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Non-Abelian chiral spin liquid on a spin-1 kagome lattice: Truncation of an exact
Hamiltonian and numerical optimization
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We search for short-range Hamiltonians of finite spin-1 kagome systems, maximizing the overlaps with lattice
Moore-Read states. Our starting point is an exact, long-range parent Hamiltonian for such a state on a finite plane,
obtained from conformal field theory. A truncation procedure is applied to it, which retains only short-range
terms and makes it easy to define the Hamiltonian on a torus. Finally, the remaining coefficients are optimized,
to yield maximized overlaps between exact diagonalization results and model ground states. In the best cases,
the squared overlaps exceed 0.9 and 0.8 for the three lowest states of 12- and 18-site systems, respectively,
suggesting that the obtained Hamiltonians are good parent Hamiltonians for a non-Abelian topological order.
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I. INTRODUCTION

Two-dimensional topological orders [1] are expected to
have anyonic excitations [2–4]. Recent experiments [5,6] sup-
port the theoretical prediction for the existence of Abelian
anyons as excitations above the fractional quantum Hall
states in a two-dimensional electron gas (2DEG) in high
magnetic fields. The presence of the non-Abelian anyons,
which may provide a platform for fault-tolerant quantum
computation [4,7,8], is more challenging to demonstrate ex-
perimentally, yet indirect measurements suggest that they
indeed exist [9,10].

The quantum Hall states in a 2DEG are usually described
in terms of a continuum formalism [11]. However, theoretical
works show that the states with the same topological orders
can also be constructed in lattice models [12–18], which can
be seen as spin systems, and their ground states as chiral
quantum spin liquids. It is expected that they can be realized in
quantum simulators, e.g., optical lattices [13,14,18–26]. The
hopes that this is the case are raised by recent experiments
on spin liquids characterized by a different, nonchiral type of
topological order. One such model was recently engineered in
an array of Rydberg atoms [27]. Also, a nonchiral topological
quantum spin liquid state was simulated in a quantum com-
puter [28–30].

In quantum simulators, one has much greater control over
the system parameters than in solid state systems. The pos-
sibility of addressing individual sites in such a setting allows
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for novel ways of manipulating anyons. While a majority of
proposed and realized experiments on quantum Hall anyons
in 2DEG focus on the anyons within the edge states and/or
pinned by static impurities in the bulk [5,6,8,31–36], the pro-
posals in which one can move the bulk anyons in a controlled
way (e.g., to braid them) are rare [37]. For quantum simu-
lators, there are more proposals of the latter type [38–42].
Moreover, such experiments were actually performed in quan-
tum computers [28–30]. Given the perspectives for realization
and manipulation of anyons in quantum simulators, it is de-
sirable to invent further lattice models with different types of
topologically ordered ground states.

Let us focus on the chiral spin liquid with the same
topological order as exhibited by the bosonic Moore-Read
quantum Hall state with ν = 1 filling factor. In addition to
providing a platform for non-Abelian anyons, a realization of
such a phase would be interesting, because bosonic quatum
Hall states by definition cannot exist in a 2DEG, which is
a system of fermions. Long-range spin-1 Hamiltonians on
two-dimensional lattices were proposed, for which the ground
state is exactly described by a discretized Moore-Read wave
function [43–45].

While these models are of significant theoretical impor-
tance, the experimentally relevant interactions typically are
short-range. The bosonic Moore-Read topological order is
predicted to arise in some topological flat-band models with
short-range hoppings [26,46,47]. A short-range Hamiltonian
generating a spin liquid with this kind of topological order
was also constructed on a spin-1 triangular lattice [48]. A
spin-1 square lattice model, based on a truncation of a long-
range Hamiltonian, was proposed in Ref. [45], and studied
further in Ref. [49]. Moreover, a general procedure of trun-
cating the long-range terms was formulated for Hamiltonians
constructed from conformal field theory [50]. While so far
it was applied only to the parent Hamiltonians of Abelian
states, the long-range Hamiltonian from Ref. [45] has a sim-
ilar structure, which makes the application of this method
possible.
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Here, we instead study the kagome lattice. The kagome
lattice plays an important role in the search for quantum spin
liquids, due to its geometric frustration. Various kinds of spin
liquids were studied in models defined on this lattice [51–58].
It is thus natural to ask if the non-Abelian Moore-Read topo-
logical order can also be realized on the kagome lattice. A
study of a certain spin-1 kagome model provides some hints
that this could be the case [59].

In this work, we construct a local Hamiltonian on the spin-
1 kagome lattice and study it using exact diagonalization. It
is created by combining the truncation [50] of an exact model
based on conformal field theory (CFT) [45] with numerical
optimization based on exact diagonalization. We show that
its three lowest-energy states have significant overlaps with
model Moore-Read-like states in intermediate-size systems.

We choose the overlap as an indicator of the topology,
because: (i) it provides a more convincing signature of topo-
logical order than the energy spectrum alone—the energy
spacings resembling a topological quasidegeneracy in a single
system may occur by accident, and the limitations of the
exact diagonalization do not allow to compute the scaling of
the energy gap with system size, (ii) the overlap is relatively
easy to compute (it requires only a single diagonalization, in
contrast to the spectral flow or the many-body Chern number,
for which one performs many diagonalizations, each for a
different value of the boundary phase), (iii) it is a single,
nonquantized number, which can be easily fed into the opti-
mization procedure, and (iv) there are situations where it is the
excited states, instead of the ground states, which have high
overlaps with the model states—this suggests that the system
is close to a topological phase, even though other signatures
might not be visible (see, e.g., Ref. [50]). High overlaps sug-
gest that the states are topological, but the reverse is not the
case. The system can possess the desired topological order
even if the overlaps are low. Such regions of the parameter
space will remain undetected within our approach.

The paper is organized as follows. In Sec. II, we define
our system and recall the lattice Moore-Read wave functions
on a torus [60], serving as a reference in our computations.
Next, in Sec. III, we review the truncation procedure proposed
in Ref. [50] and apply it to the exact parent Hamiltonian of
the lattice Moore-Read state. Then, in Sec. IV, we optimize
the coefficients of the truncated Hamiltonian, obtaining states
with large overlaps with model wave functions, and a visible
topological degeneracy. Section V discusses the results and
their relations to other works. Section VI concludes the article.

II. THE SYSTEM AND THE MODEL STATES

In the continuum, one can construct a series of non-Abelian
Moore-Read states from correlation functions of conformal
fields [61]. The bosonic ν = 1 case can be modified to de-
scribe a non-Abelian chiral spin liquid in a lattice of spin-1
sites on a plane [45,48] or on a torus [44,60]. In this section,
we recall the expressions for the lattice states from [45,60].

Let us first define the system we work on and the notation
we use to describe it. We start from an infinite kagome lattice
on a plane. We introduce a complex position for each site j:
z j = x j + iy j , where x j, y j are the Cartesian coordinates of
the site. We fix the lattice constant to unity. Then, we choose
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FIG. 1. The site positions in our notation, on the example of
an N1 × N2 = 3 × 2 system. The gray dots denote the sites on an
infinite plane, with complex positions z j = x j + iy j . A parallelogram
(the arrows and dashed lines) containing N1 × N2 unit cells (3N1N2

sites: the dark gray ones) is chosen and transformed into a torus. On
the complex plane, the torus is spanned by the vectors N1 and N1τ

(arrows), with |N1τ | = N2.

a parallelogram of size N1 × N2 in the direction of the two
kagome lattice vectors a1 = [1, 0], a2 = [ 1

2 ,
√

3
2 ] (see Fig. 1).

The vectors spanning the parallelogram can be written as com-
plex numbers N1, N1τ , where τ = N2

N1
( 1

2 + i
√

3
2 ). We number

the sites within it by j = 1, 2, . . . , N , with N = 3N1N2. On
each of them, we introduce a spin-1, with three possible values
of the Sz component: s j ∈ {−1, 0, 1}. The spin configurations
will be denoted as |s〉 = |s1s2 . . . sN 〉.

Before discussing the case of the torus, let us recall the lat-
tice Moore-Read wave function for open boundary conditions
(plane), given by [45]

|ψOBC〉 = 1

C

∑
s

ψOBC(s) |s〉 , (1)

where C is the normalization constant, and the coefficients
ψOBC(s) are given by

ψOBC(s) = δ

(∑
j

s j

)
(−1)

∑N/2
k=1 s2k−1

× Pf0

(
1

z j − zk

)∏
j<k

(z j − zk )s j sk . (2)

Here, δ is the Kronecker delta, which enforces
∑

j s j = 0, and
Pf0 means that the Pfaffian includes only the coordinates z j ,
zk of the sites with s j = sk = 0.

In small kagome systems, open boundary conditions make
it difficult to extract bulk properties, because a majority of the
sites lies on the edges (in contrast to, e.g., the square lattice
studied in Ref. [45]). Thus we prefer a geometry without
edges, such as a torus. The toroidal geometry is also con-
venient for the exact-diagonalization calculations, because it
allows us to use the conservation of the lattice momentum to
decrease the numerical complexity of the problem. Thus, in
the following, we transform our parallelogram into a torus by
gluing its opposite edges, and recall the generalizaton of (2)
to toroidal systems, constructed in Ref. [60].
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It is helpful to introduce rescaled coordinates on the torus,
ξ j = z j/N1. In these coordinates, the vectors spanning the
torus are 1, τ . To express the model wave functions from [60],
we need the Jacobi theta function with characteristics,

θ

[
a
b

]
(ξ |τ ) =

∑
n∈Z

exp
(
iπτ (n + a)2 + 2π i(n + a)(ξ + b)

)
,

(3)
where a and b are real parameters. In terms of (3), we define

θ1(ξ |τ ) = θ

[
1/2
1/2

]
(ξ |τ ), θ2(ξ |τ ) = θ

[
1/2
0

]
(ξ |τ ),

θ3(ξ |τ ) = θ

[
0
0

]
(ξ |τ ), θ4(ξ |τ ) = θ

[
0

1/2

]
(ξ |τ ). (4)

Also, we define the functions

E (ξ j − ξk|τ ) = θ1(ξ j − ξk|τ )

∂ξ θ1(ξ |τ )|ξ=0
, (5)

Pμ(ξ j − ξk|τ ) = θμ+1(ξ j − ξk|τ )∂ξ θ1(ξ |τ )|ξ=0

θμ+1(0|τ )θ1(ξ j − ξk|τ )
, (6)

where μ ∈ {1, 2, 3}. The three model wavefunctions on the
torus are given by

|ψμ〉 = 1

Cμ

∑
s

ψμ(s) |s〉 , (7)

with μ = 1, 2, 3, Cμ being the normalization constant, and the
unnormalized coefficient ψμ(s) given by [60]

ψμ(s) = δ

(∑
j

s j

)
(−1)

∑N/2
k=1 s2k−1 Pf0(Pμ(ξ j − ξk|τ ))

× θμ+1(
∑

j ξ js j |τ )

θμ+1(0|τ )

∏
j<k

E (ξ j − ξk|τ )s j sk . (8)

Here, again, δ is the Kronecker delta enforcing
∑

j s j = 0, and
Pf0 means that the Pfaffian includes only the coordinates ξ j ,
ξk of the sites with s j = sk = 0.

The three wave functions (8) explicitly realize the threefold
topological degeneracy of the Moore-Read-type topological
order. That these states have the same topological order as the
continuum states from Ref. [61] was confirmed in Ref. [60]
by evaluating the modular S and T matrices.

In general, there is some phase freedom in the choice of
the wave functions: multiplying them by certain s-dependent
phase factors does not change their topological order. Thus,
if one wants to compute the overlap with eigenstates obtained
from exact diagonalization, one has to fix the phases correctly.
In Eq. (8), the phases are fixed such that the state is a singlet.
As long as the Hamiltonian in the exact diagonalization is
SU(2)-symmetric, we can use Eq. (8), which is the case in
the model that we define in Sec. III.

We finally compare the wave functions introduced in
Refs. [44,60]. For kagome systems of sizes 1 × 2 and 2 × 2,
we verified numerically that the wave functions in (8) and the
torus wave functions in Ref. [44] span the same subspace of
the Hilbert space, if an appropriate gauge is chosen. We also
note that while the overlaps are perfect on the torus, this is not
true on a finite plane, i.e., (2) is not equivalent to the planar

wave function in Refs. [44,48] for finite N . This is due to a
different choice of the placement of the background charge.
As N → ∞, the two planar wave-functions approach each
other [45].

III. RESULTS: TRUNCATED CFT HAMILTONIAN

We now look for an approximate parent Hamiltonian for
the states (8) on the kagome lattice. Let us again start by
looking at a planar system (i.e., with open boundary con-
ditions). References [43–45] proposed the following planar
Hamiltonian:

H =
∑

a∈{x,y,z}

N∑
j=1



a†
j 
a

j , (9)

where 
a
j is an operator annihilating the lattice Moore-Read

state,


a
j =

∑
k( �= j)

ω jk

[
2

3
Sa

k − 5

12
i

(∑
b,c

εabcSb
k Sc

j

)

− 1

12

(∑
b

(
Sa

j S
b
j + Sb

j S
a
j

)
Sb

k

)]
. (10)

Here, k( �= j) means that we sum over all possible values of k
except from j, εabc is the Levi-Civita tensor, ω jk = 1

z j−zk
, and

Sa
j , a ∈ {x, y, z}, is the operator of the ath component of the

spin, acting on site j.
The resulting Hamiltonian is (up to an additive constant)

H = 1

3

∑
j �=k

∑
a

⎛
⎝ω∗

jkω jk + 2
∑

l ( �= j,k)

ω∗
l jωlk

⎞
⎠Sa

j S
a
k

− 1

6

∑
j �=k

ω∗
jkω jk

(∑
a

Sa
j S

a
k

)2

+
∑

j �=k �=l

∑
a,b

(
1

3
ω∗

jlω jk − 1

2
ω jlω

∗
jk

)
Sa

j S
a
k Sb

j S
b
l . (11)

Equation (11) was constructed in Refs. [43,45] using con-
formal field theory, thus we call it a “CFT Hamiltonian”
throughout this work. It was also shown in Ref. [45] that the
exact ground state of (11) is the planar wave function (2). We
stress that, since (11) is not defined on a torus, it is not a parent
Hamiltonian of the torus wave functions (8).

It can be shown that (11) is equal to the planar Hamiltonian
from Ref. [44] (up to multiplicative and additive constants):
the imaginary part of the last term of (11) corresponds to the
triple-product term from Ref. [44] and the real part corre-
sponds to the other three-spin term from Ref. [44]. We note
that the planar Hamiltonian in Ref. [44] was proposed as an
approximate parent Hamiltonian of a planar wave function
different from (2), becoming exact for an infinite system. In
Ref. [45], it was shown that the true ground state of (11) is (2).
These two results are consistent, as the planar wave function
from Ref. [44] approaches (2) as N → ∞.

The Hamiltonian (11) has long-range terms, with coeffi-
cients depending on the system size and shape. Thus it is
unclear how one should wrap it around the torus if periodic
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Jh1Sj · Sk+

Js1(Sj · Sk)
2

Jh2Sj · Sk

Jh3Sj · Sk

Jt1S
a
j Sa

kSb
jS

b
l

+c.c., k ↔ l

Jt2S
a
j Sa

kSb
jS

b
l

+c.c., k ↔ l

Jt3S
a
j Sa

kSb
jS

b
l

+k ↔ l

FIG. 2. The terms and parameters of the truncated Hamiltonian
Htr (J). The red dots and lines denote the involved sites and bonds
between them, respectively. In the case of three-spin terms, the ar-
rows go k → j → l (this is important when considering complex
parameters), with +k ↔ l meaning that we have to consider also
terms of the same form and k exchanged with l (and +c.c., k ↔ l
means that these terms should be complex conjugated). Summation
over a, b indices is implied. The dashed gray parallelograms are the
boundaries of the kagome unit cell.

boundary conditions were applied. To generate a local Hamil-
tonian depending only on the local structure of the lattice,
we proceed by following the truncation procedure, devised in
Ref. [50] for parent Hamiltonians of lattice Laughlin states.
The idea is that, while in (11) the coefficients of the two-
spin terms depend on the positions of all sites in the system,
in (10) all the coefficients depend only on the vector z j − zk

connecting the sites j and k on which the given term acts.
Thus, if we want to have a result that depends only on the
local environments of the involved sites, the truncation has to
be performed on the level of 
a

j .
The truncation is performed simply by substituting

ω jk → ω̃ jk =
{
ω jk if |z j − zk| � rtrunc

0 if |z j − zk| > rtrunc
(12)

to (10), and in consequence to (11). The Hamiltonian after
truncation remains SU(2)-symmetric.

In (12), rtrunc is a truncation radius. In this work, we
consider rtrunc = 1/2, which is the smallest possible value
available in the kagome lattice. If the system is big enough,
the remaining terms in the bulk can be parametrized as in
Fig. 2 (here, Jt1 and Jt2 are complex, while all the other
coefficients are real). We set the energy scale (i.e. multiply the
Hamiltonian by a constant) by fixing Jh1 = 1, and denote the
set of remaining parameters as J = [Js1, Jh2, Jh3, Jt1, Jt2, Jt3].
The Hamiltonian described by Fig. 2 is then named Htr (J).
The values of J resulting from the truncation procedure are
denoted by J0 and provided in Table I. In contrast to the
nontruncated Hamiltonian, Htr (J0) (and Htr (J) in general) can
be easily defined on a torus simply by repeating these terms
periodically and applying periodic boundary conditions.

TABLE I. (a) The values of the parameters J0 of the truncated
CFT Hamiltonian Htr (J0) (see Fig. 2). (b) The three maximum
squared overlaps (13) from the 20 lowest-energy states per mo-
mentum subspace, sorted in the decreasing order, for the three
investigated system sizes, with Hamiltonian parameters shown in (a).

(a) Parameters

Js1 Jh2 Jh3 ReJt1 ImJt1 ReJt2 ImJt2 Jt3

− 1
4 − 1

2 −1 − 1
16

5
16

√
3 1

16
5
16

√
3 1

8

(b) Squared overlaps

1 × 2 2 × 2 3 × 2

0.964 0.960 0.939 0.926 0.925 0.834 0.821 0.669 0.332

The ground state of the truncated Hamiltonian on the torus
(as well as on the plane, but we focus on the torus here) is not
known. Thus we diagonalize Htr (J0) numerically for toroidal
systems of sizes 1 × 2, 2 × 2, and 3 × 2 unit cells. For the
diagonalization, we use the Lanczos method implemented in
FORTRAN using the ARPACK package, with the matrix-vector
multiplication parallelized using OPENMP. We use the Sz con-
servation and diagonalize only the

∑
j s j = 0 block of the

Hamiltonian.
To check if Htr (J0) generates the Moore-Read states, we

calculate the squared overlaps of its low-energy eigenstates
with the model states (8). Because of the threefold topological
degeneracy of the model states, we define the squared overlap
for an exact eigenstate |φ〉 of the truncated Hamiltonian as

O(|φ〉) = |〈φ|ψ̃1〉|2 + |〈φ|ψ̃2〉|2 + |〈φ|ψ̃3〉|2, (13)

where |ψ̃μ〉 are orthonormalized versions of the |ψμ〉. The
orthogonalization is necessary because for finite systems the
|ψμ〉 states are not always orthogonal. We have | 〈ψμ|ψν〉 | <

0.002, | 〈ψμ|ψν〉 | ≈ 0.075 and | 〈ψμ|ψν〉 | < 0.115 for 1 × 2,
2 × 2, and 3 × 2 systems, respectively, where μ �= ν.

In Table I, we show the squared overlaps (13) for the three
investigated systems. We computed 20 lowest-energy states
per momentum subspace. Table I contains the three maximal
squared overlaps from all the computed states of a given sys-
tem. The three states with largest overlaps are not necessarily
the ground states, as can be seen in the energy spectra plotted
in Fig. 3. Moreover, for the 3 × 2 system, one of the squared
overlaps is actually very small—about 0.3. Thus our results
do not indicate clearly the presence of the spin liquid phase
for Htr (J0). However, we also do not rule it out, because an
energy gap and a topological degeneracy might emerge for
larger systems, and, as mentioned in the Introduction, a state
can still be in a given topological class even though the overlap
is small.

IV. RESULTS: OVERLAP OPTIMIZATION

It may be tempting to increase the truncation radius in hope
for improving the results. However, such a Hamiltonian would
have further-range terms, which would make it less convenient
to work with. Also, such terms would not necessarily gen-
erate better results in finite systems with periodic boundary
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FIG. 3. Momentum-resolved low-energy spectra of the truncated
CFT Hamiltonian Htr (J0 ). (a), (b), and (c) show the results for system
sizes 1 × 2, 2 × 2, and 3 × 2, respectively. The energy is measured
with respect to the ground state energy EGS. K1 and K2 are the
total integer lattice momenta in the directions of lattice vectors a1,
a2, respectively, with K1 ∈ {0, 1, . . . , N1 − 1} and K2 ∈ {0, 1, . . . ,

N2 − 1}. The color denotes the squared overlap O(|φη〉) (13) for the
given state |φη〉. Note that in (c) the two states with highest overlaps
for K = [0, 0] are close to other states with almost zero overlaps, so
they are not easily visible. Thus we point out the three states with
highest overlaps in each plot using black arrows.

conditions, where they would wrap around the torus, possibly
many times. Thus we use a different approach: we continue
with the Hamiltonian Htr (J), but allow the coefficients J to
vary. We optimize them to maximize the squared overlap (13)
with the model states.

Because we expect three topologically ordered ground
states, there are many ways to define the cost function to
minimize. We choose the following one. Let us define states
|φη(J)〉 as the exact diagonalization eigenstates, sorted ac-
cording to the squared overlap O(|φη(J)〉) in a decreasing
order (note that in the exact diagonalization, we do not obtain
the full spectrum, but only a few lowest eigenstates). Then, we
define the following cost function:

F (J) = 3 − O(|φ1(J)〉) − O(|φ2(J)〉) − O(|φ3(J)〉). (14)

In other words, if we define the projectors �ED(J) =∑3
η=1 |φη(J)〉 〈φη(J)| and �model = ∑3

μ=1 |ψ̃μ〉 〈ψ̃μ|, F can
be expressed as

F (J) = 3 − Tr(�ED(J)�model ). (15)

It takes values between zero and three. We use the notation
|φη〉 (without the argument J) for the final states |φη(J)〉 at the
optimal parameters.

We use the simplicial homology global opti-
mization (SHGO) algorithm, implemented in the
scipy.optimize.shgo function of the SCIPY library
(version 1.6.2). The optimization is performed by a PYTHON

script calling the FORTRAN exact diagonalization code. The
largest system size for which we can run the script is 2 × 2,
because for the 3 × 2 system a single diagonalization takes
about 17 hours on our high-performance computing cluster,
and within a single optimization run it may be called several
hundred times. Thus we perform the optimization for the
2 × 2 system. Since all the model states for this system
size have momentum K = [0, 0], during the optimization
we diagonalize the Hamiltonian only within this subspace,
and use its 20 lowest states to compute F (J). After the

optimization, the calculations for the obtained optimal J are
performed also for other subspaces and system sizes, in order
to determine the presence of topological degeneracy and
check if the results are consistent as a function of the system
size.

The Hamiltonian depends on eight real parameters. To
simplify the optimization process and to test which param-
eters are important, we perform a number of optimization
runs, in which different sets of parameters are set to zero.
The best results are shown in Table II(a). Here, “NA” means
that the given parameter is fixed at zero. The “TD” column
shows if the systems exhibit the topological degeneracy (�)
or not (×), with the first, second and third symbol corre-
sponding to 1 × 2, 2 × 2, and 3 × 2 system, respectively. For
the purpose of this table, we say that a system exhibits the
topological degeneracy if the three states |φ1〉, |φ2〉, |φ3〉 with
highest squared overlaps O(|φη〉) are the three lowest states.
Note that this definition is much less strict than the proper
definition of the topological degeneracy—the energy split be-
tween these states can be arbitrarily large, the gap between
the third and fourth state can be arbitrarily small, and we do
not try to deduce the systems’ behavior in the thermodynamic
limit.

In some optimization runs, the resulting parameters were
particularly “round” (e.g., 0 or 0.6), and lying precisely at the
upper or lower bound or halfway between them. This suggests
that the algorithm did not find a true local minimum (and in
consequence, also the global one). In an attempt to avoid this
effect, we studied two sets of bounds, denoted by “A” or “B” in
the first column of Table II(a). The values of these bounds are
shown in Table II(b). We performed all the optimization runs
for both sets of bounds, and included only the best results in
Table II(a). However, one can see that this does not always
help. Thus, for every row of Table II(a), we performed an
additional local optimization using the Nelder-Mead method
(the scipy.optimize.minimize function), taking the result
of the SHGO procedure as a starting point. For the cases when
SHGO returned one or more “round” parameter values, this
indeed yielded significantly different results, which we show
in Table II(c). For other ones, the local optimization confirmed
that SHGO indeed found a local minimum.

From the first row of Table II(a), it can be seen that one
can get good squared overlaps (O > 0.8 for all systems and
all three states |φ1〉, |φ2〉, |φ3〉) even when four parameters are
neglected. However, in such a case, the topological degener-
acy is not visible for any of the three considered system sizes,
as can be seen in the energy spectra in Figs. 4(a)–4(c). We do
not rule out the possibility that it will appear in larger systems.

As an aside note, we remark that the case corresponding
to the first row of Table II(a) can serve as a justification for
why we chose to optimize the maximum squared overlaps
within the 20 lowest-energy states of the K = [0, 0] subspace,
instead of just the squared overlaps of the three lowest states.
Using the former procedure, we are able to identify the pa-
rameters for which the system seems to be at least in the
proximity of a topological phase. In contrast, in the latter
approach, the optimal squared overlaps of the three lowest
states in the K = [0, 0] subspace for a 2 × 2 system are 0.477,
0, 0.766 (note that the second state has zero overlap despite
the fact that all the model states have K = [0, 0]). That is,
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TABLE II. (a) The results of the global optimization of F (J). The column “Bnds” denotes which set of bounds is used. The squared overlaps
shown here are O(|φη〉), defined by Eq. (13), for the three states |φη〉 with η = 1, 2, 3 with the three largest O(|φη〉) (note that they are sorted
according to the squared overlap in decreasing order). The column “TD” shows the presence (�) or absence (×) of topological degeneracy
(see text for details). The first, second and third symbol in each row correspond to the 1 × 2, 2 × 2, and 3 × 2 systems, respectively. (b) The
two sets of bounds used in (a). (c) The results of local optimization of F (J), with results from (a) as initial conditions. The cases not included
in (c) are the ones in which the result from (a) is already a local minimum.

(a) Global

Bnds Parameters Squared overlaps TD

Js1 Jh2 Jh3 ReJt1 ImJt1 ReJt2 ImJt2 Jt3 1 × 2 2 × 2 3 × 2

B −0.128 0.153 NA NA 0.190 NA 0.147 NA 0.998 0.975 0.937 0.960 0.926 0.867 0.886 0.867 0.808 × × ×
A −0.309 −0.510 −0.871 NA 0.500 NA 0.629 NA 0.998 0.986 0.984 0.955 0.942 0.909 0.845 0.719 0.549 × � �
B −0.500 0.000 −0.295 −0.188 0.391 NA 0.418 NA 0.999 0.972 0.965 0.965 0.946 0.902 0.862 0.835 0.770 × � ×
B NA 0.141 NA 0.101 0.147 −0.029 0.140 NA 0.998 0.986 0.864 0.964 0.951 0.895 0.900 0.894 0.883 × � �
A NA 0.000 −0.608 0.179 0.500 −0.138 0.576 NA 0.967 0.896 0.896 0.919 0.901 0.857 0.804 0.789 0.719 × � ×
B NA 0.141 NA 0.119 0.153 −0.056 0.155 −0.028 1.000 0.989 0.826 0.964 0.952 0.900 0.905 0.898 0.880 × � �
B −0.299 −0.043 −0.322 0.000 0.320 −0.066 0.415 NA 1.000 0.980 0.936 0.971 0.966 0.935 0.906 0.899 0.852 × � �
B −0.500 −0.632 −1.000 −0.132 0.461 0.154 0.600 0.255 0.994 0.978 0.975 0.970 0.965 0.945 0.896 0.867 0.672 × � �

(b) Bounds for global optimization

Js1 Jh2 Jh3 ReJt1 ImJt1 ReJt2 ImJt2 Jt3

A (−1,1) (−1,1) (−1,1) (−1,1) (0,1) (−1,1) (0,1) (−1,1)
B (−1,0) (−1,1) (−2,0) (−0.6,0.6) (0,0.6) (−0.6,0.2) (0,1.2) (−0.6,0.6)

(c) Local

Parameters Squared overlaps TD

Js1 Jh2 Jh3 ReJt1 ImJt1 ReJt2 ImJt2 Jt3 1 × 2 2 × 2 3 × 2

−0.210 −0.165 −0.387 NA 0.311 NA 0.367 NA 1.000 0.985 0.983 0.968 0.950 0.901 0.865 0.827 0.754 × � �
−0.496 −0.214 −0.530 −0.154 0.443 NA 0.520 NA 1.000 0.979 0.977 0.966 0.950 0.906 0.826 0.823 0.766 × � �

NA −0.039 −0.213 0.136 0.197 −0.039 0.262 NA 1.000 0.986 0.974 0.971 0.961 0.925 0.912 0.896 0.844 × � �
−0.806 −0.019 −0.462 −0.251 0.519 −0.105 0.655 NA 1.000 0.973 0.903 0.969 0.967 0.941 0.897 0.885 0.864 × � �
−0.317 −0.264 −0.549 −0.059 0.330 0.069 0.445 0.148 0.997 0.973 0.970 0.975 0.974 0.947 0.903 0.902 0.824 × � �

the spectrum still lacks the topological degeneracy, and the
squared overlaps are worse than in the first row of Table II(a).
A possible reason is that if we look only at the three lowest
states, for some of them the overlaps may vanish at the data
points considered in the optimization procedure. In conse-
quence, in such a way we neglect some information that can
direct the optimization process towards the topological phase,
or at least the proximity of it.

The topological degeneracy can be seen for 2 × 2 and
3 × 2 systems when more parameters are included. Examples
can be seen in the further subfigures of Fig. 4: Figs. 4(d)–4(f),
corresponding to the last row of Table II(a), i.e. a global
optimization with all the parameters included; Figs. 4(g)–4(i),
referring to the first row of Table II(c), i.e., a local opti-
mization with ReJt1 = ReJt2 = Jt3 = 0; and Figs. 4(j)–4(l),
corresponding to the last row of Table II(c), i.e., a local op-
timization with all the parameters included. The fact that we
do not observe the topological degeneracy in 1 × 2 systems is
not surprising, as for such small systems the finite size effects
are particularly large.

Comparing Table II(a) to Table II(c), we can see that the
additional local optimization sometimes increases the squared
overlaps not only in the 2 × 2 systems (which it does by
definition), but also in the 3 × 2 systems—compare e.g. the

last lines of Tables II(a) and II(c) or Figs. 4(f) and 4(l).
However, this is not always the case—compare, e.g., the
penultimate rows of Tables II(a) and II(c). Also, the local
optimization does not necessarily increase the energy gap
above the three states with high overlaps—see the difference
between Fig. 4(e), where the gap is visible, and Fig. 4(k),
where it is almost nonexistent. Such behavior is not surprising,
as we expect the results to be influenced by finite-size effects.
Thus it seems that whether or not the optimization reaches
the actual global minimum is not important—it is enough
if the result is reasonably close to it, and lies in the region
of the phase diagram corresponding to the Moore-Read spin
liquid phase. Actually, a failure of the SHGO procedure can
sometimes be helpful, because if a given parameter is zero
while still yielding relatively good squared overlaps, as in the
third and fifth rows of Table II, one may decide to neglect
it and simplify the Hamiltonian (although we note that the
3 × 2 systems corresponding to rows 3 and 5 of Table II lack
topological degeneracy).

We note that there is an interesting alternative to the
“brute-force optimization” approach used by us here. It is
based on the diagonalization of the covariance matrix (or an-
other, related matrix). This method was used in Ref. [48] and
explained in more detail in Refs. [62,63]. We believe that such
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FIG. 4. The energy spectra for four sets of parameters from Ta-
ble II: [(a)–(c)] global optimization with fixed Jh3 = ReJt1 = ReJt2 =
Jt3 = 0 (first row of Table II(a)), [(d)–(f)] global optimization with all
parameters included [last row of Table II(a)], [(g)–(i)] local optimiza-
tion with all ReJt1 = ReJt2 = Jt3 = 0 [first row of Table II(c)], and
[(j)–(l)] local optimization with all parameters included [last row of
Table II(c)]. The left, middle and right columns correspond to 1 × 2,
2 × 2, and 3 × 2 systems, respectively. The energy is measured with
respect to the ground state energy EGS. K1 and K2 are the total
integer lattice momenta in the directions of lattice vectors a1, a2,
respectively, with K1 ∈ {0, 1, . . . , N1 − 1} and K2 ∈ {0, 1, . . . , N2 −
1}. The color denotes the squared overlap O(|φη〉) (13) for the given
state |φη〉. The black arrows point to the three states with highest
squared overlap in each subfigure.

an approach can be useful in the further studies of approxi-
mate parent Hamiltonians in our system.

V. DISCUSSION

In Tables II(a) and II(c), we presented the results of many
optimization runs. A number of them display relatively good
squared overlaps and exhibit topological degeneracy, and thus
might serve as a starting point for a further numerical and
experimental search for the Moore-Read spin liquid. We want
to highlight two cases that might be particularly useful. The
last row of Table II(c), corresponding to Figs. 4(j)–4(l), con-
tains the best results in terms of squared overlaps in 3 × 2
systems, so this parameter set may be most likely to exhibit
good overlaps in bigger systems. The second example is the
first row of Table II(c), corresponding to Figs. 4(g)–4(i). In
this case, three parameters can be set to zero, and thus it
can be easier to implement numerically and experimentally.
It also displays a robust energy gap, in the sense that the
ratio of the gap between the third and the fourth state to
the energy split between the first and the third state is high
(compared to other optimization runs) in both 2 × 2 and 3 × 2
systems.

Let us compare our results to earlier works investigating
lattices other than kagome. Greiter and Thomale [48] con-
sidered a triangular lattice model with ten independent real

parameters (compared to eight or less parameters in our case),
with interactions up to third neighbor (as in our case). For
a 16-site cluster, they obtained overlaps 0.934, 0.959, 0.964.
Squaring these numbers to get the squared overlaps yields
0.872, 0.919, 0.929. A naive linear interpolation between our
results for a 12- and 18-site systems from the last row of
Table II(c) yields 0.865, 0.926, 0.927 for a nonexistent 16-
site system, which is comparable to the results in Ref. [48].
Also, the energy gap above the third lowest state (measured
relative to the energy split of the three lowest states) in an
18-site system in Fig. 4(l) [but not in the 12-site system in
Fig. 4(k)] seems wider than in Ref. [48]. It can be further
increased at the expense of decreasing overlaps, see Figs. 4(h)
and 4(i).

Glasser et al. [45] studied a model on a square lattice, with
only five real parameters and interactions up to third neighbor.
In our case, five was the smallest number of parameters for
which topological degeneracy was seen. In Ref. [45], the
squared overlaps for a 16-site system on a plane and cylinder
is over 0.94, while the torus was not considered.

VI. CONCLUSIONS

We used exact diagonalization to search for a non-Abelian
chiral spin liquid on the kagome lattice. Employing a combi-
nation of the CFT methods and the numerical optimization,
we found approximate parent Hamiltonians for a lattice
Moore-Read state in finite toroidal systems. The spin liquid
was identified by computing squared overlaps with the model
states.

In contrast to the ν = 1/2 Laughlin states [50], for the
ν = 1 Moore-Read quantum spin liquid the CFT truncation
itself was not enough to construct a good parent Hamiltonian,
and the numerical optimization was necessary to improve
the result. For all of the shown optimized versions of the
Hamiltonian, there are three low-energy states with squared
overlaps higher than about 0.5. In the best cases, the squared
overlaps for all the three states exceed 0.8 for a 3 × 2 system
and 0.9 for a 2 × 2 system. The high-overlap states are often
the three lowest states for 3 × 2 and 2 × 2 systems, which
we interpret as a sign of topological degeneracy even though
the gap above these states is typically not large compared
to the energy split between them. We have also shown that
some parameters included in the truncated CFT Hamiltonian
are not necessary for the creation of the spin liquid, and thus
the final Hamiltonian can be simpler than predicted from the
CFT truncation.

Our results suggest that it is possible to generate a non-
Abelian chiral spin liquid in finite kagome systems. While the
three investigated system sizes are not enough to determine
the existence of the spin liquid phase in the thermodynamic
limit, they are relevant for quantum simulators, where the
number of sites can be comparable (e.g., 31 sites in Ref. [30]
and less in earlier studies [28,29]). Our Hamiltonian can also
be used as a starting point for tensor network calculations in
the thermodynamic limit [49].

We also note that the term Sa
j S

a
k Sb

j S
b
l with purely imaginary

coefficient is equivalent to S j · (Sk × Sl ). Thus the special
case of our Hamiltonian with only Jh1, Js1 and ImJt1 nonzero
corresponds to the Hamiltonian from Ref. [59]. However, we
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found that keeping only the terms considered in Ref. [59]—
nearest neighbours and smallest triangles—was not enough to
guarantee good overlaps with the model states. This suggests
that adding more distant chiral terms to the Hamiltonian from
Ref. [59] may improve the chances of finding the non-Abelian
chiral spin liquid.

We note that large overlaps with model states are not a
necessary condition for the existence of a chiral spin liquid.
The model states (8) are just a single example of a whole
topological class of wavefunctions, thus it might be the case
that the ground states have the correct topological order even

when the overlaps with these states are small. Thus it could
be that our Hamiltonian can be further simplified while still
generating the Moore-Read spin liquid.
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