = ρ(E )V is the total DOS, we get
the following expression for the symmetric ac conductivity
through the correlator of velocities:

Re σ{μ,ν}(ω) = e2

2ω

∫ ∞

−∞
dEρ(E )[ f (E ) − f (E + ω)]

×
∫ ∞

−∞
dteiωt 〈v{μ(t )vν}(0)〉E . (A16)
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It is easy to check the reality of the last expression using the
relationship 〈v{μ(−t )vν}(0)〉∗E = 〈v{μ(t )vν}(0)〉E .

Expression (4) for T = 0 is in accordance with Ref. [59]
for diagonal conductivity. Similarly, for the imaginary anti-
symmetric part of conductivity we obtain

Im σ[μ,ν](ω) = e2

2ω
Im
∫ ∞

−∞
dEρ(E )[ f (E ) − f (E + ω))]

×
∫ ∞

−∞
dteiωt 〈v[μ(t )vν](0)〉E . (A17)

To calculate Im σ{μ,ν}(ω) and Re σ[μ,ν](ω) we use the
Kramers-Kronig relation (A8).

APPENDIX B: MOMENTUM INTEGRATION
IN EXPRESSIONS FOR CONDUCTIVITY

OF THE SEMI-DIRAC MODEL

In this Appendix we discuss technical details regarding
evaluation of longitudinal conductivity in the semi-Dirac
model. Following Ref. [20], one can express the diamagnetic
term 〈τμμ〉 appearing in Eq. (1) as

〈ταα〉
V

= e2
∫

BZ

d2 p

(2π )2

1

2ε(p)

× [ f (ε+(p)) − f (−ε+(p))]

×
(

�(p)
∂2

∂ p2
α

�∗(p) + c.c.

)
, (B1)

where �(p) is defined by model Hamiltonian (9) as

Hsemi =
(

0 �(p)
�∗(p) 0

)
,

�(p) = ( + ap2
x

)− ivpy. (B2)

Thus, only the 〈τxx〉 contribution is nonzero. After substituting
the exact form of the dispersion and taking the derivative of
�(p), we find that the term 〈τxx〉 is real:

〈τxx〉
V

= e2
∫

d2p
(2π )2

2a
(
 + ap2

x

)
ε+(p)

× [ f (ε+(p)) − f (−ε+(p))]. (B3)

The contribution of this term into optical conductivity does
not depend on the frequency and we neglect it in our studies.

To evaluate the real parts of longitudinal optical conductiv-
ity along the x and y directions, we first calculate traces with
time-dependent velocity operators, which are obtained from
Eqs. (11) and (14):

Tr [e−iHsemisvx(t )vx(0)] =
∫

d2 p

(2π )2

8a2 p2
x

(
v2 p2

y cos((s − 2t )ε+) + (
ap2

x + 
)2

cos(sε+)
)

ε2+
, (B4)

Tr [e−iHsemisvy(t )vy(0)] =
∫

d2 p

(2π )2

2v2
[(

ap2
x + 

)2
cos((s − 2t )ε+) + v2 p2

y cos(sε+)
]

ε2+
, ε+ ≡ ε+(p). (B5)

As described in the main text, we then make Fourier transforms over t and s to obtain the δ functions under integrals which
technically simplify integrals. The resulting expressions for longitudinal optical conductivity are

Re σxx(ω) =2e2

ω

∫ ∞

−∞

dE

2π
[ f (E ) − f (E + ω)]

∫
d2 p

a2 p2
x

ε2+

[
δ(E + ε+)

(
v2 p2

yδ(ω − 2ε+) + δ(ω)
(
ap2

x + 
)2)

+ δ(E − ε+)
(
v2 p2

yδ(ω + 2ε+) + δ(ω)
(
ap2

x + 
)2)]

, (B6)

Re σyy(ω) = e2

2ω

∫ ∞

−∞

dE

2π
[ f (E ) − f (E + ω)]

∫
d2 p

v2

ε2+

[
δ(E + ε+)

((
ap2

x + 
)

2δ(ω − 2ε+) + v2δ(ω)p2
y

)

+ δ(E − ε+)
((

ap2
x + 

)
2δ(ω + 2ε+) + v2δ(ω)p2

y

)]
. (B7)

To perform the integration over momentum, we use the symmetry px → −px, py → −py of the integrals and the following
change of coordinates that simplifies the square root in ε+:

ap2
x +  = L cos φ, vpy = L sin φ, ε+ = L. (B8)

For the functions even in px and py we can write

∫
d2 p f (px, py) = 4

∫ ∞

0
d pxd py f (px, py) =

∫ ∞

0
dL
∫ π

0
dφ

2L θ (L cos φ − )

v
√

a(L cos φ − )
f

(√
L cos φ − 

a
,

L sin φ

v

)
. (B9)
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The presence of the θ function takes into account that the regions of integration of the L and φ variables will be different
depending on the sign of the  parameter. In what follows, we extensively use the following integral (Eq. 3.197.8 from
Ref. [75]): ∫ u

0
xν−1(x + a)λ(u − x)μ−1dx = aλuμ+ν−1B(μ, ν) 2F1

(
−λ, ν; μ + ν; −u

a

)
, arg

u

a
< π. (B10)

Performing the momentum integration in Eqs. (B6) and (B7) by means of Eq. (B9), we obtain

xx :
∫

d2 p[· · · ] =2
√

a

v

∫ ∞

0
dL

∫ π

0
dφL

√
(L cos φ − )θ (L cos φ − )

× [δ(E + L)(sin2 φδ(ω − 2L) + δ(ω) cos2 φ) + δ(E − L)(sin2 φδ(ω + 2L) + δ(ω) cos2 φ)], (B11)

yy :
∫

d2 p[· · · ] = 2v√
a

∫ ∞

0
dL

∫ π

0

L dφ√
L cos φ − 

θ (L cos φ − )

× [cos2 φ(δ(E + L)δ(ω − 2L) + δ(E − L)δ(ω + 2L)) + sin2 φδ(ω)(δ(E + L) + δ(E − L))]. (B12)

The integration over angle depends on the sign of . For 1 >

δ = /L � 0, we find the following four integrals:

Ixx
1 (δ) =

∫ φL

0

√
cos φ − δ sin2 φ dφ

=2
√

2

15
[2(3 + δ2)E (k) − (3 + δ)(1 + δ)K (k)],

(B13)

Ixx
2 (δ) =

∫ φL

0

√
cos φ − δ cos2 φ dφ

=
√

2

15
[(1 + δ)(2δ − 9)K (k) + (18 − 4δ2)E (k)],

(B14)

Iyy
1 (δ) =

∫ φL

0

sin2 φdφ√
cos φ − δ

= 2
√

2

3
[(1 + δ)K (k) − 2δE (k)],

(B15)

Iyy
2 (δ) =

∫ φL

0

cos2 φdφ√
cos φ − δ

=
√

2

3
[(1 − 2δ)K (k) + 4δE (k)],

(B16)

where K (k) and E (k) are complete elliptic integrals, k =√
1−δ

2 , and φL = arccos(δ). To calculate the above integrals
we made the variable change x = cos φ, then used Eq. (B10),
the relation

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z

z − 1

)
, (B17)

and Eqs. 7.3.2.18, 7.3.2.20, and 7.3.2.75 from Ref. [76].
Case  < 0.. In this case the angular integration is sepa-

rated into two regions:

φ ∈
{[

0, arccos −||
L

]
, L > ||,

[0, π ], L � ||.
(B18)

This example can be seen as integrating with the centers in the
Dirac point. Performing integration over angles in Eqs. (B11)

and (B12) we find the following: the integrals for L > || are
the same as in the  > 0 case with the changes  → −||.
The integrals for L < || (|δ| > 1) are different and have the
following form:

Ixx
3 (δ < −1) =

∫ π

0

√
cos φ + |δ| sin2 φ dφ

= 4

15

√
|δ| + 1[(3 + δ2)E (k′)

− |δ|(|δ| − 1)K (k′)], (B19)

Ixx
4 (δ < −1) =

∫ π

0

√
cos φ + |δ| cos2 φ dφ

= 2

15

√
|δ| + 1[(9 − 2δ2)E (k′)

+ 2|δ|(|δ| − 1)K (k′)], (B20)

Iyy
3 (δ < −1) =

∫ π

0

sin2 φ dφ√
cos φ + |δ|

= 4

3

√
|δ| + 1[|δ|E (k′) − (|δ| − 1)K (k′)],

(B21)

Iyy
4 (δ < −1) =

∫ π

0

cos2 φ dφ√
cos ϕ + |δ|

= 2

3
√|δ| + 1

[−2|δ|(|δ| + 1)E (k′)

+ (1 + 2δ2)K (k′)], (B22)

where k′ =
√

2
|δ|+1 .

Evaluating the integrals over L in all these cases gives the
following results for longitudinal conductivities in the x and y
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directions:

Re σxx(ω) = e2

4π h̄ω

∫ ∞

−∞
dE [ f (E ) − f (E + ω)]

4|E |3/2a1/2

v

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2�(|| − |E |)(Ixx
3 (/|E |)δ(ω + 2E ) + Ixx

4 (/|E |)δ(ω))

+2�(|E | − ||)(Ixx
1 (/|E |)δ(ω + 2E ) + Ixx

2 (/|E |)δ(ω)),  < 0,

8π3/2

5
√

2�2( 1
4 ) [2δ(ω + 2E ) + 3δ(ω)],  = 0,

2�(|E | − )[Ixx
1 (/|E |)δ(ω + 2E ) + Ixx

2 (/|E |)δ(ω)],  > 0,

(B23)

and

Re σyy(ω) = e2

4π h̄ω

∫ ∞

−∞
dE [ f (E ) − f (E + ω)]

v
√|E |√

a

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2�(|| − |E |)(Iyy
4 (/|E |)δ(ω + 2E ) + Iyy

3 (/|E |)δ(ω))

+2�(|E | − ||)(Iyy
2 (/|E |)δ(ω + 2E ) + Iyy

1 (/|E |)δ(ω)),  < 0,

�2( 1
4 )

3
√

2π
[δ(ω + 2E ) + 2δ(ω)],  = 0,

2�(|E | − )

[
Iyy
2 (/|E |)δ(ω + 2E ) + Iyy

1 (/|E |)δ(ω)

]
,  > 0.

(B24)

Separating interband ac and intraband dc parts, we find the results given by Eqs. (17) and (19) together with Eqs. (20) and (24)
in the main text.

APPENDIX C: LONGITUDINAL CONDUCTIVITY OF THE GAPPED DICE MODEL

First we evaluate traces of commutators with matrix exponential of the Hamiltonian:

Tr [e−iHsvx(t )vx(0)] =v2
F cos (psvF )

(
2
(
p2

y + p2
z

)
p2 cos (ptvF ) + 4p2

x p2
)

2p4

+ v2
F

(
2
(
p2

y + p2
z

)
(p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF ))

)
2p4

, (C1)

Tr [e−iHsvy(t )vy(0)] =v2
F

(
cos (psvF )

(
2
(
p2

x + p2
z

)
p2 cos (ptvF ) + 4p2

y p2
))

2p4

+ v2
F

(+ 2
(
p2

x + p2
z

)
(p2 sin (psvF ) sin (ptvF ) + p2 cos (ptvF ))

)
2p4

. (C2)

Next, we Fourier transform these expressions twice with respect to t → ω and s → E , and integrate over the polar angle:

Ft,s Tr [e−iHsvx(t )vx(0)] = δ(E )

(
πv2

F

(
p2 + p2

z

)
δ(ω − pvF )

2p2
+ πv2

F

(
p2 + p2

z

)
δ(ω + pvF )

2p2

)

+ δ(E + pvF )

(
πv2

F

(
p2 + p2

z

)
δ(ω − pvF )

2p2
+ π

(
p2 − p2

z

)
v2

F δ(ω)

p2

)

+ δ(E − pvF )

(
πv2

F

(
p2 + p2

z

)
δ(ω + pvF )

2p2
+ π

(
p2 − p2

z

)
v2

F δ(ω)

p2

)
. (C3)

Due to isotropy of the model we get the same result for the Fourier transform, Ft,s Tr [e−iHsvy(t )vy(0)].
The longitudinal conductivity is given by the expression

Re σxx(ω) = πe2

ω

∫ ∞

−∞
dE [ f (E ) − f (E + ω)]

∫ ∞

0

k dk

(2π )2
Ft,s Tr [e−iHsvx(t )vx(0)], (C4)

where k =
√

p2
x + p2

y. Finally, performing integrations we find
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Re σxx(ω) = e2

4

[
δ(ω)

∫ ∞

−∞
dE

f (E ) − f (E + ω)

ω
�(|E | − vF pz )

|E |2 − v2
F p2

z

|E |

+ f (−ω) − f (ω)

ω

(
1

2
+ p2

zv
2
F

2ω2

)
[ω�(ω − ) + |ω|�(−ω − )]

]

= e2

4

[
δ(ω)

∫ ∞

−∞
dE

f (E ) − f (E + ω)

ω
�(|E | − )

|E |2 − 2

|E | + f (−ω) − f (ω)

ω

ω2 + 2

2|ω| �(|ω| − )

]
, (C5)

where in the last equality we took into account that vF pz =  > 0. This expression appears in the main text, Eq. (41), in a
slightly different form and is plotted for different values of parameters.

APPENDIX D: EVALUATION OF HALL CONDUCTIVITY σxy IN GAPPED DICE MODEL

Let us evaluate the quasiparticle velocity operator averages for the Hall conductivity. First, we evaluate the matrix traces:

tr[e−ivF Sps(vx(t )vy(0) + vy(t )vx(t ))] = −2v2
F px py(cos(pvF (s − t )) − 2 cos(psvF ) + cos(ptvF ))

p2
, (D1)

tr[e−ivF Sps(vx(t )vy(0) − vy(t )vx(0))] = 2v2
F pz(sin(pvF (s − t )) − sin(ptvF ))

p
. (D2)

The first trace vanishes after the angle integration. Thus the symmetric part is absent for the Hall conductivity, as expected. For

the antisymmetric part we find (again k =
√

p2
x + p2

y)

Tr [δ(E − H )(vx(t )vy(0) − vy(t )vx(0))]

= V

2π

∫ ∞

−∞
dseiEs

∫ ∞

0

kdk

(2π )

2v2
F pz(sin(pvF (s − t )) − sin(ptvF ))

p

= V
∫ ∞

0

kdk

(2π )

2v2
F pz

p

(
e−ipvF tδ(E + pvF ) − eipvF tδ(E − pvF )

2i
− δ(E ) sin (ptvF )

)
. (D3)

Next we perform integration over time and find∫ ∞

−∞
dteiωt Tr [δ(E − H )(vx(t )vy(0) − vy(t )vx(0))]

= V
∫ ∞

0
kdk

2v2
F pz

p

(
δ(ω − pvF )δ(E + pvF ) − δ(ω + pvF )δ(E − pvF )

2i
− δ(E )

δ(ω + pvF ) − δ(ω − pvF )

2i

)
. (D4)

Thus, for the imaginary part of the Hall conductivity we find

Im σ[x,y](ω) = 1

2

e2

4h̄ω

∫ ∞

0
kdk

2v2
F pz

p

∫ ∞

−∞
dE [ f (E ) − f (E + h̄ω)](−δ(ω − pvF )δ(E + pvF ) + δ(ω + pvF )δ(E − pvF )

+ δ(E )[δ(ω + pvF ) − δ(ω − pvF )])

= e2v2
F pz

4h̄ω

∫ ∞

0

kdk

p
(δ(ω + pvF )[ f (pvF ) − f (pvF + ω) + f (0) − f (ω)]

− δ(ω − pvF )[ f (−pvF ) − f (−pvF + ω) + f (0) − f (ω)]). (D5)

Also in the first line we canceled ρ(E ) and V with the normalization Tr δ(E − H ). The factor 1/2 in the first line of the last
equation accounts for the definition of the antisymmetric part of the tensor. Now we can integrate over momenta and obtain

Im σ[x,y](ω > 0) = e2

4ω
vF pz�(ω − vF |pz|)( f (ω) − f (−ω)), (D6)

Im σ[x,y](ω < 0) = e2

4ω
vF pz�(−ω − vF |pz|)( f (−ω) − f (ω)). (D7)

Combining these formulas together we arrive at Eq. (42).
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Now using the Kramers-Kronig relation we can evaluate the real part:

Re σ[x,y](�) = 1

π
P.v.

∫ ∞

−∞

dω Im σ[μ,ν](ω)

ω − �
= e2vF pz

4π
P.v.

∫ ∞

−∞
dω

�(|ω| − vF |pz|)( f (|ω|) − f (−|ω|))
ω(ω − �)

. (D8)

It is easy to check that Re σ[x,y](�) is an even function in � by changing the integration variable. The integral simplifies for zero
temperature when

f (|ω|) − f (−|ω|) → θ (μ − |ω|) − θ (|ω| + μ) = −θ (|ω| − |μ|). (D9)

Thus, Eq. (D8) gives Eq. (43).

APPENDIX E: CONDUCTIVITIES OF THE LIEB MODEL

The system of equations for the Gell-Mann matrices is given by Eq. (49) with the initial values λi(t = 0) = λi. The solutions
for the vx(t ) and vy(t ) are defined as vectors in the Gell-Mann basis (the identity matrix is not present because it does not evolve
with time and the coefficient before this matrix is zero): vx(t ) = vF (eAt )1 jλ j , vy(t ) = vF (eAt )6 jλ j , where

(eAt )1 j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2q2
x cos (2ptvF )+pq2

y (p cos (ptvF ) cos (tvF )− sin (ptvF ) sin (tvF ))+(p2−2 )q2
x

p2(p2−2 )

− cos (ptvF )(2q2
x sin (ptvF )+pq2

y sin (tvF ))+q2
y sin (ptvF ) cos (tvF )

p(p2−2 )

qx sin (ptvF )((2q2
x +q2

y ) sin (ptvF )+pq2
y sin (tvF ))

p2(p2−2 )

qy sin (ptvF )(2q2
x sin (ptvF )+p(q2

y −q2
x ) sin (tvF ))

p2(p2−2 )
qy sin (ptvF ) cos (tvF )

p

qxqy (−2−p2 cos (ptvF ) cos (tvF )+2 cos (2ptvF )+p sin (ptvF ) sin (tvF )+p2 )
p2(p2−2 )

− qxqy (− sin (2ptvF )+ sin (ptvF ) cos (tvF )+p cos (ptvF ) sin (tvF ))
p(p2−2 )√

3qxq2
y sin (ptvF )(p sin (tvF )− sin (ptvF ))

p2(p2−2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (E1)

(eAt )6 j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qxqy (−2−p2 cos (ptvF ) cos (tvF )+2 cos (2ptvF )+p sin (ptvF ) sin (tvF )+p2 )
p2(p2−2 )

qxqy (− sin (2ptvF )+ sin (ptvF ) cos (tvF )+p cos (ptvF ) sin (tvF ))
p(p2−2 )

qy sin (ptvF )((2q2
x +q2

y ) sin (ptvF )−pq2
x sin (tvF ))

p2(p2−2 )

qx sin (ptvF )(p(q2
x −q2

y ) sin (tvF )+2q2
y sin (ptvF ))

p2(p2−2 )

− qx sin (ptvF ) cos (tvF )
p

pq2
x (p cos (ptvF ) cos (tvF )− sin (ptvF ) sin (tvF ))+2q2

y cos (2ptvF )+(p2−2 )q2
y

p2(p2−2 )
q2

x sin (ptvF ) cos (tvF )+pq2
x cos (ptvF ) sin (tvF )+q2

y sin (2ptvF )
p(p2−2 )

−
√

3qy sin (ptvF )(pq2
x sin (tvF )+q2

y sin (ptvF ))
p2(p2−2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

. (E2)

Integrating over t and s in Eqs. (4) and (7), we find

Re σxx(ω) = 2π
πe2v2

F

2ω

∫ ∞

−∞
dE [ f (E ) − f (E + ω)]

∫ ∞

0

k dk

(2π )2

×
[
δ(E − pvF )

(
2δ(ω + 2pvF )

p2
+ δ(ω)(p2 − 2)

p2
−
(



2p
− 1

2

)
δ(ω + (p − )vF )

)

+ δ(E + pvF )

(
2δ(ω − 2pvF )

p2
+ δ(ω)(p2 − 2)

p2
+ ( + p)δ((p + )vF − ω)

2p

)

+ δ(E − vF )

((
− 

2p
+ 1

2

)
δ(ω − (p − )vF ) +

(


2p
+ 1

2

)
δ(ω + (p + )vF )

)]
, (E3)
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where k =
√

q2
x + q2

y . At the same time we find Im σ[x,y] = 0 after taking the trace of the product of velocities. Next, we calculate

the integrals which involve the δ functions. First we integrate over E and then over momenta; we get the expression

Re σxx(ω) =e2

4

[
δ(ω)

∫ ∞

vF

pvF d (pvF )

(
1

4T cosh2((pvF − μ)/2T )
+ 1

4T cosh2((pvF + μ)/2T )

)
p2 − 2

p2

+�(|ω| − 2vF )

[
22v2

F

ω2

(
f

(
−|ω|

2

)
− f

( |ω|
2

))
+ 1

2
( f (vF − |ω|) − f (vF ))

]

+ f (vF ) − f (vF + |ω|)
2

]
, (E4)

which is in fact Eq. (52) in the main text after restoring h̄.
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