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We study quantum multicritical behavior in a (2 + 1)-dimensional Gross-Neveu-Yukawa field theory with
eight-component Dirac fermions coupled to two triplets of order parameters that act as Dirac masses and
transform as (1, 0) + (0, 1) representation under the SO(4) � SO(3) × SO(3) symmetry group. This field
theory is relevant to spin-1/2 fermions on honeycomb or π -flux lattices, for example, near the transition
points between an s-wave superconductor and a charge-density wave, on one side, and Néel order, on the
other. Two triplets of such order parameters always allow for a common pair of two other order parameters
that would complete them to the maximal set of compatible (anticommuting) orders of five. We first derive a
unitary transformation in the Nambu (particle-hole) space which maps any two such triplets, possibly containing
some superconducting orders, onto purely insulating order parameters. This allows one to consider a universal
SO(4) Gross-Neveu-Yukawa description of the multicriticality without any Nambu doubling. We then proceed
to derive the renormalization-group flow of the coupling constants at one-loop order in 4 − ε space-time
dimensions, allowing also a more general set of order parameters transforming under SO(na ) × SO(nb). While
for na = nb > 2 in the bosonic sector and with fermions decoupled there is a stable fixed point of the flow, the
Yukawa coupling to fermions quickly leads to its elimination by a generic fixed-point collision in the relevant
range of fermion flavor numbers Nf . This suggests the replacement of the critical behavior by a runaway flow in
the physical case na = nb = 3. The structure of the renormalization group flow at na �= nb is also discussed, and
some nonperturbative arguments in favor of the stability of the decoupled critical point when na = 3 and nb = 1
in D = 2 + 1 are provided.
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I. INTRODUCTION

Two-dimensional quasirelativistic Dirac electrons ap-
pear as low-energy excitations in many electronic systems,
graphene arguably being the best-known example. Interac-
tions between electrons can lead to various phase transitions at
strong coupling, with the concomitant quantum critical behav-
ior defining new generalized Gross-Neveu universality classes
[1–3]. The latter have been a subject of numerous analytic
[4–23] and numerical studies [24–38]. Also, the multicritical
behavior near points of the phase diagram where three (or
more) phases meet has attracted considerable interest [39–44].
Recent quantum Monte Carlo simulations [45], for exam-
ple, have explored a situation where Nf = 2 four-component
Dirac fermions are coupled to two order parameters, each
appearing as three relativistic mutually anticommuting masses
in the Dirac Hamiltonian and transforming as a vector under
an SO(3) symmetry group: The first internal SO(3) rotates be-
tween the charge-density-wave (CDW) and two components
of the s-wave superconductor (sSC1, sSC2), and the second
SO(3) rotates the three spatial components of the Néel order
(Néel1, Néel2, Néel3).

Here we further investigate this multicriticality within a
field-theoretic approach. We extend the previous analysis to
a generalized Dirac system with coupled order parameters
that transform under SO(na) × SO(nb). For the specific value

of na = nb = 3, we come to a different conclusion about the
nature of multicritical behavior than Ref. [45].

It is useful to first recall some basic facts about the masslike
order parameters for the two-dimensional Dirac fermions in
question. Two-dimensional spin-1/2 electrons on honeycomb
lattice, to take a specific example, are described by eight-
component Dirac fermions, due to having two spin, two
valley, and two sublattice degrees of freedom. Its standard
relativistic Dirac Hamiltonian therefore features an SU(4)
symmetry that unifies and extends the spin and the valley (or
chiral) symmetries, which by themselves would only yield
the SO(3) × SO(3) � SO(4) ⊂ SU(4) group of symmetry.
One pair of triplets of Dirac masses (which throughout this
paper will be used interchangeably with order parameters)
that would transform as (1, 0) + (0, 1) representation of this
spin-valley SO(4) subgroup is the three components of the
quantum spin Hall (QSH1, QSH2, QSH3) insulator as the first
and the CDW and the two Kekulé bond-density-wave (BDW1,
BDW2) insulators as the second triplet.

The inclusion of superconducting mass order parameters
requires, however, the usual Nambu doubling of Dirac Hamil-
tonian into a 16-dimensional particle-hole-symmetric Dirac
Bogoliubov-de Gennes (BdG) Hamiltonian. The crucial ob-
servation then is that the maximal number of “compatible”
order parameters, insulating and/or superconducting, which
are represented by mutually anticommuting Dirac masses in
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the Nambu-doubled representation is five [46]. This number
is ultimately determined by the antiunitary particle-hole sym-
metry inherent to Nambu’s construction [47]. All 56 such
quintuplets of compatible Dirac masses have been listed with
the help of computer algebra in Ref. [46]. Each triplet of
mutually anticommuting masses can be found in only one
quintuplet, but any pair of mutually anticommuting masses,
remarkably, belongs to two different quintuplets [47]. This
last feature will be of crucial importance for our further
discussion.

To quickly preview our results, we note that there are two
main aspects of the problem. First, we observe that any two
triplets of Dirac masses that mutually anticommute within
the same triplet, but commute when from different triplets
[48], can always be complemented by the same pair of some
other two Dirac masses to their respective quintuplets. In other
words, the only realization of the (1, 0) + (0, 1) mass order
parameters is provided by two quintuplets that share a com-
mon pair of masses. The two quintuplets (CDW, sSC1, sSC2,
BDW1, BDW2) and (Néel1, Néel2, Néel3, BDW1, BDW2)
are one such example, which would correspond to the two
triplets studied in Ref. [45]. Further, (CDW, sSC1, sSC2,
BDW1, BDW2) and (sSC1, sSC2, QSH1, QSH2, QSH3) form
another pair of quintuplets that would correspond to our ex-
ample above [49,50]. Building on this result, we construct a
unitary transformation in the Nambu space that changes the
common pair of the two quintuplets, allowing us to exchange
the first pair of above quintuplets for the second. This is of
practical use, since the second pair of quintuplets has the
two superconducting orders in common, with all the other
orders appearing being insulators. One can therefore in com-
plete generality consider a fully insulating realization of the
(1, 0) + (0, 1) order parameters and remain in the original
(pre-Nambu-doubled) eight-dimensional representation.

Second, multicritical behavior has been an important part
of general studies of critical phenomena from the beginning.
Given two order parameters that transform as vectors under
SO(na) × SO(nb) symmetry, on the basis of high-order per-
turbative calculations and some nonperturbative arguments
[51], it is believed today that the bosonic field theory in three
dimensions has a decoupled critical point for na + nb > 3, an
SO(na + nb)-symmetric critical point for na = nb = 1, and a
mixed-symmetry (“biconal”) critical point for na = 1, nb = 2.
To the first order in the 4 − ε dimension, however, the de-
coupled fixed point is stable only when na + nb > 8, and the
SO(na + nb)-symmetric fixed point is stable for na + nb < 4
[52]. The main point is that there always exists a stable (crit-
ical) fixed point in the purely bosonic theory for the order
parameters. This is in spite of the fixed points moving around
with the change of parameters such as ε, na, and nb, and col-
liding with each other. The usual annihilation of fixed points
and their transfer to the complex plane, relevant to many other
field theories [53–66], does not occur here.

The reason for this lies in the structure of the theory it-
self: (a) When one of the two quartic couplings vanishes and
the order parameters decouple, they remain decoupled at all
stages of the renormalization group (RG) transformation. This
condition defines therefore an RG-invariant line, along which
there always exists a Wilson-Fisher fixed point. (b) When the
two quartic couplings have a particular ratio so that the theory

acquires an enlarged SO(na + nb) symmetry, it retains it dur-
ing the RG, so another Wilson-Fisher fixed point always exists
on this invariant line as well. Due to the existence of these two
invariant lines with concomitant Wilson-Fisher fixed points
on them, the only change with varying the parameters such
as the dimension, na, and nb in the theory is the exchange
of stability of the two Wilson-Fisher fixed points with the
third (biconal) fixed point, the location of which is not fixed
by any symmetry. This is in contrast to the generic scenario;
in general, when two fixed points collide they develop an
imaginary part, and in the space of real (physical) couplings
there remains only a runaway flow [59]. This is avoided in
the SO(na) × SO(nb)-symmetric bosonic theory only because
of the existence of two RG-invariant lines from which the
Wilson-Fisher fixed points cannot escape.

This crucial feature of the field theory is lost upon cou-
pling to fermions. Since the Dirac fermions couple to both
order parameters, the integration over any number of fermions
unavoidably couples them. Furthermore, the SO(na + nb)
symmetry for special values of the two quartic couplings is
immediately violated as well. Hence, there is nothing to pro-
tect the fixed points from complexification after a collision,
and that is precisely what we find. All four fixed points (in-
cluding the Gaussian one) move when the parameter na = nb

is changed, and in particular the stable (biconal) fixed point
collides with the SO(na + nb) fixed point at fairly low number
of fermions.

The rest of the paper is organized as follows. In the next
section we discuss the algebra of Dirac mass order parameters,
and perform the unitary transformation onto insulators. In
Sec. III we introduce the Gross-Neveu-Yukawa field theory
which features the two triplets of order parameters coupled to
Dirac fermions. The RG flow in this theory computed to one-
loop near four space-time dimensions is given in Sec. IV. The
analysis of the fixed points and their collisions with the change
of number of Dirac fermions is provided in Sec. V. Discussion
of our results and the summary are given in Sec. VI. Mathe-
matical details of the Clifford-algebraic structure of the mass
order parameters of two-dimensional Dirac fermions and the
alternative derivation of the RG β functions are given in the
Appendices.

II. ALGEBRA OF DIRAC MASSES

We are interested in the relativistically invariant mass terms
that can be added to the standard two-dimensional Dirac
Hamiltonian

H0( �p) = p1α1 + p2α2, (1)

where αi, i = 1, 2 are two 8 × 8 Hermitian matrices satisfying
the anticommutation relation {αi, α j} = 2δi j . This Hamilto-
nian represents the low-energy degrees of freedom of spin-1/2
electrons near two inequivalent valleys on graphene’s honey-
comb lattice, for example.

To have a unified treatment of both insulating (particle-
number preserving) and superconducting (particle-number
violating) masslike order parameters we consider the usual
Nambu-doubled BdG Hamiltonian

HBdG = H0( �p) ⊕ [−HT
0 (−�p)

] = p1�1 + p2�2, (2)
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where �i are now 16 × 16 Hermitian matrices, which still
satisfy {�i, � j} = 2δi j .

The algebraic structure of the masslike orders follows from
the following observation: Add two compatible (anticommut-
ing) mass terms of the above BdG Hamiltonian, with two
16 × 16 Hermitian matrices M1 and M2, such that {Mi, Mj} =
2δi j , and {Mi, � j} = 0. The Hamiltonian is then

H = HBdG + m1M1 + m2M2, (3)

with the parameters (masses) m1,2 real. The masses can even
be taken to be arbitrary functions of space. The group of sym-
metry of the above Hamiltonian is SO(4) � SO(3) × SO(3),
generated by six 16 × 16 Hermitian generators Ai and Bi, i =
1, 2, 3, such that {Ai, Aj} = {Bi, Bj} = 2δi j and [Ai, Bj] = 0,
cf. Ref. [47]. In other words,

[Ai, � j] = [Ai, Mj] = 0, (4)

and

[Bi, � j] = [Bi, Mj] = 0, (5)

i = 1, 2, 3, j = 1, 2. This result follows from the theory of
real representations of Clifford algebras [67] and was derived
in Ref. [47], where it was used to reveal the internal structure
of the vortex configuration in the masses m1,2. It immediately
follows that the two mass matrices M1,2 can be embedded
into the maximal set of five mutually anticommuting mass
matrices [47] in two different ways: (1) MA = (M1, M2, AiX )
and (2) MB = (M1, M2, BiX ), i = 1, 2, 3. Here the matrix X
is defined as X = �1�2M1M2, so that it anticommutes with
the matrices present in H : {X, Mi} = {X, �i} = 0. This in turn
implies that the Clifford algebra generated by the seven matri-
ces CA = (�i, MA) [CB = (�i, MB)] is quaternionic [67], i.e.,
that besides the unit matrix it has three additional (nontrivial)
operators Bi (Ai) that commute with the whole algebra. More
details of this construction were given in Ref. [47], and are
here provided in Appendix A.

For our current purposes the crucial fact is that the two sets
of mass matrices AiX and BiX , which share a common pair
(M1, M2) in their respective quintuplets MA and MB, commute,
i.e.,

[AiX, BjX ] = 0, (6)

and transform as (1, 0) + (0, 1) representation of the above
group SO(4). The inverse is also true: Given two triplets
of mutually anticommuting mass matrices such that any
two matrices from different triplets commute, each of these
triplets can always be completed to its respective quintuplet
by adding the same and unique pair of mass matrices, as
can be directly inferred from Ref. [46]. The above algebraic
structure of the mass terms is thus a universal characteristic
of two-dimensional Dirac equation for spin-1/2 particles on a
bipartite lattice.

An important corollary is that the six order parameters in
the (1, 0) + (0, 1) representation can always be assumed to be
insulating. To show this, let us be specific, and choose

CA = (�1, �2, K1, K2,C, S1, S2), (7)

with K1,2 being two matrices for the Kekulé bond-density-
wave orders, C for the charge-density-wave, and S1,2 for the

two components of the s-wave superconducting order. The
main assumption is that two (S1 and S2) out of five mass
matrices in the algebra are two components of the same su-
perconducting mass order parameter. The second algebra that
contains (�1, �2, K1, K2) as a subalgebra is then

CB = (�1, �2, K1, K2, N1, N2, N3). (8)

We can identify one of the operators that commute with
CB as A1 = iS1S2, which rotates between two components
of the superconducting order parameter and thus is noth-
ing but the particle number. Therefore, the mass matrices
Ni, i = 1, 2, 3 satisfy [Ni, A1] = 0, and represent insulators
[68].

Let us now perform the unitary transformation using

U = ei π
4 [iK1S1+iK2S2], (9)

which simply reshuffles the elements of the first Clifford
algebra

CA → UCAU † = (�1, �2, S1, S2,C, K1, K2).

The second Clifford algebra then transforms as

CB → UCBU † = (�1, �2, S1, S2,Y1,Y2,Y3),

with some new mass matrices Yi, given by Yi = UNiU †. Since
{Yi, S1} = {Yi, S2} = 0, it readily follows that

[Yi, iS1S2] = 0. (10)

Since the matrix iS1S2 is the particle number operator, how-
ever, the three masses Yi evidently represent insulating order
parameters [69]. The upshot is that in the 16 × 16 BdG
representation,

U (HBdG + a1C + a2S1 + a3S2 + biNi )U
†

= HBdG + a1C + a2K1 + a3K2 + biYi, (11)

with all six order parameters on the right-hand side of the
last equation representing insulators. The right-hand side is
then block-diagonal, and the Nambu doubling can be disposed
of. The general two-dimensional Dirac Hamiltonian with two
sets of mass order parameters that transform as (1, 0) + (0, 1)
representation of the SO(4) can therefore simply be taken to
be 8 × 8 matrix.

III. FIELD THEORY

The above reasoning motivates one to consider a La-
grangian of the form

L = Lψ + Lab + Lψab, (12)

where Lψ is the kinetic term of the Dirac fermions, Lab

includes all purely bosonic (order-parameter) terms, and Lψab

represents the Yukawa interactions. Explicitly, the Dirac La-
grangian Lψ in general dimension is defined as

Lψ = ψ†∂τψ + ψ†

[
14×4 ⊗

d∑
i=1

αi

(
−i

∂

∂xi

)]
ψ, (13)

where τ is the imaginary time and xi the spatial coor-
dinates. ψ = ψ (xi, τ ) is a 4 · 2d−1-component Grassmann
field and d is the spatial dimension. For graphene, d = 2.
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The αi, i ∈ {1, . . . , d} are 2d−1 × 2d−1-dimensional matrices,
which satisfy the Clifford algebra {αi, α j} = 2δi j . This setup
allows for an introduction of an additional matrix β that
obeys

{β, αi} = 0 ∀ i, and β2 = 1, (14)

and we define all matrices αi, β as Hermitian. For example,
an explicit choice in d = 2 may be α1 = σ1, α2 = σ2, β =
σ3 where the σi are the conventional Pauli matrices. The
bosonic part Lab includes two coupled and real-valued or-
der parameters �a and �b with components ai, i = 1, . . . , na

and b j, j = 1, . . . , nb which transform as vectors under
SO(na) and SO(nb), respectively. The Lagrangian Lab then
reads

Lab = [(∂μai )(∂
μai ) + (∂μb j )(∂

μb j )] + raaiai + rbb jb j

+ λa(aiai )
2 + λb(b jb j )

2 + 2λabaiaib jb j, (15)

where summation convention over repeated indices is
adopted, and μ=0, . . . , d . For general quadratic and quar-
tic interaction parameters {ra, rb, λa, λb, λab}, the Lagrangian
Lab has SO(na) × SO(nb) symmetry. For λab = 0, the order
parameters �a and �b are decoupled in Lab, and for ra = rb and
λa = λb = λab, the Lagrangian Lab acquires a larger SO(na +
nb) symmetry.

For the remainder of this work, we restrict the number of
bosonic field components in each order parameter to maxi-
mally three, i.e., na, nb � 3, unless explicitly stated otherwise.
We will also be particularly interested in the case na = nb = 3.

Finally, we write down the Yukawa interaction

Lψab = ψ†[ga(aiσi )⊗12×2 + gb12×2 ⊗ (b jσ j )] ⊗ β ψ,

(16)

introducing the Yukawa couplings ga and gb. Importantly, as
we will show below, the full model, cf. Eq. (12), with maximal
na = nb = 3, can be merely SO(3) × SO(3) invariant, i.e.,
there is no larger SO(6) at special values of λa, λa, and λab.
Furthermore, the order parameters �a, �b are always coupled,
i.e., there is no decoupling even for λab = 0.

IV. RENORMALIZATION GROUP FLOW

We perform a one-loop Wilsonian integration over the
fermionic and bosonic modes within the momentum shell
from 
/b to 
, and expand in ε = 4 − D with D = d + 1.
This leads to the RG flow of the squared Yukawa coupling
constants

ġ2
a = εg2

a + (na − 2Nf − 4)g4
a − 3nbg2

ag2
b, (17)

ġ2
b = εg2

b + (nb − 2Nf − 4))g4
b − 3nag2

ag2
b, (18)

where ġ2
i ≡ dg2

i /d ln b, i = a, b, and we rescaled the cou-
plings as (g2

i /2)[
D−4SD/(2π )D] → g2
i . Here SD is the area

of the unit sphere in D dimensions. The flow of the quartic
couplings is

λ̇a =ελa−4Nf g2
aλa−4(na+8)λ2

a−4nbλ
2
ab+Nf g4

a, (19)

λ̇b = ελb−4Nf g2
bλb−4(nb+8)λ2

b−4naλ
2
ab+Nf g4

b, (20)

FIG. 1. RG flow at the critical surface (left panel) and the geo-
metrical solution for the fixed points (right panel) when Nf = 0 and
na = nb = 3. The blue and the red lines are the points where the two
β functions vanish, and the dashed gray line denotes λ′ = λ, where
the theory becomes O(6) symmetric.

λ̇ab = ελab−2Nf
(
g2

a+g2
b

)
λab−16λ2

ab−4(na+2)λaλab

− 4(nb+2)λbλab + 3Nf g2
ag2

b. (21)

with (λi/4)(
D−4SD/(2π )D) → λi, i ∈ {a, b, ab}. We have
also generalized the model to include a number of Nf four-
component Dirac fermions, with Nf = 2 in graphene. The
bosonic and fermionic anomalous dimensions read as ηi =
2Nf g2

i , i ∈ {a, b} and ηψ = 1
2 nag2

a + 1
2 nbg2

b, respectively.
We have checked that these flow equations are in agree-

ment with Refs. [40] and [42] in the respective limiting cases.
A derivation of these flow equations from the consideration of
the limiting cases is presented in Appendix C.

V. FIXED-POINT ANALYSIS

We analyze the fixed points of the above RG flow in several
steps of generalization, starting with a purely bosonic system.
To that end, we first explore the constrained version of our full
model, with ra = rb, λa = λb, cf. Sec. V A. Then we include
a finite number of fermions setting also ga = gb, and display
the mechanism of fixed-point appearance and collision, see
Sec. V B. Finally, we discuss the stable fixed-point solutions
of the full SO(na) × SO(nb) system without constraints on the
model parameters in Sec. V C.

A. Purely bosonic case

We begin by recalling the situation for the bosonic
SO(3) × SO(3) subsector without fermions, i.e., na = nb = 3
and Nf = 0. As well known, this limit features four differ-
ent fixed points in the one-loop analysis, i.e., the Gaussian
fixed point (GFP), the decoupled fixed point (DFP), the SO(6)
isotropic fixed point (IFP), and the biconal fixed point (BFP)
[51,70].

Let us be on the critical surface ra = rb = 0, and for
simplicity of presentation restrict the remaining quartic cou-
plings λ = λa = λb and λ′ = λab. The fixed-point coordinates
then read λ = 0, λ′ = 0 (GFP), λ = ε

44 , λ′ = 0 (DFP), λ =
ε

56 , λ′ = ε
56 (IFP), and λ = 3ε

136 , λ′ = ε
136 (BFP); see the left

panel of Fig. 1. To determine the stability of the fixed points,
we calculate the stability matrix and evaluate it at the fixed
points. The stability matrix of a fixed point (λ∗, λ′

∗) is defined
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as

S =
(

∂βλ

∂λ

∂βλ′
∂λ

∂βλ

∂λ′
∂βλ′
∂λ′

)∣∣∣∣∣
(λ,λ′ )→(λ∗,λ′∗ )

, (22)

and its eigenvalues determine the stability of the respective
fixed point, i.e., a positive eigenvalue corresponds to an in-
frared repulsive (unstable, relevant) direction, and a negative
eigenvalue corresponds to an infrared attractive (stable, irrele-
vant) direction of the RG flow. (The parameters ra and rb that
have been set to zero correspond of course to relevant direc-
tions.) Therefore, a stable fixed point needs both eigenvalues
(θ1, θ2) of its stability matrix S to be negative.

We calculate the stability of the bosonic fixed points as
listed above and find that the BFP is the only stable fixed
point at one-loop, with the eigenvalues θ1 = −ε, θ2 = −ε/17.
It is well known, however, that the one-loop calculation sig-
nificantly overestimates the regime of stability of the BFP,
as well as of the IFP for smaller number of bosonic field
components. In a higher-order calculation it eventually turns
out that in an O(na) ⊕ O(nb) theory of two coupled bosonic
order parameters, the DFP is stable for na + nb � 4, cf.
Ref. [51].

We now take a closer look at the fixed points in the purely
bosonic theory, which will be helpful once we include the
fermions. The fixed points are defined by the equations

βλ = 0, and βλ′ = 0. (23)

The first equation defines an ellipse, shown in red in the right
panel of Fig. 1. The second equation can be readily factorized
to read

βλ′ = λ′(ε − 16λ′ − 40λ), (24)

which defines two straight lines, i.e.,

λ′ = 0, λ′ = (ε − 40λ)/16, (25)

as shown in blue in Fig. 1. The fixed points to this order
of calculation are therefore given by the four intersections
of the two straight lines with the ellipse. Furthermore, one
intersection of the second straight line and the ellipse also lies
on the line λ = λ′ (dashed gray line in Fig. 1).

Higher-loop corrections to the flow would deform the el-
lipse and the second straight line, but still keep one of their
intersections at the λ = λ′ SO(6)-symmetric line. λ′ = 0 also
remains a solution of βλ′ = 0 at all orders of calculation. So
the IFP and DFP always exist somewhere on these two straight
RG-invariant lines. The only fixed point not constrained by
the symmetries is the BFP, which can pass through IFP
and DFP with a change of parameters, but cannot annihilate
them.

B. Inclusion of fermions for na = nb

The above geometrical picture behind the fixed points of
the RG flow changes when fermions are included, as we
discuss next, still focusing on the the case of SO(3) × SO(3)
symmetry, i.e., n = na = nb = 3. We also assume g2

a = g2
b =

g2. In this case, the ellipse is slightly deformed, but the
main change is the avoidance of the crossing of the two
straight lines of the solutions of βλ′ (Nf = 0) = 0 due to the

FIG. 2. Evolution of the fixed points with the increase of the
number of Dirac fermions. The faint dashed lines represent the case
without fermions, Nf = 0, and are shown for comparison.

term ∝ Nf g4
i , cf. Eq. (21). The resulting picture is presented

in Fig. 2 for four different choices of Nf . We note that
a given Nf implies bounds on the values for n and a La-
grangian corresponding to the β functions in Eqs. (17)–(21)
can only be written down when these constraints are ful-
filled, see Appendix B for a brief discussion. Here, to explore
whether fixed-point solutions are at all possible in the alge-
braic system of equations following from Eqs. (17)–(21), we
treat the parameters Nf and n as completely free. From this
analysis, we can learn, whether or not fixed-point solutions
are allowed in the vicinity of a physically relevant set of
parameters.

Increasing the number of fermions Nf starting from Nf =
0, we first observe that the positions of the intersections result-
ing from Eq. (23), i.e., the fixed points, approach each other
until they collide at some Nf . This holds for both pairs of
intersections originating from the purely bosonic fixed points,
i.e., the pair {IFP, BFP} and the pair {GFP, DFP}. For the
collision of the first pair, we numerically find Nf ,c ≈ 0.0164,
so that for Nf ,0 > Nf > Nf ,c there is no stable fixed point. The
second pair collides at Nf ,0 ≈ 1.485.

To further explore the landscape of fixed-point solutions of
the model, we treat the number of bosonic components na =
nb = n as a free variable and keep the parameter constraints,
i.e., ra = rb, λa = λb, ga = gb. To be explicit, we show the RG
β functions that can be extracted directly from Eqs. (17) to
(21) as

βg2 = εg2 − 2(Nf + n + 2)g4, (26)

βλ = ελ − 4(n + 8)λ2 − 4nλ′2 − 4Nf λg2 + Nf g4, (27)

βλ′ = ελ′ − 16λ′2−8(2+n)λλ′−4Nf λ
′g2+3Nf g4. (28)

The resulting function Nf ,c(n) is shown in Fig. 3. There is
a small but finite number of fermions that causes the first
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n N f, c

2 0
2.5 0.00510
3 0.0164
4 0.0494
5 0.0921
6 0.142
7 0.199
8 0.261
9 0.327
10 0.397
15 0.786
20 1.216
30 2.134

FIG. 3. Nf ,c as a function of the number of boson components n.
A finite number of fermions tentatively causes a fixed-point collision
at which the stable fixed-point solution is annihilated.

fixed-point collision after which the stable fixed point’s co-
ordinates acquire an imaginary part. Therefore, no stable
real fixed-point solution exists for the theory at Nf = 2, at
least at leading order in the epsilon expansion. Consequently,
the system is not expected to feature true quantum critical
behavior.

Our results are in conflict with the numerical findings and
the renormalization group analysis in Ref. [45]. The differ-
ence in the RG results can be traced back to the fermionic
contribution in Eq. (21), i.e., the term 3Nf g2

ag2
b which is

reported with a different prefactor in Ref. [45]. We have care-
fully checked our present calculation, and also confirmed that
our results are in agreement with earlier works, cf. Refs. [40]
and [42]. An independent argument corroborating our finding
is also presented in Appendix C.

We also note that for the special case of n = 1 there is an
admissible fixed point for all Nf . Here, the Yukawa coupling
has the fixed-point value g2

∗ = ε/(6 + 2Nf ) and the bosonic
couplings have the values

λ∗ = 3 − Nf + √
9 + Nf (66 + Nf )

144(3 + Nf )
ε, (29)

λ′
∗ = 3 − Nf + √

9 + Nf (66 + Nf )

48(3 + Nf )
ε. (30)

This fixed point is stable. For example, for Nf = 1 we find
θ1 ≈ −0.39ε, θ2 = −ε, θ3 ≈ −2.18ε. For Nf = 2 we find
θ1 ≈ −0.67ε, θ2 = −ε, θ3 ≈ −2.41ε.

C. General SO(na) × SO(nb) symmetry

The full system with two coupled and competing order
parameters has a larger coupling constant space than the one
we studied so far. In fact, it allows the two Yukawa couplings
and also the two quartic couplings to be different. In that case
the relevant RG equations are Eqs. (17)–(21), which feature
a stable fixed-point solution, in contrast to the constrained
system.

To analyze the fixed points we start with the flow of the
two Yukawa couplings, since this subset of flow equations is
independent of the quartic couplings. The subset of Yukawa
β functions has four different fixed-point solutions Yi, i ∈
{1, 2, 3, 4}, reading

Y1 : g2
a = 0, g2

b = 0, (31)

Y2 : g2
a = 0, g2

b = 1

4 + 2Nf − nb
ε, (32)

Y3 : g2
a = 1

4 + 2Nf − na
ε, g2

b = 0, (33)

and Y4 with the Yukawa couplings

g2
a = 2nb − Nf − 2

na(2+4nb+Nf )+(2+Nf )(nb−4−2Nf )
ε, (34)

g2
b = 2na − Nf − 2

na(2+4nb+Nf )+(2+Nf )(nb−4−2Nf )
ε. (35)

Fixed point Y4 is the one that has been studied before in the
SO(n) × SO(n) system, i.e., when na = nb and we enforced
g2

a = g2
b. We can determine the stability matrix in the Yukawa

subsector and diagonalize it. There we find that for Y4 the two
eigenvalues are

θg,1 = −ε, (36)

θg,2 = 2(2 − 2na + Nf )(2 − 2nb + Nf )

na(2+4nb+Nf )+(2+Nf )(nb−4−2Nf )
ε. (37)

For Nf = 2 and na = nb, we find θg,2 = 2 na−2
na+4 , so for na > 2

this fixed point is necessarily unstable, as θg,2 > 0.
We next leave Nf and na as free parameters, fix nb = 3, and

consider Y2. The eigenvalues of the stability matrix are

Y2 : θg,1 = −ε, θg,2 = 2
Nf − 4

1 + 2Nf
ε. (38)

For Nf < 4, we find θg,2 < 0 and therefore this fixed point is
potentially stable, provided that the bosonic sector also admits
a stable solution. It turns out that this actually is the case and
the fixed point coordinates of this stable fixed point in the
bosonic sector read

λa = ε

4(na + 8)
, λab = 0, (39)

λb = 1 − 2Nf + √
1 + 4Nf (43 + Nf )

88(1 + 2Nf )
ε. (40)

We note that this is in complete agreement with the findings in
Ref. [40] on setting na = 1. Diagonalization of the complete
stability matrix for all five couplings provides three additional
eigenvalues which are

θλ,1 = −ε, θλ,2 = −1 + 4Nf (43 + Nf )

1 + 2Nf
ε, (41)

θλ,3 = 6ε

na+8
− 5+34Nf + 5

√
1+4Nf (43+Nf )

22 + 44Nf
ε. (42)
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FIG. 4. Flow in the plane of the two Yukawa couplings in the unconstrained SO(n) × SO(n) model, for n = 1, 2, 3. Left: n = 1. Middle:
n = 2. Right: n = 3. For n = 2 a line of fixed points emerges, indicated by the dashed line.

The first two are clearly negative. We evaluate the last one for
Nf = 2 to find

θλ,3(na) =
(

− 84

55
+ 6

na + 8

)
ε, (43)

which is negative for na = 1, 2, 3, i.e., θλ,3(1) =
−142/165, θλ,3(2) = −51/55, θλ,3(3) = −54/55. Therefore,
this represents the stable fixed point of the RG flow,
including the case when na = nb = 3, i.e., the SO(3) × SO(3)
symmetry we are most interested in.

For the further discussion, we proceed with the concrete
case of na = nb = 3 and recall that—at least at one-loop
order—the stable fixed point is the one with Y2 in the Yukawa
subsector and which is decoupled in the bosonic sector. That
means that at the fixed point, the �a field completely decou-
ples from both, the fermions and the �b field (this is true for
any na = 1, 2, 3). Therefore, this sector of the model belongs
to the purely bosonic Heisenberg universality class whereas
the sector with the fermions and the �b field belongs to the
chiral Heisenberg universality class. In fact, the critical ex-
ponents for these two universality classes are known beyond
the leading-order ε expansion [71,72]. The correlation length
exponent for the three-dimensional Heisenberg universality
class is very precisely known to be νa = 0.712, cf. Ref. [52].
The value of the correlation length exponent for the chiral
Heisenberg universality class is less certain, with estimates
laying in the range 0.84 < νb < 1.31, cf. Ref. [14].

Employing Aharony’s scaling relation [51,52,73,74] we
can deduce the RG eigenvalue for the mixed quartic coupling
that would couple the �a and �b fields at the decoupled fixed
point. The scaling dimension of the mixed quartic coupling
reads

θab = 1

νa
+ 1

νb
− D, (44)

where D is the space-time dimension. This well-known re-
lation is derived from nonperturbative scaling arguments
[73,74] and therefore holds beyond the realm of perturbation
theory. For the decoupled fixed point to be stable θab needs
to be negative. In leading-order ε expansion, we find that
1
νa

= 2 − na+2
na+8ε = 2 − 5

11ε and 1
νb

= 2 − 84
55ε. Insertion into

the expression above yields

θab = 2 − 5
11ε + 2 − 84

55ε − (4 − ε) = − 54
55ε, (45)

at the leading order in ε expansion. As a check, we ob-
serve that this value indeed coincides with θλ,3(na = 3) from
Eq. (43).

Using the best current estimates for 1/νa,b from other meth-
ods, we find in D = 3

θab ≈ 1

0.712
+ 1

νb
− 3 ∈ [−0.83,−0.41]. (46)

The scaling dimension θab seems therefore likely to be
negative and the coupling λab irrelevant even at higher or-
ders, supporting the scenario where the Heisenberg + chiral
Heisenberg fixed point would remain stable beyond one
loop. What is still missing to corroborate the stability of the
Heisenberg + chiral Heisenberg fixed point is an argument for
the RG scaling of the (vanishing) Yukawa coupling g2

a.
We note that for na = nb, the situation is somewhat spe-

cial: In that case the fixed points Y2 and Y3 are identical on
exchange of the labels a ↔ b. Therefore, Y3 also has to be
a stable fixed point if Y2 is stable. We explore this stability
property in the Yukawa couplings for various configurations
of na = nb = n ∈ {1, 2, 3}, see Fig. 4. Interestingly, for n = 1
the fixed point Y4 is stable and for n = 3 the fixed points Y2,Y3

are stable. For n = 2, the fixed points Y2,Y3,Y4 all have a
marginal direction in the RG flow.

For the case of na = nb = 1, Nf = 2 it is therefore interest-
ing to also look at the possible fixed points and their stability
in the bosonic sector. There, based on Y4 we find a stable fixed
point with coordinates

λa = 1 + √
145

720
ε = λb, λab = 1 + √

145

240
ε. (47)

We note that this is also not a fixed point with symmetry
enlargement. Also this is in agreement with the findings dis-
cussed around Eq. (29).

VI. DISCUSSION

We have employed a one-loop renormalization-group
approach to study the quantum multicritical behavior in a gen-
eralized Gross-Neveu-Yukawa field theory for Dirac fermions
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coupled to two order-parameter fields. This work was partly
motivated by the quantum Monte Carlo (QMC) study of the
lattice Hamiltonian presented in Ref. [45], where the quantum
phase transition between a Nf = 2 Dirac fermion phase and
a massive phase including a Néel state and a superconductor-
CDW state was investigated. Therein, a scaling collapse of
the QMC data is found at critical coupling strength, providing
evidence for a continuous quantum phase transition with a
concomitant quantum critical point as, e.g., observable in the
universal scaling behavior of the order-parameter correlation
length.

Universality suggests that this putative quantum critical
point is described by the constrained continuum field theory
studied in our Sec. V B. As we have shown, however, there is
no stable fixed point for n = 3 and Nf = 2, i.e., the numerical
findings appear to be incompatible with the universal contin-
uum field theory, because the absence of a stable fixed point
generically predicts a first-order phase transition to appear
in the system, i.e., no universal scaling behavior should be
observable. We therefore conclude that either (1) the lattice
Hamiltonian of Ref. [45] should be described by a different
continuum field theory, (2) the leading-order perturbative RG
approach presented here is insufficient to capture the underly-
ing fixed-point structure, or (3) the QMC data actually exhibits
a (very) weak first-order transition, which only appears to be
continuous.

About point (1), we can say that the continuum theory
is constructed such that it shares the full O(4) symmetry
of the lattice Hamiltonian, cf. Ref. [45]. A different con-
tinuum theory should also fulfill that minimal requirement,
which imposes a strong constraint. One possibility could be
that topological contributions appear in the lattice realization,
while they are not reflected in the present continuum setup.
Option (2) would also be interesting since examples where
the one-loop order fails to capture the general fixed-point
structure of a model are rare. Possibilities for further studies
include higher-order epsilon expansions, but also a large-Nf

study at leading order. The latter seems promising since at
large Nf ∼ O(10) fermionic contributions in β function dom-
inate and the critical point reappears [75]. An unusually large
order parameter’s anomalous dimension detected in Ref. [45]
may be an indication of the appropriateness of the large-Nf

approach, in which ηψ = 1 + O(1/Nf ). Finally, it may be
computationally expensive to decide on the option (3), as
weakly first-order and continuous transitions are naturally
difficult to distinguish. Weakly first-order transitions are ex-
pected to appear in a number of spin systems. In the present
context it would seem to require that the critical number of
fermions for the disappearance of the stable fixed point Nf ,c

is below but closer to the physical number Nf = 2 than what
we found. Higher-order calculations may be able to shed more
light on the matter.
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APPENDIX A: UNITARY TRANSFORMATION BETWEEN
DIFFERENT SO(3) × SO(3) VECTOR

ORDER PARAMETERS

The Hamiltonian H in Eq. (3) is particle-hole symmetric,
i.e., it anticommutes with the antiunitary particle-hole trans-
formation operator P. Since P has the property P2 = +1, there
exists a representation where P = K , with K being complex
conjugation, and P with a trivial unitary part. In this special
basis, the 16×16 BdG Hamiltonian reads

H = p1R1 + p2R2, (A1)

where �p = (p1, p2) = −i∇ is the usual momentum operator,
odd under P, and R1, R2 are two real Hermitian (symmetric)
16×16 matrices with the anticommuting property

{Ri, Rj} = 2δi j, i, j ∈ {1, 2}. (A2)

The largest Clifford algebra that has a 16×16 representation
is

C(5, 4) = (R1, R2, R3, R4, R5, I1, I2, I3, I4), (A3)

where the Ri, i ∈ {1, 2, 3, 4, 5} are real and I j, j ∈ {1, 2, 3, 4}
are fully imaginary (antisymmetric). All matrices Ri, I j are
hereafter chosen to be Hermitian, and to square to +1. They
all also mutually anticommute.

The Clifford algebra C(n, m) is here defined as a set of
n + m mutually anticommuting Hermitian generators which
all square to +1, and are such that the first n are real, and
the remaining m are imaginary. Note that this is a slight
modification of the standard definitions as, e.g., given in
Ref. [67], where the fully real representation of C(n, m) are
studied, at the cost of the last m elements being multiplied
with an imaginary unit, and therefore taken as anti-Hermitian.
In consequence the last m matrices in our definition square
to +1 instead of −1, while preserving the nature of the
representation. The difference between the two conventions
reflects the difference between Minkowski and Euclidian
spaces typically employed in particle and condensed matter
physics.

In the present context of the 16 × 16 massive Dirac BdG
Hamiltonian in two spatial dimensions, we have n = 2, and
then m = 5 sets the maximal number of compatible (anticom-
muting) masses [47]. This is because one can construct the
Clifford algebra

C(2, 5) = (R1, R2, I1, I2, I3, I4, I5), (A4)

with I5 = iR5R4R3, with I†
5 = I5 and I2

5 = +1. This algebra
can be used to write the massive BdG-Dirac Hamiltonian with
five mutually anticommuting mass terms, i.e.,

HBdG = p1R1 + p2R2 +
5∑

i=1

miIi, (A5)

where the mi ∈ R, with the spectrum

ε �p,± = ±
√

p2
1 + p2

2 + m2
1 + m2

2 + m2
3 + m2

4 + m2
5. (A6)
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Note that this Hamiltonian anticommutes with the particle-
hole operator P, as it should, because the parameters {mi}
are real and therefore even under P, whereas the momen-
tum �p is odd. The full summary of the dimensions and the
nature of real irreducible representations of Clifford alge-
bras provided in Ref. [47] implies then that there cannot
be more than five mutually anticommuting mass terms that
can be added to HBdG. The C(2, 5) is thus and the maximal
Clifford algebra relevant to spin-1/2 Dirac fermions in two
dimensions.

An interesting fact about this algebra is that it is quater-
nionic [67]. In our convention this means that, besides unit
matrix, it allows for three additional operators,

(A1, A2, A3) = (iR3R4, iR4R5, iR5R3), (A7)

which evidently commute with all seven matrices in C(2, 5).
The three “commutants” Ai close an SO(3) Lie algebra, mutu-
ally anticommute, and are imaginary and Hermitian.

This observation can be used to derive the central result
quoted in the main text as follows. Take a subalgebra of the
above C(2, 5) to be

C(2, 2) = (R1, R2, I1, I2). (A8)

Then there exists precisely one other triplet besides (I3, I4, I5)
which may be used to complete this subalgebra to the max-
imal, but different, C(2, 5). The algebraic construction of
this second triplet is unique, which can be further con-
firmed by inspection of the 56 quintuplets explicitly listed
in Ref. [46]. The new triplet will transform as a vec-
tor under the above SO(3) algebra of commutants and
reads

(A1X, A2X, A3X ) with X = R1R2I1I2.

These three matrices are also all imaginary, Hermitian, and
square to +1. We thus found another maximal C(2, 5) algebra
which contains the same subalgebra {R1, R2, I1, I2} as the first
one. Explicitly, it reads

CA(2, 5) = (R1, R2, I1, I2, A1X, A2X, A3X ).

To distinguish it from the first one we added an index A in
CA(2, 5), and we refer to the first one as CB(2, 5) hereafter.
CA(2, 5) and CB(2, 5) share the same subalgebra C(2, 2) =
(R1, R2, I1, I2). CA(2, 5) is of course also quaternionic, and the
three nontrivial commutants are simply

(B1, B2, B3) = (iI3I4, iI4I5, iI5I3). (A9)

Bi are also Hermitian and mutually anticommuting and pro-
vide another imaginary representation of SO(3) Lie algebra.

In sum, given the 16 × 16 representation of C(2, 2) as
(R1, R2, I1, I2), there are two different ways to complete it to
the maximal Clifford algebra C(2, 5):

(1) CB(2, 5) = (R1, R2, I1, I2, I3, I4, I5), with commutants
Ai, [Ai,CB(2, 5)] = 0, i ∈ {1, 2, 3},

(2) CA(2, 5)= (R1, R2, I1, I2, A1X, A2X, A3X ) with com-
mutants Bi, [Bi,CA(2, 5)]=0,i∈ {1, 2, 3}.

The two vectors (A1X, A2X, A3X ) and (I3, I4, I5) are a
(1, 0) + (0, 1) representation of the SO(3) × SO(3) algebra

of commutants, which are

(iR3R4, iR4R5, iR5R3, iI3I4, iI4I5, iI5I3)

= (A1, A2, A3, B1, B2, B3), (A10)

with [Ai, Bj] = 0. In other words, the algebra C(2, 2) =
(R1, R2, I1, I2) has the SO(4) � SO(3) × SO(3) algebra of
commutants.

One can also summarize the above discussion by noting
that

R5 = R1R2R3R4I1I2I3I4 ⇒ B1X = I5,

B2X = I3, B3X = I4. (A11)

So the Clifford algebra C(2, 2)= (R1, R2, I1, I2), has the SO(4)
Lie algebra of commutants

( �A, �B) = (iR3R4, iR4R5, iR5R3, iI3I4, iI4I5, iI5I3)

= SO(3) × SO(3). (A12)

( �AX, �BX ) with X = R1R2I1I2 then transforms as (1, 0) +
(0, 1) representation of this SO(4) Lie algebra. Finally,

CA(2, 5) =C(2, 2) + ( �AX ),

CB(2, 5) =C(2, 2) + ( �BX ),

are the two maximal Clifford algebras that contain the original
C(2, 2). This was quoted in the text.

We may also observe in passing that the above consider-
ations imply that the symmetry of the massless Dirac BdG
Hamiltonian H in Eq. (A1) must in fact be larger than
SU(4). First, we notice that the ten operators i[Ia, Ib]/2, a, b =
1, 2, . . . , 5 generate an SO(5) symmetry of H . The three com-
mutants of CB(2, 5), Ai, i = 1, 2, 3 then generate an additional
SO(3) symmetry of H , so that the group of symmetry of
H is at least SO(5)×SO(3). Noticing that the original sym-
metry group SU(4)� SO(6), and that clearly neither SO(6)⊂
SO(5) × SO(3) nor SO(5)× SO(3) ⊂ SO(6) is true, implies
that the actual symmetry group of H must contain both SO(6)
and SO(5)×SO(3) as its subgroups. It therefore must be at
least SO(8), cf. also Ref. [76].

Transformation

Say we are given the two maximal Clifford algebras
CA(2, 5) and CB(2, 5) with the common subalgebra C(2, 2) =
(R1, R2, I1, I2). We can construct two Clifford algebras with
any other pair of imaginary matrices from CA(2, 5) [or
CB(2, 5)] being common as follows:

Define

U = ei π
4 [iI1(A1X )+iI2(A2X )]. (A13)

Its action on CA(2, 5) is as follows:
(1) URiU † = Ri, i ∈ {1, 2}
(2) UI1U † = ei π

4 iI1A1X I1e−i π
4 iI1A1X

= ei π
2 iI1A1X I1 =−(sin π

2 )I1A1XI1 = A1X
(3) UI2U † = A2X
(4) UA1XU † = −I1

(5) UA2XU † = −I2

(6) UA3XU † = A3X
The net result is the same set of matrices but with exchanges of
I1 ↔ A1X, I2 ↔ A2X . The action on the matrices in CB(2, 5),
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on the other hand, is
(1) URiU † = Ri, i ∈ {1, 2}
(2) UI1U † = A1X
(3) UI2U † = A2X
(4) UBiXU †

= eiπ4 (iI1A1X )ei π
4 (iI2A2X )BiXe−iπ4 (iI2A2X )e−i π

4 (iI1A1X )

= ei π
4 (iI1A1X )[−I2A2XBiX ]e−i π

4 (iI1A1X )

= −I1(A1X )(−)I2A2XBiX
= I1A1XI2A2Bi(X 2)
= −I1A1I2A2BiX
= −I1I2A1A2BiX
= −iI1I2A3BiX .

So, we obtain

CB(2, 5) → UCB(2, 5)U † = (R1, R2, A1X, A2X, iI1I2A3BiX ),
(A14)

with i ∈ {1, 2, 3}.
Let us make couple of remarks.
(1) The matrices iI1I2A3BiX are imaginary, since X is real

and I1, I2, A3, Bi are imaginary.
(2) {Ri, iI1I2A3BiX } = 0, because Ri, i ∈ {1, 2} commutes

with iI1I2, A3, and Bi, but anticommutes with X = R1R2I1I2.
(3) {AiX, iI1I2A3BiX } = 0, since AiX, i ∈ {1, 2} com-

mutes with iI1I2 and BiX , but anticommutes with A3.
(4) iI1I2A3BiX mutually anticommute, i ∈ {1, 2, 3}.
The final result of the transformation is that

CA(2, 5) → UCA(2, 5)U † = CA(2, 5) = (R1, R2, I1, I2, AiX ),
(A15)

CB(2, 5) → UCB(2, 5)U † = (R1, R2, A1X, A2X, iI1I2A3BiX ),
(A16)

so that the transformed Cliffod algebras have the imaginary
(mass) matrices (A1X, A2X ) in common, besides the real ma-
trices (R1, R2), of course. Again, the matrices from the two
different remaining triplets (I1, I2, A3) and (iI1I2A3BiX ) com-
mute between themselves.

In the original notation, we obtain the relation: If
CB(2, 5) = (R1, R2, I1, I2, I3, I4, I5) and UCB(2, 5)U † =
(R1, R2, I3, I4, I1, I2, I5), then for UCB(2, 5)U † the
commutant SO(3) algebra is �A = (iR3R4, iR4R5, iR5R3).
Since X → UXU † = R1R2I3I4, so that the matrices
�AX = (iRkI1I2), k ∈ {5, 3, 4}. So, we find that for

UCA(2, 5)U † = {R1, R2, I3, I4, iRkI1I2}, k ∈ {5, 3, 4} and
the new (1, 0) + (0, 1) representation is

(I1, I2, I5) + (iRkI1I2; k = 3, 4, 5). (A17)

Again, all matrices in the first set commute with matrices in
the second set, as it should be.

APPENDIX B: GENERALIZATION TO DIRAC SYSTEM
WITH SO(n) × SO(n) SYMMETRY AND n > 3

Here, we briefly sketch the generalization of the La-
grangian in Eq. (12) to the case of SO(n) × SO(n) symmetry
with n > 3. In that case, in the Yukawa interaction, cf.
Eq. (16), the Pauli matrices σi need to be replaced by n anti-
commuting Dirac gamma matrices of dimension dn × dn, e.g.,
with d4 = d5 = 4, d6 = d7 = 8, . . .. Likewise, in Eq. (13), the
unit matrix is of dimension dn × dn. In consequence, a Dirac

fermion ψ in such a model comes with a minimal number of
2d−1(dn)2 components. Now, if we introduce a number N of
such minimal Dirac fermions our number of four-component
Dirac fermions Nf , cf. Eqs. (17)–(21) is related to N by

Nf = 2(d−1)d2
n

4
N.

Since the minimal N has to be N � 1, the constraint on Nf

is therefore Nf � 2(d−1)d2
n /4. For example, in d = 2 and for

n = 4, 5, we obtain Nf � 8.

APPENDIX C: DERIVATION OF RG FLOW EQUATIONS
FROM KNOWN LIMITING CASES

The RG equations for a Dirac system with fermion field ψ

coupled to two order parameters with real field components
φi, i ∈ {1, . . . , na} and χi, i ∈ {1, . . . , nb} have a general
structure following from the consideration of rescalings of the
couplings and loop diagrams. The general structure for the β

functions of g2
i , λi, λab where i ∈ {a, b} reads

βg2
i
= (ε − ηi − 2ηψ )g2

i + cgi,1g4
i + cgi,2g2

ag2
b, (C1)

βλi = (ε − 2ηi )λi+cλi,1λ
2
i +cλi,2λ

2
ab+cλi,3Nf g4

i , (C2)

βλab = (ε − ηa − ηb)λab + cλab,1λ
2
ab

+ cλab,2λaλab+cλab,3λbλab+cλab,4Nf g2
ag2

b, (C3)

where, from the general point of view, the coefficients ci, j and
the rescaling coefficients ηψ, ηi, i ∈ {a, b} are undetermined
at first.

For a model where the bosonic sector features a O(na) ×
sO(nb) symmetry, the coefficients cλi, j, i ∈ {a, b}, j ∈ {1, 2}
and cλab,i, i ∈ {1, 2, 3} are well known from statistical models,
see, e.g., Ref. [51]. They read

cλa,1 = −4(na + 8), cλb,1 = −4(nb + 8), (C4)

cλa,2 = −4nb, cλb,2 = −4na, (C5)

cλab,1 = −16, cλab,2 = −4(na + 2), (C6)

cλab,3 = −4(nb + 2). (C7)

We now restrict ourselves to the case where the Dirac mass
terms related to the bosonic fields φi have anticommuting
components and the same for χ j , but φi and χ j do not have to
be mutually anticommuting. The rescaling coefficients ηi, i ∈
{a, b} are related to the wave-function renormalizations of
the bosons and at a fixed point they correspond to the boson
anomalous dimensions. Diagrammatically, they are given by
the one-loop diagram of the boson propagator with the closed
fermion loop providing a factor of Nf . The expression for ηi

is well known, cf. Ref. [42], again

ηi = 2Nf g2
i , i ∈ {a, b} (C8)

Also ηψ is known from the one-loop diagram of the fermion
propagator [42]. Here, all boson components contribute addi-
tively

ηψ = 1
2 nag2

a + 1
2 nbg2

b. (C9)
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Next, we consider the Yukawa couplings and the correspond-
ing coefficients cgi,1 and cgi,2. The first coefficient, cg,1, is the
one obtained from consideration of a Yukawa system with a
coupling to a single order parameter, e.g., a Néel state or a
CDW. It can also be inferred from Ref. [42] and it reads

cgi,1 = 2(ni − 2) i ∈ {a, b}. (C10)

Furthermore, we can use the RG flow equations from the
single order parameter case to extract cλi,3,

cλi,3 = 1 i ∈ {a, b}. (C11)

Now, the second Yukawa coefficients cgi,2 are not that obvious
because they depend on the mutual anticommuting proper-
ties of the two different order parameters φ and χ . Here, to
connect to the work in Ref. [45], we can exploit our own
RG flow equations from Ref. [40], where we considered the
competition between the Néel and the CDW state which corre-
sponds to the case na = 3, nb = 1. The diagram corresponding
to the coefficients cgi,2 is the one where the internal bosonic
line is contributed from the order parameter that is not the
external bosonic line of the considered Yukawa vertex. There-
fore, the diagram for vertex ga comes with multiplicity nb and
vice versa. The remaining factor is fixed by consideration of
the contribution to the Néel and CDW Yukawa coupling in
Ref. [40]. We find

cga,2 = −2nb, cgb,2 = −2na. (C12)

The only coefficient left to fix is now cλab,4. It follows from
the corresponding equation (Eq. (16)) in Ref. [40] because of
the same anticommuting properties of the Yukawa vertices for

the considered bosonic components. We find

cλab,4 = 3. (C13)

With this, all the coefficients are determined and the set
of flow equations is complete. Putting all that together and
slightly rearranging for better comparison, we obtain the fol-
lowing set of equations given as Eqs. (17) to (21) in the main
text.

Finally, we note that the β functions for the quartic cou-
plings differ in the fermionic loop contribution ∝ g4, which is
particularly obvious when considering the constrained system
where ra = rb, λ = λa = λb, λ′ = λab, and g2

a = g2
b = g2, cf.

Eqs. (27) and (28). As a consequence, in the presence of
fermions, the theory does not have an SO(6) symmetry even at
one-loop level. To see this more directly, we can diagonalize
the matrix

Y = �a · �σ ⊗ I + I ⊗ �b · �σ , (C14)

which appears in the Yukawa coupling and which determines
the loop contributions to the quartic couplings. The eigenval-
ues of Y are ±(a ± b). Expanding the fermion determinant for
each component separately leads to a quartic term in the form

∼(a + b)4 + (a − b)4 = (a4 + 4a3b + 6a2b2 + 4ab3 + b4)

+ (a4−4a3b + 6a2b2−4ab3+b4)

= 2(a4 + b4 + 6a2b2).

Here we see how a relative factor of 6 arises in the β functions
for the couplings λ and λ′.
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