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Z2 metallic spin liquid on a frustrated Kondo lattice
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Metallic spin liquid has been reported in several correlated metals, but a satisfactory theoretical description is
not yet available. Here we propose a potential route to realize the metallic spin liquid and construct an effective
Z2 gauge theory with charged fractionalized excitations on the triangular Kondo lattice. This leads to a Z2

metallic spin liquid featured with long-lived, heavy holon excitations of spin 0 and charge +e and a partially
enlarged electron Fermi surface. It differs from the weak-coupling FL∗ state proposed earlier and may be viewed
as a fractionalized heavy fermion liquid. Our theory provides a general framework to describe the metallic spin
liquid in frustrated Kondo lattice systems.
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I. INTRODUCTION

Quantum spin liquid (QSL), characterized by topological
orders and fractionalized excitations, is usually expected in
frustrated spin systems and has attracted tremendous interest
in past decades [1,2]. Its counterpart in metals, dubbed the
metallic spin liquid, is less explored despite that experimental
signatures were found in, e.g., the heavy fermion compounds
CePdAl [3,4], Pr2Ir2O7 [5,6], LiV2O4 [7], and the organic
material κ-(ET)4Hg2.89Br8 [8]. A candidate description of
the metallic spin liquid was proposed previously on Kondo
lattices and given the name fractionalized Fermi liquid (FL∗),
where the QSL is weakly coupled to conduction electrons
[9,10]. As a result, the Fermi surface only contains conduc-
tion electrons (small) and the spin liquid part is essentially
untouched [9–11]. It is in sharp contrast to the heavy Fermi
liquid (HFL) in the strong-coupling limit, where the Fermi
surface is large and contains both conduction electrons and lo-
cal spins due to the Kondo screening. This raises the question
concerning how the FL∗ and HFL states are connected with
increasing Kondo coupling [12–14] and if there may exist a
metallic spin liquid beyond such a weak-coupling description.

Some insights may be borrowed from the cuprates [15]. In
a slightly doped Mott insulator, it was proposed [16] that a
conduction hole can combine with a spinon to form a spin-
less charged particle called a holon [17], which is physically
related to the Zhang-Rice singlet formed due to the Kondo
coupling between doped holes on the oxygen p orbitals and
the copper spins [18]. Ideas based on such spin-charge frac-
tionalization were extensively investigated in theory [19–21]
and explored in experiment [22–24]. In the Kondo lattice,
holon may also be formed as a quasi-bound state of bosonic
spinon and conduction hole [25]. A recent large-N mean-field
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calculation predicted that the holons can have a dispersion
once nonlocal spatial correlations are correctly included [12].
This leads to an intermediate holon state connecting the weak-
coupling FL∗ and the strong-coupling HFL, but it is not clear
if holons can survive against gauge fluctuations.

In this work, we elaborate on this idea by considering the
simplest gapped two-dimensional QSL, the Z2 short-ranged
resonating valence bond state, and develop an effective gauge
theory of the holons on a triangular Kondo lattice. We go
beyond the mean-field calculations and demonstrate the holon
stability against Z2 gauge fluctuations. Our calculations reveal
a Z2 metallic spin liquid with mobile, heavy, long-lived holon
excitations and a partially enlarged electron Fermi surface,
which may be viewed as a fractionalized heavy fermion liquid
(FHF) differing from the usual QSL and the weak-coupling
FL∗. Our method provides a general framework to study
metallic spin liquid on frustrated Kondo lattices.

II. METHOD

We start with the Kondo-Heisenberg model on a triangular
lattice

H = t
∑
〈i j〉αa

c†
iαac jαa + JK

∑
i

Si · si + JH

∑
〈i j〉

Si · S j, (1)

where the conduction electron ciαa has a spin index (α) and
a channel index (a = 1, . . . , K), si is its spin density, and Si

describes the local spin. JK and JH are the antiferromagnetic
Kondo and Heisenberg coupling constants, respectively. The
Schwinger boson representation states Si = 1

2

∑
αβ b†

iασαβbiβ ,

where b†
iα creates a bosonic spinon with the local constraint

nb
i ≡ ∑

α b†
iαbiα = 2S [26]. The Kondo screening is perfect at

large JK by choosing K = 2S [27].
The Z2 QSL is the ground state of the Sp(N)

extension of the Heisenberg Hamiltonian at small
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κ ≡ 2S/N denoting strong quantum fluctuations [28]. It
can be obtained by decomposing the Heisenberg term,
JH Si · S j → ∑

α[(�i jsgn(α)biαb j,−α − �i jb
†
iαb jα ) + c.c.] +

2N (|�i j |2 − |�i j |2)/JH , where α = ±1, . . . ,±N is the spin
index, and �i j and �i j are two auxiliary fields describing the
spinon pairing and hopping amplitudes, respectively [29–31].
The local constraint is imposed by a Lagrange multiplier λi.
The fluctuations of these fields introduce a U(1) gauge field
coupled to the spinons [28]. On a triangular lattice, the spinon
pair condensate reduces U(1) to Z2 at low energy via the
Higgs mechanism [28].

The holons are described by a fermionic auxiliary field χia

and emerge from the Kondo coupling between spinons and
conduction electrons via a Hubbard-Stratonovich transfor-
mation, JK Si · si → 1√

N

∑
αa b†

iαciaαχia + c.c. + ∑
a |χia|2/JK

[12,31–37]. We have eventually an interacting system con-
sisting of spinons, holons, and conduction electrons (see
Appendix A for more details)

L = Lc + Lb + Lχ + 1√
N

∑
iαa

(b†
iαciaαχia + c.c.), (2)

where Lc = ∑
kαa c†

kαa(∂τ + εk )ckαa gives the electron dis-
persion, Lχ = ∑

ia |χia|2/JK is the holon action, and Lb

describes the Z2 QSL with bosonic spinons.

III. RESULTS AND DISCUSSION

A. Large-N solution

We first focus on the uniform mean-field solution as-
suming �i,i+η = �0, �i,i+η = �0, and λi = λ0, where η =
(1, 0), (− 1

2 ,±
√

3
2 ) are three unit vectors. This describes the

“zero-flux” state of the triangular lattice Heisenberg model
at small κ [30]. Upon increasing κ , the spinons condense on
the corner points of the hexagonal Brillouin zone, leading to
the 120◦ Néel order [28,30]. The electron-spinon-holon vertex
leads to the following self-energy equations [12,36]:

b(p, iνn) = − κ

βV
∑

kl

gc(p − k, iνn − iωl )Gχ (k, iωl ),

χ (p, iωn) = 1

βV
∑

kl

gc(k − p, iνl − iωn)Gb(k, iνl ), (3)

where gc is the bare Green’s function of conduction electrons
and Gb and Gχ are the full Green’s functions of spinons
and holons. The self-energy of the conduction electrons is
proportional to 1/N and vanishes in the large-N limit. Using
the fast Fourier transform, we are able to solve the above
self-consistent equations efficiently in real space as described
in Appendix B, and predict a dispersive holon band that is
impossible in the local approximation [33–35], which is the
key for the occurrence of the metallic spin liquid.

Figure 1(b) shows the large-N zero-temperature phase dia-
gram in terms of κ and TK/JH , where TK = D exp(−1/ρcJK )
is the single ion Kondo temperature, with D = −6t and ρc

denoting the electron bandwidth and its density of states at
the Fermi energy. There are three transition lines separat-
ing four phases: the fractionalized Fermi liquid (FL∗), the
fractionalized heavy fermion liquid (FHF), the heavy Fermi
liquid (HFL), and the antiferromagnetic (AFM) state with an

FIG. 1. (a) Schematic diagrams showing different paramagnetic
phases on a frustrated Kondo lattice upon increasing Kondo coupling
between conduction electrons (top layer) and local spins (bottom
layer). From left to right: the weak-coupling fractionalized Fermi
liquid (FL∗), the strong-coupling fractionalized heavy fermion (FHF)
liquid, and the heavy Fermi liquid (HFL). (b) The large-N phase
diagram of the triangular lattice Kondo-Heisenberg model. AFM
denotes the 120◦ Néel order. (c) Spin susceptibility at the ordering
wave vector Q = ±( 2π

3 , 2π√
3

) and the holon Fermi volume V χ

FS as
functions of TK/JH for κ = 0.1. (d) The holon Fermi surfaces in
the FHF state at different TK/JH marked by A-D in (c). The yellow
arrows mark the direction of expansion of the holon Fermi pockets
with increasing TK/JH .

ordering wave vector Q = ±( 2π
3 , 2π√

3
) corresponding to the

120◦ Néel order. The FL∗ and HFL states can be understood
from the Heisenberg and the Kondo limits, respectively. The
first has a small electron Fermi surface weakly coupled to a
Z2 QSL [9], while the second has only electron excitations
with a large Fermi surface, as illustrated in Fig. 1(a).

For small κ , these two states are separated by an inter-
mediate state where spinons combine with conduction holes
to form heavy holons with fermionic statistics, as shown in
Fig. 1(a). An alternative view (from the large-U Anderson
lattice) is that the renormalized heavy f -holes are fractional-
ized into bosonic spinons and fermionic heavy holons, hence
the name fractionalized heavy fermion liquid. Both spinons
and holons are minimally coupled to a Z2 gauge field and
are propagating particles due to the deconfinement of the
gauge theory. The dispersive holon band allows us to define
a gauge-invariant Fermi volume,V χ

FS = 1
V

∑
k θ [−J∗

K (k)−1],
where J∗

K (k) = [1/JK + Reχ (k, 0)]−1 is the renormalized
Kondo coupling inversely proportional to the holon disper-
sion. Upon increasing TK/JH , the holon band evolves from
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(c)

(a)

ω

TK/JH

κ = 0.15

ω

ω2

(b)

AFM HFL

∂(-ImΣχ(ω))/∂ln(ω)
Es

-ɛ
χEF

(d)

FIG. 2. (a) A log-log plot of the holon self-energy −Imχ (ω) at
κ = 0.15 showing linear-in-ω behavior at the AFM QCP (TK/JH =
0.229) and ω2 behavior inside the FHF (TK/JH = 0.23 ∼ 0.31).
(b) The ω dependence of −Imχ (ω) at the FHF-HFL and FL∗-
FHF transition points for κ = 0.05. The dashed line denotes the
ω2 behavior. (c) A color-coded plot of ∂ ln[−Imχ (ω)]/∂ ln ω on
the ω ∼ TK/JH plane for κ = 0.15. (d) An illustration of the holon
stability within the FHF phase: a holon at the Fermi energy (EF )
cannot decay into a conduction hole and a gapped spinon at low
temperature.

above to below the Fermi energy as shown in Appendix C,
accounting for the stability of Kondo singlet formation. Its fi-
nite bandwidth inevitably leads to 0 < V χ

FS < 1 and the holon
Fermi surface as shown in Fig. 1(d). A generalized Luttinger
sum rule requires that the electrons have a partially enlarged
Fermi surface with NV c

FS = nc + V χ
FS [38]. The FL∗-FHF and

FHF-HFL transition lines are determined by the deviation of
the holon Fermi volume from 0 and 1, respectively, as denoted
in Fig. 1(c).

The partial enlargement of the electron Fermi surface and
the deconfined spinons and holons indicate that the Kondo
effect exists in an incomplete and nonlocal fashion, described
by the scattering process J∗

K (r j − ri )c
†
jaβb jβb†

iαciaα [12,31].

Intuitively, one can view the holon χ
†
ia ∼ ∑

α b†
iαciaα as half

a Kondo singlet whose presence also requires the fractional-
ization of magnons (S+ → b†

j↑bi↓). In a three-impurity Kondo
model, we assigned such a nonlocal Kondo effect to the term
c†

iασαβc jβ · (Si × S j ) [31], which emerges under the renor-
malization group flow and becomes strongly enhanced in
certain intermediate parameter regions. Similarly, the FHF
phase also occurs here within an intermediate range of TK/JH ,
bridging the weak-coupling FL∗ and the strong-coupling HFL
as illustrated in Fig. 1(a).

The holons may dissipate through the decay process χ
†
ia →

ciαa + b†
iα as reflected in its self-energy. Figure 2(a) shows a

log-log plot of −Imχ (ω) at small frequency for κ = 0.15,
where χ (ω) = 1

V
∑

k χ (k, ω) is the momentum-averaged
self-energy. We find −Imχ (ω) ∝ ωp with p ≈ 1 at the AFM

bib†i

b†j bj

Zji Zji

ci c†iχi χ†
i

bib†i

χ†
i

Zji

c†icj

χj bib†ibjb†j

Zji bl

b†l

Zlj

Zil
bi

b†i

bj

b†j

Zji Zil

ZlkZkj

bj

b†i

b†j

bi

b†l

bl

bk b†k

(a)

(b)

(c)

(d)

(e)

FIG. 3. Feynman diagrams giving rise to the effective Hamilto-
nian Eq. (4) of the Z2 gauge theory.

boundary, but p = 2 at low frequencies deep inside the FHF
phase. Approaching the FL∗ or HFL phase boundaries, p also
deviates from 2, as shown in Fig. 2(b) for κ = 0.05, possi-
bly associated with the Lifshitz-type transitions of the holon
band at these two boundaries. Figure 2(c) is the color-coded
plot of ∂ ln[−Imχ (ω)]/∂ ln ω on the ω ∼ TK/JH plane for
κ = 0.15. A clear dome of p = 2 suggests that holons are
well-defined (long-lived) quasiparticles at low-energy scales
in the FHF. At the perturbative level, this can be understood
from the absence of phase space for holons to decay into con-
duction holes and gapped spinons, as illustrated in Fig. 2(d).
To be more precise, our full self-consistent calculations reveal
highly damped spinons with a pseudogapped density of states
within the FHF phase (see Appendix C) ρb(ω) ∝ ω, which
then indicates −Imχ (ω) ≈ πρc

∫ ω

0 dzρb(z) ∝ ω2. The FHF
phase is, therefore, a metallic spin liquid featured with spin-
charge fractionalization and scattering between electrons,
holons, and damped spinons. At the AFM quantum critical
point (QCP), the spinon gap vanishes, resulting in strong
holon dissipation and the p ≈ 1 strange metal behavior, a
typical phenomenon when Fermi surfaces are coupled to crit-
ical bosonic modes associated with some magnetic instability
[39].

B. Z2 gauge theory

The Z2 gauge fluctuations are associated with the dy-
namical sign changes of the auxiliary fields, �i j = �0Zi j ,
�i j = �0Zi j , with Zi j = ±1 being the Z2 gauge field. The
model is invariant under the gauge transformation biα →
biασi, χia → χiaσi, Zi j → Zi jσiσ j , with σi = ±1. For small κ

above the AFM phase, the mean-field solution always satisfies
λ0 � (�0, �0), as can be seen from the κ = 0 limit where the
spinons become exactly local (�0 = �0 = 0) [12]. This sug-
gests a perturbative expansion in terms of �0 and �0, which
can be done by perturbatively integrating out the spinons with
a nonzero gap λ0. Since we are mostly interested in the holon
dynamics under the gauge fluctuations, it is also helpful to
integrate out the conduction electrons. At zero temperature,
this procedure does not lead to divergences, reflecting the
stability of holons as shown in Appendix D.

The most important Feynman diagrams are listed in Fig. 3,
which give rise to the following effective Hamiltonian
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(see Appendix D for a detailed derivation):

Heff = −g
∑
〈i j〉

X̂i j + εχ

∑
ia

χ
†
iaχia + t̄

∑
〈i j〉a

Ẑi jχ
†
iaχ ja

− K
∑
�

∏
i j∈�

Ẑi j − K ′ ∑
♦

∏
i j∈♦

Ẑi j + · · · , (4)

where X̂i j (Ẑi j) is the Pauli matrix of x (z) component. We
scaled the holon field by its quasiparticle residue, so that χia in
Eq. (4) is a canonical fermion operator. The term −gX̂i j comes
from the dynamical term (∂τ Zi j )2 in the path integral gener-
ated by the diagram Fig. 3(a), and tends to flip the Ẑi j fields
[40]. The second and third terms are generated by Figs. 3(b)
and 3(c), respectively. The second line of Eq. (4) contains
all possible interaction terms of the form Ẑi j Ẑ jk . . . Ẑli, where
the links (i j, . . . , li) form a closed loop. They are generated
by diagrams like Figs. 3(d) and 3(e), so that larger loops
are associated with higher powers of �0 and �0 and can be
safely neglected. The parameters in Eq. (4) are related to the
microscopic parameters through

g = 1

ε
e−N�2

0/(ελ3
0 ), εχ ∝ 1

JK
− ρc ln

D

λ0
, t̄ ∝ �0,

K = −2N
�0�

2
0

λ2
0

, K ′ = N
1

λ3
0

�2
0

(
�2

0 − 4�2
0

)
, (5)

where ε is the small discrete time slice of the path integral
determined by the high-energy cutoff. The onsite energy of
holons (εχ ) decreases monotonically with increasing JK and
becomes negative at JK � ρc ln λ0

D , or equivalently, TK � λ0.
This means the energy gain of forming a Kondo bound state
(TK ) overcomes its least energy cost (the spinon gap λ0). The
holon bandwidth is proportional to �0, which also monotoni-
cally decreases with increasing TK/JH and eventually vanishes
deep inside the HFL.

The confinement-deconfinement transition of the Z2 gauge
theory is determined by the competition between the energy
gain of bond flips (g) and the energy cost of producing vison
excitations with

∏
i j∈C Zi j = −1, where C is any closed loop

enclosing a vison core [20,41]. Ignoring the matter fields
χia, creating a pair of well-separated visons costs an amount
of energy Ev = 4K + 12K ′, which decreases with increasing
TK/JH as shown in Fig. 4(a) for κ = 0.05 by substituting
our mean-field solutions into Eq. (5). By contrast, g is ex-
ponentially suppressed at small TK/JH due to the relatively
large �0, but becomes large (∼ε−1) due to the vanishingly
small �0 inside the HFL. For Ev � g, the visons are expelled
and the ground state can be well described by the mean-
field solution with finite �0 and �0. This is the deconfined
phase with propagating fractional excitations. In the opposite
limit Ev � g, visons proliferate (condense) and Ẑi j fluctuates
strongly, leading to the confinement of spinons and holons
[20,40].

The number of total Z2 charges at each site is then nb
i =

2S in the FL∗ phase, but becomes nb
i + nχ

i = 2S + K in the
HFL state due to the full occupation of the holon band. Hence
an important difference of the intermediate FHF metallic spin
liquid from a neutral QSL is that its Z2 charge density varies
upon tuning TK/JH . It introduces different Berry phases as a
vison adiabatically moves around a site i and returns to its

χ

(a)

(b)

FL* FHF HFL
g Evg Ev

Z2Odd- Z2Even-

FIG. 4. (a) Comparison of Ev = 4K + 12K ′ and g as functions of
TK/JH . Their values are obtained using Eq. (5) with N = 2 and ε =
0.1. The inset shows a configuration with a pair of separated visons,
where Zi j = −1 (1) on the green (black) bonds and the blue “×”
represents the vison cores. (b) Different paramagnetic phases upon
tuning TK/JH , or equivalently, g/Ev . For 2S = K = 1, the number of
background Z2 charges at each site is 1 in the FL∗ phase and 2 in the
HFL phase, corresponding to the odd- and even-Z2 gauge theories,
respectively.

original position as illustrated in Fig. 4(b) [41]. The final state
of such a process is different from the initial one by a gauge
transformation, biα → −biα , χia → −χia, Zi j → −Zi j for j ∈
NN(i), where NN(i) stands for the nearest-neighbored sites
of i. This leads to a Berry phase factor Gi = (−1)nb

i +nχ
i . For

S = 1/2 and K = 1, one has Gi = −1 in the FL∗ phase but
Gi = 1 in the HFL phase, corresponding to the odd- and even-
Z2 gauge theories, respectively [20,42,43]. We thus identify
the HFL as the confined phase of an even-Z2 gauge theory.
Upon increasing TK/JH , the transition from the odd-Z2 to the
even-Z2 theory can happen either through a single QCP with
a Fermi surface jump as in the κ = 0 limit, or an intermediate
phase with noninteger holon filling.

IV. CONCLUSION

We constructed a strong-coupling theory of the Z2 metal-
lic spin liquid and identified it as a fractionalized heavy
fermion (FHF) liquid. The FHF metallic spin liquid shares
some similarities with the algebraic charge liquid proposed
earlier for the pseudogap region of cuprates [21]. The al-
gebraic charge liquid also has fermionic holon excitations,
but coupled to a U(1) gauge field. The holon Fermi surface
may not be directly measured via the angle-resolved photoe-
mission spectroscopy (ARPES), but its gauge-invariant Fermi
volume should, in principle, contribute to quantum oscillation
or Hall measurements [21]. Like the algebraic charge liquid,
the FHF could be a parent state for other instabilities such
as holon superconductivity or holon charge density wave.
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The former may provide additional pairing channel for heavy
fermion superconductivity, while the latter breaks the transla-
tional symmetry and may be identified as the partial Kondo
screening phase studied in Refs. [44,45]. Moreover, important
features in the usual QSL systems may also be considered in
our theory to give rise to other interesting consequences in the
metallic spin liquid [46]. More investigations are needed to
elaborate on these possibilities.
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APPENDIX A: LARGE-N SELF-CONSISTENT EQUATIONS

To derive the large-N action of the triangular lattice Kondo-
Heisenberg model, we first use the SU(2) Schwinger boson
representation to rewrite the Kondo and Heisenberg terms as
follows:

HK = JK

∑
i

Si · si

= −JK

2

∑
ia

b†
iαciαac†

iβabiβ − JK S

2

∑
ia

c†
iαaciαa,

HH = JH

∑
〈i j〉

Si · S j

= JH

4

∑
〈i j〉

(b†
iαb jαb†

jβbiβ − α̃b†
jαb†

i,−αβ̃b jβbi,−β ), (A1)

where α̃ ≡ sgn(α), and some unimportant constants were
dropped. The second term of HK can be absorbed into the
definition of the electron chemical potential. Upon Hubbard-
Stratonovich transformations, the above interaction terms can
be decomposed as

HK →
∑

ia

(
b†

iαciαaχia + c.c. + 2

JK
|χia|2

)
,

HH →
∑
〈i j〉

(∑
α

(α̃b†
jαb†

i,−α� ji − b†
iαb jα� ji ) + c.c.

+ 4

JH
(|�i j |2 − |�i j |2)

)
. (A2)

We then extend the number of spin flavor from 2 to N and
rescale the coupling constants and the holon field through
JK → 2

N JK , JH → 2
N JH , χia → 1√

N
χia to allow for a large-

N expansion. We then obtain a Sp(N)-invariant Lagrangian
L = Lc + Lχ + Lb + Lint with

Lc =
∑
pαa

c†
pαa(∂τ + εp)cpαa, Lχ =

∑
ia

|χia|2
JK

,

Lint = 1√
N

∑
iαa

(b†
iαciaαχia + c.c.),

Lb =
∑

iα

b†
iα (∂τ + λi)biα

+
∑
〈i j〉α

(α̃b†
jαb†

i,−α� ji − b†
iαb jα� ji + c.c.)

− 2S
∑

i

λi + 2N

JH

∑
〈i j〉

(|�i j |2 − |�i j |2). (A3)

The partition function

Z =
∫

D[c, b, χ, λ,�,�]e− ∫ β

0 dτL (A4)

faithfully represents the original Kondo-Heisenberg model if
all the functional integrals are performed exactly.

At large N , one can replace the functional integrals over λi,
�i j , and �i j by their saddle point values. One then obtains the
following action in the Fourier space:

S = −
∑
pαa

(iωn − εp)c†
pαacpαa −

∑
pα

(iνn − εp)b†
pαbpα

− i
∑

pα

α̃bpαb−p,−αhp + c.c.

+ 1√
βVN

∑
pkαa

b†
pαckαaχp−k,a + c.c. +

∑
pa

|χpa|2
JK

+ S0,

(A5)

where S0 = NβV[6(�2
0 − �2

0 )/JH − λ0κ], and we used the
simplified notation p ≡ (p, iωn). The bare dispersions on the
triangular lattice are εp = 2t ε̃p − μ, εp = λ0 − 2�0ε̃p and

hp = �0h̃p, with ε̃p = cos px + 2 cos
√

3py

2 cos px

2 and h̃p =
sin px − 2 cos

√
3py

2 sin px

2 . The electron band has an energy
range [−D − μ, D/2 − μ] with D = −6t . For simplicity, we
choose t = −1/6 and μ = 0 so that D = 1 is our energy unit.

The full Green’s functions for spinons and holons are

Gb(p, iνn) = γb(−p,−iνn)

γb(p, iνn)γb(−p,−iνn) − 4h2
p
,

Gχ (p, iωn) = 1

−J−1
K − χ (p, iωn)

, (A6)

where γb(p, iνn) ≡ iνn − εp − b(p, iνn), and the self-
energies are given by Eq. (3) of the main text. These
equations can be derived rigorously from the Luttinger-Ward
functional [38] or the Dyson-Schwinger equations [35] at
large N .

The Green’s functions are solved under three constraints
corresponding to the minimization equations ∂F/∂λ0 =
∂F/∂�0 = ∂F/∂�0 = 0, where F is the free energy. These
constraints are

κ = −1

βV
∑
pn

Gb(p, iνn),

3

JH
= 1

βV
∑
pn

h̃2
p

γb(p, iνn)γb(−p,−iνn) − 4h2
p
,

6�0

JH
= 1

βV
∑
pn

ε̃pGb(p, iνn). (A7)
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FIG. 5. The spinon gap (Es) as a function of κ in the Heisenberg
limit (JK = 0). L = 63, 90, and 120 are the lattice sizes. The dashed
line is a fitting of the gap in the paramagnetic phase, which extrapo-
lates to the critical point κc = 0.21 for infinite lattice size. The inset
shows the spinon dispersion at κ = 0.13.

In practice, we combine the last two equations of Eq. (A7)
to completely eliminate JH from the constraints. In this
way, one can choose �0 as an input parameter and solve
only two constraints to obtain λ0 and �0. The value of JH

should be determined by Eq. (A7) after self-consistencies are
achieved. However, naively using JH as a tuning parameter
may lead to artificial first-order transitions, a known pathology
of the Schwinger boson large-N theory [47]. Fortunately, this
problem can be cured by adding an extra biquadratic spin in-
teraction term −ζJH

∑
〈i j〉(Si · S j )2 to the original Heisenberg

Hamiltonian [12,33], which amounts to modify the Heisen-
berg coupling and turn the artificial first-order transitions into
continuous transitions.

In the Heisenberg limit (JK = 0), the electrons completely
decouple with the spinons, so that the spinon self-energy
vanishes. The spinon Green’s function then reduces to

Gb0(p, iνn) = −iνn − εp

(iνn − εp)(−iνn − εp) − 4h2
p
, (A8)

which gives the bare spinon dispersion Es
p =

√
ε2

p − 4h2
p. The

constraints are simplified to the following equations:

2κ = 1

V
∑

p

(
εp

Es
p

coth
βEs

p

2
− 1

)
,

6

JH
= 1

V
∑

p

h̃2
p

Es
p

coth
βEs

p

2
,

12�0

JH
= −1

V
∑

p

ε̃p

(
εp

Es
p

coth
βEs

p

2
− 1

)
. (A9)

For fixed JH = 1 and different values of κ , one can then
solve Eq. (A9) to obtain the spinon dispersion. As shown
in Fig. 5, the spinon has a gap at small κ , which decreases
monotonically at increasing κ , and eventually becomes gap-
less at some critical value κc, leading to a quantum phase
transition from a gapped spin liquid to an antiferromagnetic
order through the spinon condensation. Our calculation gives

kx

ky

(4 /3,0)

(0,4 /√3)

(2 ,2 /√3)

0 1 L-1

1

L-1

FIG. 6. The Brillouin zone (red) and the real space sample (right)
used to perform the fast Fourier transform.

a critical κc = 0.21, larger than the κc = 0.17 obtained in
Ref. [28], which used only one auxiliary field �i j . Using two
auxiliary fields has been shown to describe the frustrated spin
systems better [29]. In fact, it is physically reasonable that κc

of the triangular lattice is larger than that of the square lattice
(κc = 0.197) due to geometric frustrations.

APPENDIX B: NUMERICAL METHODS

To perform numerical calculations, we choose the
diamond-shape Brillouin zone instead of the hexagonal one
as shown in Fig. 6. The Brillouin zone is discretized as

kx = 2πn

L
, ky = 2π (2m + n)√

3L
, n, m = 0, . . . , L − 1,

(B1)
where L (chosen as 72 in our calculations) is the sample size.
Since the lattice coordination in real space is specified by

r = (i − j
2 ,

√
3 j
2 ) with i, j = 0, . . . , L − 1, we can write the

Fourier transform of any function G(r) as follows:

G(r) = 1

VB.Z.

∫
k∈B.Z.

G(k)eik·r

= 1

8π2/
√

3

8π2

√
3L2

L−1∑
n,m=0

Gnmei
[

2πn
L (i− j

2 )+ 2π (2m+n)√
3L

√
3 j
2

]

= 1

L2

L−1∑
n,m=0

Gnmei[ 2πn
L i+ 2πm

L j] = G(i, j). (B2)

The inverse Fourier transform is defined as

Gnm =
L−1∑

i, j=0

G(i, j)e−i[ 2πn
L i+ 2πm

L j]. (B3)

Equations (B2) and (B3) can be performed efficiently using
the fast Fourier transform (FFT) algorithm.

To solve the self-consistent equations, we first write the
self-energy Eq. (3) of the main text into the real frequency
space

b(p, ω) = −κ

V
∑

k

∫
dz

π
nF (z)[gc(p − k, z + ω)

× ImGχ (k,−z) − Gχ (k, ω − z)Imgc(p − k, z)],
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χ (p, ω) = 1

V
∑

k

∫
dz

π
[nB(z)gc(k − p, z − ω)∗

× ImGb(k, z) − nF (z)Gb(k, ω + z)

× Imgc(k − p, z)], (B4)

where nB(z) and nF (z) are the bosonic and fermionic dis-
tribution functions. After Fourier transform, the momentum
convolutions in Eq. (B4) become direct multiplications in the
coordinate space

b(r, ω) = −κ

∫
dz

π
nF (z)[gc(r, z + ω)

× ImGχ (r,−z) − Gχ (r, ω − z)Imgc(r, z)],

χ (r, ω) =
∫

dz

π
[nB(z)gc(−r, z − ω)∗

× ImGb(r, z) − nF (z)Gb(r, ω + z)Imgc(−r, z)].

(B5)

In each iteration step, we first use FFT to transform the spinon
and holon Green’s functions obtained from the last step to
the real space, then substitute them into Eq. (B5) to calculate
b(r, ω) and χ (r, ω), and finally use the inverse FFT to
transform them back to the momentum space. The lattice
symmetry can be utilized to further reduce the computational
efforts.

APPENDIX C: SPINON AND HOLON SPECTRA

Here we provide additional information for the spinon and
holon spectra. As shown in Fig. 7 for κ = 0.1 and different
values of TK/JH , the spinons are gapped in the FL∗ and the
HFL states, but become gapless within the FHF state where
ρb(ω) exhibits a linear-in-ω behavior at low energy, indicating
highly damped spinons from scattering with electrons and
holons. At the FHF-AFM QCP, ρb(ω) develops a δ-like peak

at zero energy due to the spinon condensation at the K point,
as shown in Fig. 7(b).

Figure 8 shows the evolution of holon band from above
to below the Fermi energy upon increasing TK/JH , a general
feature of the Kondo lattice. The band is empty in the FL∗ state
and fully occupied in the HFL state. In between, as the holon
band crosses the Fermi level, its Fermi surface first emerges at
the M point, then gradually expands to the entire Brillouin
zone, and eventually vanishes at the � point. Approaching
the FHF-HFL boundary, the band becomes extremely narrow,
indicating an increasingly heavy effective mass of the holons.
The bands in Figs. 8(b) to 8(e) give rise to the holon Fermi
surfaces shown in Fig. 1(d) of the main text. The partial filling
of the holon band distinguishes the FHF state from the FL∗
and HFL states.

APPENDIX D: DERIVATION OF THE Z2 GAUGE THEORY

To consider the Z2 gauge fluctuations above the mean-field
solutions, we substitute �i j = �0Zi j and �i j = �0Zi j into the
original Lagrangian

L =
∑
kαa

c†
kαa(∂τ + εk )ckαa +

∑
iα

b†
iα (∂τ + λ0)biα

+
∑

ia

|χia|2
JK

− 2SVλ0 + 6NV
JH

(
�2

0 − �2
0

)

+ 1√
N

∑
iαa

b†
iαciaαχia + c.c.

+
∑
〈i j〉α

Zji(α̃b†
jαb†

i,−α�0 − b†
iαb jα�0 + c.c.). (D1)

In principle, there is also a time component Z2 gauge field
associated with the fluctuation of λi, corresponding to the term
b†

iα (τm+1)Zm,m+1
i biα (τm), where τm is the discretized imagi-

nary time. However, one can always choose a gauge so that

Г K M Г

Г K M Г

Г K M Г

Г K M Г

Г

K
M

(a) (b)

(c) (d)

FL*

FHF

FHF-AFM

HFL

FIG. 7. The spinon spectra and its density of states for κ = 0.1 and different values of TK/JH : (a) 0.123 (FL∗); (b) 0.153 (FHF-AFM QCP);
(c) 0.27 (FHF); (d) 0.33 (HFL).
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Г K M Г

Г K M Г

(a) (b) (c)

(d)

Г K M Г Г K M Г

Г K M Г Г K M Г

(e) (f)

FIG. 8. The holon spectra for κ = 0.1 and different values of TK/JH : (a) 0.123 (FL∗); (b) 0.138; (c) 0.206; (d) 0.245; (e) 0.304; (f) 0.33
(HFL). The white dashed line denotes the Fermi level. The corresponding holon Fermi surfaces of (b)–(e) are shown in Fig. 1(d) of the main
text.

Zm,m+1
i = 1 for all i and m. Our goal is to obtain an effective

theory describing the holons and Z2 gauge field. For this pur-
pose, we integrate out both spinons and conduction electrons
in the partition function

Z =
∫

D[c, b, χ, Z]e− ∫ β

0 dτL ∝
∫

D[χ, Z]e−Seff . (D2)

The integration can be done perturbatively by treating the
second line of Eq. (D1) as interacting vertices with small
parameters 1/

√
N , �0, and �0. The leading-order terms

of Seff are generated by the Feynman diagrams listed in
Fig. 3 of the main text. As an example, here we com-
pute the first diagram of Fig. 3, which involves the vertex
S� = �0√

β

∑
〈i j〉nlα α̃b†

jα (νn)b†
i,−α (νl − νn)Zji(νl ) and its com-

plex conjugate. We have

〈S�S̄�〉 = 2�2
0

β

∑
〈i j〉nlα

Zji(νl )Zji(−νl )

×〈bi,−α (νl − νn)b†
i,−α (νl − νn)〉〈b jα (νn)b†

jα (νn)〉
= 2N�2

0

∑
〈i j〉l

Z ji(νl )Zji(−νl )

× 1

β

∑
n

1

iνl − iνn − λ0

1

iνn − λ0

= 2N�2
0

∑
〈i j〉l

Z ji(νl )Zji(−νl )
1 + 2nB(λ0)

2λ0 − iνl
, (D3)

where nB(λ0) = 0 at zero temperature since λ0 > 0. The long
time dynamics can be obtained by a small frequency expan-

sion 1
2λ0−iνl

≈ 1
2λ0

(1 + iνl
2λ0

+ iν2
l

4λ2
0
), which leads to

〈S�S̄�〉 = N�2
0

λ0

∑
〈i j〉

∫ β

0
dτ

(
Z2

ji − 1

4λ2
0

(∂τ Zji )
2

)
. (D4)

Note that
∫ β

0 dτZji∂τ Zji = − ∫ β

0 dτ (∂τ Zji )Zji = 0 vanishes,
and Z2

ji = 1.
The final effective action is obtained as

Seff =
∫ β

0
dτ

⎡
⎣ξ

∑
〈i j〉

(∂τ Zji )
2 +

∑
ia

χ
†
ia(∂τ + εχ )χia

+ t̄
∑
〈i j〉a

Z jiχ
†
iaχ ja − K

∑
(i jk)∈�

Zi jZ jkZki − K ′

×
∑

(i jkl )∈♦
Zi jZ jkZklZli + · · ·

⎤
⎦, (D5)

where

ξ = N�2
0

4λ3
0

, εχ = 1

Zχ

(
1

JK
− 1

V
∑

k

nF (εk )

λ0 − εk

)
,

Zχ = 1

V
∑

k

nF (εk )

(εk − λ0)2
,

t̄ = − 2�0

ZχV
∑

k

nF (εk )eik·(ri−r j )

(εk − λ0)2
, K = −2N

�0�
2
0

λ2
0

,

K ′ = N
1

λ3
0

�2
0

(
�2

0 − 4�2
0

)
, (D6)

and the holon field was scaled by its quasiparticle residue
as χia → χia/

√
Zχ . In our calculations, the typical values of

�0 and �0 range from 10−3 to 10−5, while λ0 is the order
of 10−2 and does not vary too much as one changes TK/JH .
For N = 2, this leads to a broad range of ξ from the order of
unity to 10−4, while K and K ′ are typically less than 10−5.
Note that the integration over conduction electrons gives rise
to momentum sums like

∑
k

nF (εk )
(εk−λ0 )n , where n is a positive
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integer. These sums are always finite since only negative εk
are involved at zero temperature while λ0 > 0. For example,
we have

1

V
∑

k

nF (εk )

λ0 − εk
=

∫ 0

−D
dε

ρc(ε)

λ0 − ε

≈ ρc ln
D + λ0

λ0
≈ ρc ln

D

λ0
, (D7)

where we used D � λ0.

Since the continuous time derivative of a discrete field is
not well defined, ∂τ Zji must be viewed as a finite difference
[Zji(τm + ε) − Zji(τm)]/ε. The discrete time slice ε corre-
sponds to the least time required for �i j to tunnel from one
minimum (�0) to the other (−�0), and is simply regarded
as a high-energy cutoff of our effective action. For small ε,
the dynamical term ξ (∂τ Zji )2 is equivalent to the Hamiltonian
−gX̂ji with g = ε−1 exp(−4ξ/ε) [40], thus leading to the ef-
fective Hamiltonian Eq. (4) of the main text.
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