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Error-correction properties of an interacting topological insulator
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We analyze the phase diagram of a topological insulator model including antiferromagnetic interactions in
the form of an extended Su-Schrieffer-Heeger model. To this end, we employ a recently introduced operational
definition of topological order based on the ability of a system to perform topological error correction. We
show that the necessary error correction statistics can be obtained efficiently using a Monte Carlo sampling of
a matrix product state representation of the ground state wave function. Specifically, we identify two distinct
symmetry-protected topological phases corresponding to two different fully dimerized reference states. Finally,
we extend the notion of error correction to classify thermodynamic phases to those exhibiting local order
parameters, finding a topologically trivial antiferromagnetic phase for sufficiently strong interactions.
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I. INTRODUCTION

The classification of topological phases beyond the Lan-
dau symmetry breaking paradigm remains an outstanding
challenge in many-body physics since the discovery of the
topological origin of the integer quantum Hall effect almost
40 years ago [1]. While the non-interacting case is well un-
derstood in terms of topological invariants [2], giving rise to
a plethora of topological insulators and superconductors [3],
counterexamples to successful classification can be found in
the case of interacting systems [4].

More recently, many-body topological invariants have
been proposed to classify one-dimensional phases with
symmetry-protected topological (SPT) order [5–7]. However,
the possibility to acquire nonzero values even for topologi-
cally trivial phases prevents a direct identification in terms
of a topological order parameter, meaning that successful
classification of phases requires a complete set of invariants
[8]. To overcome these challenges, we have recently intro-
duced an operational definition of topological order based on
the ability of a system to perform topological error correc-
tion [9]. While the notion of topological error correction is
chiefly motivated by quantum memories, such as the toric
code exhibiting intrinsic topological order [10], topological
qubits based on Majorana fermions are also prominently
found within one-dimensional topological superconductors
[11–13], hinting at a possible generalization of the oper-
ational definition. Such a generalization would also be of
interest for higher-dimensional systems, where complete clas-
sification schemes for topologically ordered states are still
lacking.

In this article, we apply the operational definition in the
context of the Su-Schrieffer-Heeger (SSH) model [14], a
paradigmatic model for a one-dimensional topological in-
sulator [15], whose bosonic variant has also recently been
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realized experimentally using ultracold Rydberg atoms [16].
While the SSH model has so far not been discussed in the
context of topological error correction, we show that such a
formulation can be readily found by defining errors in terms
of perturbations of the fully dimerized limits of the model. We
discover two distinct types of errors, describing density and
phase fluctuations, respectively, showing that only the former
are necessary to describe the topological phase transition in
the noninteracting case. We analyze the model numerically
in terms of a Monte Carlo sampling of the error correction
procedure based on a matrix product state (MPS) calculation
of the ground state. In particular, we find that both phases
of the noninteracting SSH model are topologically ordered,
corresponding to two different choices of the unit cell, which
is also supported by the appearance of distinct bulk topolog-
ical invariants for the two choices. Finally, we consider an
extension of the bosonic SSH model, including antiferromag-
netic interactions [7], where we see that SPT order persists for
finite interactions strengths before an antiferromagnetic phase
finally takes over.

II. SSH MODEL

We consider the hardcore boson variant of the SSH model
with the Hamiltonian being defined on a 1D chain consisting
of N spin-1/2 particles as

H0 = v

N/2∑
i=1

σ 2i−1
− σ 2i

+ + w

N/2−1∑
i=1

σ 2i
− σ 2i+1

+ + H.c., (1)

with the spin creation and annihilation operators satisfying
the commutation relation [σ−, σ+] = σz in terms of the Pauli
spin matrix σz. In the case of open boundary conditions,
there is one w link less than there are v links, while for
periodic boundary conditions, the number of links are equal
for both types. In the latter case, the system is translationary
invariant and can be solved by mapping onto free fermions
using a Jordan-Wigner transformation and partitioning the
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FIG. 1. (a) The SSH model can be understood as two alternating sites A and B coupled by bonds with interaction strength v and w,
respectively. For periodic boundary conditions, there are two equivalent unit cells, denoted as AB and BA. (b) Error correction for the SSH
model. First (left), phase fluctuations (yellow) are corrected by either fusing them pairwise or absorbing them into a density fluctuation. In the
second stage (right), the remaining density fluctuations are removed by fusing holes (green) and particles (blue). Fusion operations at the step
t are indicated by horizontal lines. The total circuit depth is the sum of the number of steps the two circuits require to return to the reference
state. (c) Standard deviation, σ , of the circuit depth for the SSH model for the reference state |ψAB〉 for different system sizes. Finite size
scaling of peak of the susceptibility χv = ∂σ/∂v (inset) yields a critical value of vc/w = 1.00(1).

system into unit cells of two sites, which can be done in
two different ways, see Fig. 1(a). Since the model is invari-
ant under exchanging the unit cell and exchanging v and w

at the same time, fixing the unit cell is similar to fixing a
gauge. For the AB unit cell, performing a Fourier transform
gives rise to the band Hamiltonian H (k) = dx(k)σx + dy(k)σy

with dx(k) = v + w cos k and dy(k) = w sin k, with the spin
variable referring to the A and B sites of a single unit cell [15].
Its eigenenergies are given by E (k) = |v + e−ikw|. From the
energy spectrum we note that for v < w and v > w, the band
gap is finite resulting in insulating phases, while at v = w we
have a conductor due to the closing of the band gap. We can
see that this closing of the gap is due to the presence of a phase
transition between distinct topological phases by consider-
ing two different topological invariants corresponding to the
choice of the unit cell. Specifically, we consider the winding
number

ν = 1

2π i

∫ π

−π

dk
d

dk
log h(k), (2)

where h(k) = dx(k) − idy(k) [15]. Choosing the AB as the unit
cell, we have νAB = 1 for v < w and νAB = 0 for v > w. Due
to the presence of the v ↔ w symmetry, we immediately see
that we have νBA = 0 in the former and νBA = 1 in the latter
case.

Interestingly, the error basis can be also used to provide
additional insight into the topological phase transition. Within
perturbation theory in v/w (for the AB unit cell), we find
that phase fluctuations correspond to higher order processes
compared to density fluctuations. This means that we can
neglect the |+〉 state in an effective low-energy description of
the SSH model, arriving at a spin-1 representation according
to

Heff =
∑

i

wSz
i

2 + v(S+
i S−

i+1 + H.c.). (3)

Here, w takes the role of an uniaxial anisotropy, while v

describes a hopping of the spin excitations. Constructing such

effective models for the dynamics of errors is reminiscent of
effective Ising models describing the topological phase tran-
sition in perturbed toric code models [17,18]. The phase di-
agram of this spin-1 model is wellknown [19–21], exhibiting
a phase transition between a large-w phase corresponding to
the fully dimerized limit and a Haldane insulator at v/w = 1.
Note that the phase for v > w is also topologically ordered;
this is another manifestation of the v ↔ w symmetry relating
the two phases to each other. This provides further evidence
that the topological order of the SSH model and of the Hal-
dane insulator are closely related, this was also previously
observed in numerical simulations [16].

III. ERROR CORRECTION PROPERTIES

Although the noninteracting SSH model is exactly solv-
able, it is instructive to numerically study its error correction
properties, which will serve as a base to investigate the inter-
acting case. For this, we turn to the operational definition of
topological order [9], which relates the existence of a phase
transition to the divergence of the depth of an appropriate
error correction circuit with respect to a particular reference
state. For the SSH model, the reference states can be readily
identified as the ground states in the fully dimerized limit
given by v = 0 or w = 0, respectively, i.e.,

|ψ〉AB/BA = 1√
2

∏
i∈B/A

(|0〉i |1〉i+1 − |1〉i |0〉i+1). (4)

The errors, with respect to these reference states, can then be
found by considering a complete basis of possible excitations.
For a single bond between two unit cells, we can denote
the error-free state as |−〉 = (|01〉 − |10〉)/

√
2. Additionally,

we can identify particle and hole excitations indicated by the
states |1〉 = |11〉 and |0〉 = |00〉, respectively, as well as phase
fluctuations given by |+〉 = (|01〉 + |10〉)/

√
2. Repeating this

procedure over the entire system will then define a unitary
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transformation allowing us to express any state in this error
basis.

Having specified the reference state and a complete set of
errors, we now turn to the actual error correction procedure. In
the following, we assume that the system has been measured
in the error basis, yielding a classical string of errors. As the
topological phases of the SSH model are SPT phases [22], we
need to ensure that the error correction circuit cannot perform
operations that violate these symmetries [9]. For example, per-
forming an operation that corrects a single |+〉 error directly
to the |−〉 state would be a violation of the chiral symmetry.
A further minor complication arises due to the fact that phase
errors |+〉 can arise as higher-order processes from density
errors. This requires correcting phase errors before density
errors, as otherwise correcting the density errors first can
lead to dangling phase errors, which manifest themselves as
spuriously diverging circuit depths. Taking these considera-
tions into account, we arrive at the error correction procedure
depicted in Fig. 1(b): (i) We assign a walker to each measured
error that searches its surrounding sites for the presence of
other errors, switching between left and right with increasing
distance from the initial position [9]. (ii) Phase errors get
corrected by either fusing them pairwise or with a particle-
hole error. (iii) Finally, density errors are corrected by fusing
particles and holes. The depth of the circuit is then given by
the total number of steps required to correct the system to the
reference state.

IV. MONTE CARLO SAMPLING OF MATRIX
PRODUCT STATES

As the circuit depth corresponds to a highly nontrivial
string operator, it is prohibitive to compute its expectation
value from the exact solution of the model. Therefore, we
turn to MPS calculations of the ground state using the ITensor
library [23] up to N = 100 sites. However, even within a ma-
trix product state formalism, efficient computation of arbitrary
string operator expectation values is in general impossible, we
turn to a Monte Carlo sampling of the error measurements
instead [24]. For this, we start with an MPS |ψ〉 by calculating
the probabilities to measure any of the basis states of the error
basis |α〉1,2 of the first unit cell in terms of the expectation
value of the associated projection operators Pα = |α〉〈α|. Sub-
sequently, we draw a uniformly distributed random number to
select the measurement result according to the probabilities
〈Pα〉. Denoting the measurement result by α1,2, we can update
the MPS according to |ψ ′〉 = NPα1,2 |ψ〉, with N referring
to normalization of the MPS, yielding the MPS conditional
on the measurement result. Continuing the procedure over
the entire system results in a string α1,2α2,3 . . . of the entire
error configuration. Sampling over a large number of mea-
surement outcomes and calculating the circuit depth for each
outcome will then lead to an accurate estimation of the mean
circuit depth or higher order moments such as the standard
deviation.

Figure 1(c) shows the behavior of the circuit depth for the
noninteracting SSH model. Here, we focus on the standard
deviation, σ , of the depth as it exhibits slightly better finite
scaling results in comparison to the mean μ. Due to the
v ↔ w symmetry of the model, it is sufficient to study with

respect to the reference state |ψAB〉 only. We clearly see a
divergence of the circuit depth around the critical value of
v/w = 1, signaling the phase transition. Furthermore, finite
size scaling reveals the critical point as vc/w = 1.00(1), i.e.,
the error correction procedure reproduces the quantitatively
correct result.

V. OPEN BOUNDARY CONDITIONS

So far, we have discussed the SSH model in the context of
periodic boundary conditions. However, most interest in the
SSH model lies in the realization of open boundary conditions
due to the appearance of robust edge modes capable of storing
quantum information [15]. Implementation of the necessary
error correction circuits can be done in a straightforward way
from the periodic case. However, the possible degeneracy
implies that the parity of the ground state is not well defined.
Therefore, we ignore the state of the two edge spins in the case
of |ψAB〉 as the reference state.

Figure 2 shows the MPS simulation results for both ref-
erence states |ψAB〉 and |ψBA〉. As in the case of periodic
boundary conditions, we observe a phase transition between
the two phases at v/w = 1. Furthermore, in Appendix A, we
present the statistical distribution of the circuit depth for dif-
ferent system sizes. However, since the introduction of open
boundaries breaks the v ↔ w symmetry, the identification of
both phases as SPT phases deserves further discussion. For
the v < w, this identification is straightforward, as the edge
mode can be used to encode a topological qubit, whose logical
state is preserved under the error correction circuit. However,
this argument does not hold for v > w as the ground state is
unique. Nevertheless, we can establish the phase being SPT
ordered by inspecting the reference state |ψBA〉. Since the
reference state is a product state of all unit cells, it is sufficient
to look at a single unit cell. A state is SPT ordered, if there is
no set of symmetrypreserving local unitaries that transform
the state into a product state [25]. To identify the possible
unitaries on single unit cells, we note that all accessible states
have to be in the same symmetry sector as the |−〉 state with
respect to the chiral symmetry and the U (1) symmetry cor-
responding to particle number conservation [22]. Crucially,
there is no other state that fulfills these criteria. This means
that there is no symmetry-preserving circuit that can transform
the state |ψBA〉 to a product state and hence this phase must be
SPT ordered.

We can also understand these results from the picture of
error correction. For v < w, the ground state is twofold de-
generate, allowing to host a topologically protected qubit.
If the depth of the error correction circuit is short, we can
be confident that we can recover the correct logical state
even in the presence of perturbations like the ones induced
by the v term. Note, however, that since the phase only
hosts symmetry-protected topological order, any symmetry-
breaking perturbation such as a local term proportional to
σz will immediately lead to a diverging circuit depth, which
implies the breakdown of SPT order and loss of the error
correction capabilities.

Additionally, it is instructive to look at the effective low
energy Hamiltonian (3) again to obtain insight into the break-
ing of the ground state degeneracy by the topological phase
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FIG. 2. Standard deviation, σ , of the circuit depth for the reference state |ψAB〉 (a) and |ψBA〉 (b). The insets show the finite size scaling
resulting in vc/w = 0.98(1) and wc/v = 1.00(1), respectively.

transition [26]. For this, we consider the effective Hamiltonian
on the first site of the lattice, which in a mean-field decoupling
is given by H1 = vS−

1 〈S+
2 〉 + H.c.. Within a mean-field decou-

pling, 〈S+
2 〉 is nonzero only for v > w, opening a gap between

the edge modes above the transition. While this simple mean-
field decoupling is unable to correctly describe the Haldane
insulator, one can expect that this argument also holds within
a more refined treatment [27].

VI. EXTENDED SSH MODEL

Let us now go beyond the noninteracting case and study
an extension of the SSH model including antiferromagnetic
interactions [7], given by the Hamiltonian

H = H0 + δ

2

[
v

N/2∑
i=1

σ 2i−1
z σ 2i

z + w

N/2−1∑
i=1

σ 2i
z σ 2i+1

z

]
. (5)

While we discuss the bosonic version of the model here,
we would like to note that one can also study an equiva-
lent fermionic version including a chemical potential and a
nearest-neighbor interaction, where the chemical potential is
tuned such that the particle-hole symmetry of the SSH model
is preserved.

In the limit of large δ, it is evident that the terms in H0

are irrelevant and the ground state is an Ising antiferromagnet.

It is easy to construct a reference state for this phase, as it is
simply a classical state |ψAF 〉 = |010101 . . .〉. Errors are given
by domain wall excitations located on the bonds between two
sites occurring when the spin state of these sites is identical.
Local spin flips always create these excitations in pairs, hence
the error correction is given by the pairwise fusion of all
domain walls. Note that in contrast to the previous reference
state, we have only one elementary excitation instead of two.
This can be attributed to the fact that an Ising antiferromagnet
can only reliably store classical information, while the edge
mode in the SSH model can store quantum information, i.e.,
while an Ising antiferromagnet can correct bit-flip errors, it
does not correct phase errors.

In Fig. 3, we show the error correction properties of the
extended SSH model as a function of w/v and δ for all three
reference states |ψBA,AB,AF 〉. We can clearly see that the areas
of short circuit depths are mutually exclusive and span the
entire parameter range, i.e., the error correction approach can
be successfully employed to determine the complete phase
diagram. Additionally, in Appendix B, we present finite size
scaling analysis to obtain the phase transition points at δ = 3.
Additionally, the phase boundaries are in excellent quantita-
tive agreement with those obtained using an approach based
on the application of random quantum gates [7]. The partic-
ular advantages of our approach lie in an easier extension
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FIG. 3. Phases of the extended SSH model, calculated by the circuit depth to correct the ground state to the two SPT ordered reference
states |ψAB〉 (a) and |ψBA〉 (b), as well as to the antiferromagnetic state |ψAF 〉 (c) for N = 100 sites. The dark areas indicate a vanishing of the
normalized circuit depth σ/N , showing that the ground state is in the same phase as the reference state. All areas of short circuit depths are
mutually exclusive and span the entire parameter range.
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FIG. 4. Circuit depth distribution for various v/w for different system sizes, N = 20 (a), N = 50 (b), and N = 100 (c). For the SPT phase
associated with reference state |ψAB〉, i.e., for v/w < 1, we observe that the probability of error strings with short error correction time is high
when increasing the system size, while above the phase transition, the distribution becomes very broad, resulting also in an increase of the
mean value of the circuit depth.

to higher-dimensional systems, the lack of the requirement
to perform additional extrapolations to the thermodynamic
limit, which appear to make our approach computationally
less costly, considering the system sizes reached in our work.

VII. SUMMARY

In summary, we have explored the phase diagram of an
interacting topological insulator model based on the error
correction properties of the ground state. We show that this
approach can successfully map out the entire phase diagram,
including the transition to an antiferromagnetic phase exhibit-
ing spontaneous symmetry breaking. Our results underline
the viability of the approach to understand phases of matter
in terms of error correction procedures, which can also be
readily applied to higher-dimensional systems. Finally, the op-
erational character based on measurable observables enables
to directly detect topological order in future experimental
studies.
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APPENDIX A: CIRCUIT DEPTH DISTRIBUTION
FOR THE SSH MODEL WITH OPEN BOUNDARIES

In this section, we present the circuit depth distributions for
different v/w on a chain with open boundary conditions. In
Fig. 4, we clearly observe that both the mean and the standard
deviation of the error string distribution is very low for the or-
dered phase with respect to the corresponding reference state,
especially for larger system sizes. In the disordered phase,
we observe a dramatic increase of both the mean and the
standard deviation, justifying to use either quantity to obtain
the location of the phase transition. However, we observe that
the standard deviation gives slightly better finite size scaling
behavior, which is why we focus on this quantity within our
work.

APPENDIX B: FINITE SIZE SCALING ANALYSIS
FOR THE EXTENDED SSH MODEL AT δ = 3

The successful implementation of finite size scaling is not
limited to the noninteracting case. In Fig. 5, we show the finite
size scaling behavior of the circuit depth, for all three different
reference states at δ = 3. We can clearly see that order with
respect to the BA reference state breaks down much earlier
than order with respect to AB appears. The intermediate phase
is completely filled by the antiferromagnetic state, as shown
by the agreement of the transition points.

FIG. 5. Standard deviation σ of the circuit depth at δ = 3 for the three different reference states |ψAB〉 (a), |ψBA〉 (b), |ψAF 〉 (c). By
performing finite size scaling analysis using N ∈ {20, 50, 100}, we obtain the transition points wAB

c = 1.57(1) (a), wBA
c = 0.64(1) (b). For the

reference state as |ψAF 〉, we have two different transition points as the antiferromagnetic phase is sandwiched between the SPT phases. By
performing finite-size scaling analysis, we obtain wAFl

c = 0.66(1) as we approach the antiferromagnetic phase from the left (c), while for the
right boundary, we obtain wAFr

c = 1.53(2).
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