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Non-Abelian topological order with SO(5)1 chiral edge states
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We consider a chiral spin liquid constructed using the parton theory. This state supports non-Abelian anyons
and neutral fermions, which share some similarities with the celebrated Moore-Read state. The edge physics of
the parton state and the Moore-Read state is very different. Based on conformal field theory (CFT) analysis, it is
proposed that the edge states exhibit an emergent SO(5) symmetry. The counting of edge states in the low-lying
SO(5)1 CFT towers is computed. The chiral spin liquid is generated using tensor network methods, which allows
us to confirm the SO(5)1 counting using entanglement spectrum. An additional feature of multiple branches in
the entanglement spectrum is observed and analyzed.
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I. INTRODUCTION

The existence of identical particles underlies the great
wonders in the universe. After the establishment of quantum
mechanics, it was realized that a many-body wave function
may display two different behaviors when two particles are
exchanged. The wave function remains intact if the exchanged
particles are bosons, but acquires a minus sign if they are
fermions. Half a century later, Leinaas and Myrheim proposed
to interpret the exchange process as continuous and intro-
duced the concept of “braid statistics” [1]. In two dimensions,
Artin’s braid group makes it possible to have certain objects
that are neither bosons nor fermions, which hence acquired the
name anyons [2,3]. This interesting idea becomes experimen-
tally relevant with the discovery of fractional quantum Hall
(FQH) effect [4–6]. It is believed that most FQH states known
to date support anyons with Abelian braid statistics where
the exchange results in a nontrivial phase. This is difficult to
confirm directly in experiments but very positive results have
been reported [7,8].

An even more exotic possibility is that the ground state
of a system with multiple anyons at fixed positions is de-
generate. The braiding of anyons would result in a unitary
transformation in the degenerate ground-state subspace and
two such actions may not commute with each other. This type
of anyons has been dubbed as non-Abelian and could be uti-
lized to perform topological quantum computation [9,10]. In
the context of FQH states, two approaches have been adopted
to construct non-Abelian anyons: one based on conformal
field theory (CFT) [11,12] and another based on parton theory
[13,14]. It has been shown that some states generated by
these approaches are good candidates for certain experiments
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[15–30]. The two approaches have also been extended to other
cases beyond FQH states [31,32].

The presence of anyons leads to some interesting properties
that are unified in the framework of topological order [33].
One signature of anyons is that there are multiple degenerate
ground states if the system is defined on a closed manifold
with nonzero genus. This can be understood using the virtual
process in which two anyons are created from the vacuum,
travel along the incontractible loops of the manifold, and
finally reannihilate with each other [34]. Another intriguing
aspect of topological order is nontrivial features of quantum
entanglement. The most commonly used measure is the von
Neumann entanglement entropy associated with certain bi-
partitions of the system. Its subleading term is a constant
determined by the total quantum dimension of the anyons
[35,36]. For a manifold with nonzero genus, the system can
be divided into two parts using its incontractible loops and
the entropy of any state can be computed. For the ground-
state subspace, we can find a particular basis that minimizes
such entropy. This provides us the minimally entangled states
(MES) from which braid statistics of the anyons can be ex-
tracted directly [37–39].

If a topologically ordered state is placed on an open mani-
fold, there may exist gapless modes in the vicinity of the edge.
The anyon content in the bulk and the edge physics are inti-
mately connected and generally referred to as bulk-boundary
correspondence. The tunneling into gapless edge states pro-
vides useful information about the topological order [40].
The edge physics and quantum entanglement in the bulk are
related via entanglement spectrum [41]. The CFT approach is
natural for exploring the bulk-boundary correspondence be-
cause the wave function for the bulk is the correlator in a CFT
that describes the edge physics. In contrast, the edge physics
of parton states is not as transparent and as well understood.

The parton construction is based on the premise that each
physical degree of freedom (boson, fermion, or spin) can
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be decomposed into two or more fictitious particles called
partons. This comes at the price that the partons are not really
independent but should obey certain constraints that often
endow the system with some emergent gauge fields. Although
the original constituents are strongly interacting, the partons
are taken to be free so they form some simple product states in
certain basis. In the low-energy effective field theory descrip-
tion, the partons may be integrated out and the gauge fields
are kept. It is reasonable to expect that the edge physics can
be understood using the partons, but the constraints on them
are not always easy to address and could sometimes obscure
the edge physics.

In this paper, we consider arguably one of the simplest non-
Abelian topological states provided by the parton framework.
The original proposal was an FQH state of bosons that is a
product of two integer quantum Hall (IQH) states of fermions
at filling factor 2 [13,14]. This state has been recasted into
a chiral spin liquid on lattice and its modular matrices and
momentum polarization have been studied [42,43]. The anyon
content of this state is similar to that of the Moore-Read
state [11,44–51], but its edge physics has not been completely
elucidated and we aim to do so in this paper. In Sec. II, con-
formal field theory is employed to analyze the edge physics.
In Sec. III, we perform numerical calculations using matrix
product states (MPS) to support our theoretical predictions.
The paper is concluded with some outlook in Sec. IV.

II. SO(5)1 EDGE THEORY

It is convenient to begin our discussion with continuum
Landau levels (LLs). The IQH state in which the lowest n
LLs are completely filled is denoted as χn({z j}) with z j being
the complex coordinates. To construct bosonic FQH states,
one boson is decomposed into two fermionic partons that
form their respective IQH states with filling factors n1 and n2.
The simple choice n1 = n2 = 2 leads to a non-Abelian state
with wave function �({z j}) = χ2({z j})χ2({z j}). The partons
have an SU(2) symmetry that requires the introduction of an
emergent gauge field. If the parton fields are integrated out,
one obtains a low-energy effective field theory for this state
in terms of the gauge fields [14,42,43]. The edge physics is
captured by U(4)1/SU(2)2 (a quotient of two CFTs), where
U(4)1 comes from the chiral Dirac fermions of the parton
edge modes (central charge c = 4), and SU(2)2 is due to the
gauge symmetry [43]. We note that SU(2)2 has a free-field
representation in terms of three Majorana fermions (central
charge c = 3

2 ) and U(4)1 can be interpreted as eight Majorana
fermions. This means that the coset U(4)1/SU(2)2 is nothing
but the SO(5)1 Wess-Zumino-Witten (WZW) model, which is
a free theory of five Majorana fermions (c = 4 − 3

2 = 5
2 ).

To better understand the edge theory, it is helpful to sketch
some results about the chiral SO(5)1 WZW model [52]. If the
system is placed on a one-dimensional circle with length L,
the Hamiltonian is

H = − iv

2

∫ L

0
dx

5∑
a=1

χa∂xχ
a, (1)

where χa(x) are Majorana operators with commutation re-
lation {χa(x), χb(x′)} = δ(x − x′)δab and v is the velocity.

For antiperiodic (periodic) boundary condition χa(x + L) =
−χa(x) [χa(x + L) = χa(x)], the mode expansion is

χa(x) = 1√
L

∑
n

χa
n e2π inx/L (2)

with n ∈ Z + 1/2 (n ∈ Z) and {χa
n , χb

m} = δn+m,0δab. The an-
tiperiodic (periodic) boundary condition is commonly referred
to as the Neveu-Schwarz (Ramond) sector.

The chiral SO(5)1 WZW model has three chiral primary
fields: the identity field 1 [SO(5) singlet], the fermion field v

[SO(5) vector], and the twist field s [SO(5) spinor]. The states
in each Kac-Moody tower can be constructed easily using
the Majorana operators [52,53]. For the Kac-Moody tower
associated with the identity field 1, the primary state is the vac-
uum |0〉NS of the Neveu-Schwarz (NS) sector, and descendant
states are built by acting an even number of χa

−n (n ∈ Z + 1
2

and n > 0) on |0〉NS [under the constraint of Pauli’s exclusion
principle (χa

−n)2 = 0]. The counting of states in the identity
sector can be seen from the chiral character

ch1(q) = 1

2
q−5/48

[+∞∏
n=0

(1 + qn+1/2)5 +
+∞∏
n=0

(1 − qn+1/2)5

]

= q−5/48(1 + 10q + 30q2 + 85q3 + · · · ), (3)

where the coefficient of qn−1 is the number of states at the nth
level. The states at each level form SO(5) representations. The
primary state |0〉NS is the only state at the first level, so it is
obviously an SO(5) singlet. The 10 states at the second level
have the form of χa

−1/2χ
b
−1/2|0〉NS (1 � a < b � 5) and they

belong to the SO(5) adjoint representation. For higher levels,
it is more convenient to label an SO(5) irreducible representa-
tion by two integers p, p′ (p � p′ � 0), whose dimension is
d(p,p′ ) = (1 + p′)(1 + p − p′)(2 + p)(3 + p + p′)/6 [54,55].
Because each mode χa

−n transforms as an SO(5) vector [the
fundamental representation (1,1)], the SO(5) representations
of all states can be worked out using the tensor product de-
composition of SO(5) vectors (see Refs. [56–58] for some
useful results; also note that SO(5)= Sp(4) at the Lie algebra
level). The results in the identity sector are listed in Table I.

The SO(5) symmetry is expected to emerge at low en-
ergy in sufficiently large systems. However, the actual states
to be investigated only have an exact SU(2) symmetry at
the microscopic level. Numerical results shall be analyzed
based on the SU(2) symmetry, so we decompose the chiral
SO(5)1 conformal towers into SU(2) representations. The free
Majorana representation in Eq. (1) is convenient for this pur-
pose, where three of five Majorana fermions (with label a =
1, 2, 3) are identified to form an SU(2) triplet (S = 1), and
the remaining two (with label a = 4, 5) transform as SU(2)
singlets (S = 0×2).1 This makes the SU(2) quantum numbers
of the states transparent. For instance, the 10 states at the
second level are decomposed into the SU(2) representations
S = 0 ⊕ 1×3 (one singlet and three triplets), which can be
expressed as χ4

−1/2χ
5
−1/2|0〉NS, χa

−1/2χ
b
−1/2|0〉NS (1 � a < b �

1In principle, the five Majorana fermions may transform under the
S = 2 representation of SU(2), but this choice does not agree with
our numerical results.
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TABLE I. The number of states and their quantum numbers in the identity sector of the chiral SO(5)1 WZW model.

Level Number of states SO(5) quantum number SU(2) quantum number

1 1 (0,0) 0
2 10 (2,0) 0 ⊕ 1×3

3 30 (0, 0) ⊕ (1, 1) ⊕ (2, 0) ⊕ (2, 2) 0×7 ⊕ 1×6 ⊕ 2
4 85 (0, 0) ⊕ (1, 1) ⊕ (2, 0)×3 ⊕ (2, 2) ⊕ (3, 1) 0×11 ⊕ 1×18 ⊕ 2×4

3), and χa
−1/2χ

b
−1/2|0〉NS (a = 1, 2, 3 and b = 4, 5), respec-

tively. Table I also provides the SU(2) quantum numbers.
For the fermion sector, the states are obtained by acting an

odd number of χa
−n (n ∈ Z + 1

2 and n > 0) on |0〉NS, where the
primary state χa

−1/2|0〉NS is an SO(5) vector with conformal
weight hv = 1

2 . The chiral character

chv (q) = 1

2
q−5/48

[+∞∏
n=0

(1 + qn+1/2)5 −
+∞∏
n=0

(1 − qn+1/2)5

]

= q−5/48q1/2(5 + 15q + 56q2 + 130q3 + · · · ) (4)

tells us the counting of states. For the twist sector s, the states
reside in the Ramond (R) sector and there is a subtlety due to
the fermion zero modes. The chiral primary states |s〉R have
four components (with conformal weight hs = 5

16 ) and trans-
form as an SO(5) spinor. It is denoted by (1,0) and identified
to have SU(2) quantum number S = 1

2 ⊕ 1
2 . The descendant

states can be constructed by acting a number of χa
−n on |s〉R

(n ∈ Z and n > 0). The chiral character

chs(q) = 1

8
q5/24

∞∏
n=0

(1 + qn)5

= q−5/48q5/16(4 + 20q + 60q2 + 160q3 + · · · ) (5)

tells us the counting of states. The results are presented in
Tables II and III.

III. CHIRAL SPIN LIQUID

In the continuum setting, the parton construction usually
generates states that populate mutiple Landau levels. If low-
est Landau level projection is not performed, the states are
somewhat analytically tractable but not really convenient for
numerical purposes [59,60]. To this end, we consider a lattice
model of free fermions whose Bloch bands possess nonzero
Chern numbers [42,43]. As illustrated in Fig. 1, the model is
defined on the square lattice with two orbitals per site. The
creation (annihilation) operators for the fermions are denoted
as c†

j,u (c j,u) where j labels the lattice site and u = A, B distin-

guishes the two orbitals on each site. The Hamiltonian is

HCI =
∑
〈 jk〉

[c†
j,Ack,A + H.c.] +

∑
〈 jk〉

(−1)[c†
j,Bck,B + H.c.]

+
∑
〈 jk〉x

[c†
j,Ack,B + H.c.] +

∑
〈 jk〉y

(−1)[c†
j,Bck,A + H.c.]

+
∑
〈〈 jk〉〉

(−i/
√

2)[c†
j,Ack,B + H.c.]

+
∑
〈〈 jk〉〉

(i/
√

2)[c†
j,Bck,A + H.c.], (6)

where 〈 jk〉 denotes nearest neighbors, 〈 jk〉x,y denotes near-
est neighbors along the x or y direction, and 〈〈 jk〉〉 denotes
next-nearest neighbors. The number of unit cells along the
two directions are denoted as Nx and Ny. HCI can be diag-
onalized to yield the single-particle energy levels εi and the
creation (annihilation) operators �

†
i (�i) for the single-particle

eigenstates. If the system has periodic boundary conditions
along both directions, we get two bands with Chern num-
ber C = ±2. A lattice counterpart of the ν = 2 IQH state in
Landau levels is obtained when the lower band is completely
filled. The fermionic operators are appended with another
index α that has two values called spin-up and spin-down. The
fermions are assembled to form the spin- 1

2 operators

Sa
j,u = 1

2

∑
α,β=↑,↓

c†
j,u,ατ a

αβc j,u,β , (7)

where a = x, y, z and τ a are the Pauli matrices. A many-body
state of the fermions is also a valid state for the spins if each
orbital is singly occupied (i.e.,

∑
α=↑,↓ c†

j,u,αc j,u,α = 1).
In the spin language, the parton FQH state turns into a chi-

ral spin liquid. Roughly speaking, the lower bands of fermions
with both spins are completely filled, the two product states
are combined, and Gutzwiller projection PG is applied to
ensure single occupancy of the orbitals. The tensor network
methods are employed to find the MPS representation of the
chiral spin liquid [61–65]. The system shall be placed on a
cylinder (which is periodic along only one direction) instead
of a torus. This is largely due to the fact that MPS is not very

TABLE II. The number of states and their quantum numbers in the fermion sector of the chiral SO(5)1 WZW model.

Level Number of states SO(5) quantum number SU(2) quantum number

1 5 (1,1) 0×2 ⊕ 1
2 15 (1, 1) ⊕ (2, 0) 0×3 ⊕ 1×4

3 56 (0, 0) ⊕ (1, 1)×2 ⊕ (2, 0) ⊕ (3, 1) 0×8 ⊕ 1×11 ⊕ 2×3

4 130 (0, 0) ⊕ (1, 1)×3 ⊕ (2, 0)×3 ⊕ (2, 2) ⊕ (3, 1)×2 0×17 ⊕ 1×26 ⊕ 2×7
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TABLE III. The number of states and their quantum numbers in the twist sector of the chiral SO(5)1 WZW model.

Level Number of states SO(5) quantum number SU(2) quantum number

1 4 (1,0) 1
2

×2

2 20 (1, 0) ⊕ (2, 1) 1
2

×6 ⊕ 3
2

×2

3 60 (1, 0)×2 ⊕ (2, 1)×2 ⊕ (3, 0) 1
2

×14 ⊕ 3
2

×8

4 160 (1, 0)×4 ⊕ (2, 1)×4 ⊕ (3, 0)×2 ⊕ (3, 2) 1
2

×34 ⊕ 3
2

×20 ⊕ 5
2

×2

efficient for periodic systems. While topological properties
can be extracted easily from the MES, their construction is
not always transparent. For the torus case, a well-established
prescription (although its validity has not been proved in
general) is using both periodic and antiperiodic boundary
conditions for the partons [42,43,49]. The problem could be
even more tricky on the cylinder (with the x direction being
open) [61,66]. For each member of the MES, the cylinder
is threaded by a flux line that connects two dangling anyons
localized at its ends. Based on previous experience, we expect
that MES can be constructed only if the partons have single-
particle edge states at exactly zero energy. The anyons should
form a state with SU(2) symmetry such that the edge states
are labeled by proper quantum numbers. A more ambitious
goal would be to elevate the symmetry to SO(5) explicitly.
One should also keep in mind that two different states of
free partons may turn out to be the same after Gutzwiller
projection.

HCI contains four zero modes (two per edge) in two types
of systems: (1) the y direction is periodic and Ny is a multiple
of four; (2) the y direction is antiperiodic and Ny is a mul-
tiple of two (but not four). To be specific, we focus on the
system with Nx = 6 and Ny = 6. Its single-particle spectrum
is presented in Fig. 2(a) where ky is the momentum along the
y direction (in units of 2π/Ny). The creation operators for the
zero modes are denoted as ζ

†
L,ky,α

and ζ
†
R,ky,α

, where L and R
indicate the two ends, ky = 1, 4, and α =↑,↓. The negative-
energy states of both spins are fully occupied to generate the
state

|�〉 =
∏
εi<0

∏
α=↑,↓

�
†
i,α|0〉 (8)

FIG. 1. Schematics of the spinless Chern insulator model with
C = 2. The two states A, B on each site are represented by red and
blue dots. The nearest-neighbor hopping amplitudes all have absolute
value 1 and the sign is +1 (−1) along the solid (dashed) line. The
next-nearest-neighbor hopping amplitude is i/

√
2 (−i/

√
2) along

(against) the arrow.

and the zero modes are populated in certain combinations to
generate the MES. When one zero mode is occupied at each
boundary of the cylinder, the system transforms under the
SU(2) reducible representation 1

2 ⊕ 1
2 , which corresponds to

the SO(5) spinor representation. It can be argued that each
zero mode is associated with a twist anyon of the SO(5)1

theory, and the occupation of multiple zero modes at the same
boundary can be viewed as fusion of anyons. This picture
is useful in finding all topological sectors and will be justi-
fied later by numerical results. The identity sector has trivial
anyons so partons in the zero modes at both ends form SO(5)
singlet states. If all zero modes on one end are empty, this
end obviously hosts no anyon. However, we cannot leave both
ends empty because this would not provide us a valid spin
state (i.e., the single occupancy of each orbital cannot be
fulfilled). Another way that generates an SO(5) singlet is to
populate all zero modes on one end. This analysis leads to
two states

|�1,a〉 = PG ζ
†
L,1,↑ζ

†
L,1,↓ζ

†
L,4,↑ζ

†
L,4,↓|�〉,

|�1,b〉 = PG ζ
†
R,1,↑ζ

†
R,1,↓ζ

†
R,4,↑ζ

†
R,4,↓|�〉. (9)

The overlap between them is 0.9265 and we believe that they
actually represent the same state.2 The next step is to construct
the fermion sector for which each end hosts an Abelian anyon
and the system realizes one of the SO(5) vector states. This
can be achieved if both ends have two partons form certain
superpositions in the zero modes. We have constructed four
states

|�v,a〉 = PG ζ
†
L,1,↑ζ

†
L,1,↓ζ

†
R,1,↑ζ

†
R,1,↓|�〉,

|�v,b〉 = PG ζ
†
L,1,↑ζ

†
L,1,↓ζ

†
R,4,↑ζ

†
R,4,↓|�〉,

|�v,c〉 = PG ζ
†
L,4,↑ζ

†
L,4,↓ζ

†
R,1,↑ζ

†
R,1,↓|�〉,

|�v,d〉 = PG ζ
†
L,4,↑ζ

†
L,4,↓ζ

†
R,4,↑ζ

†
R,4,↓|�〉 (10)

and found that their overlaps are all close to 1. This means
that they represent the same state and their is no need to form
superpositions. For the identity (fermion) sector, four (two)
zero modes on one end are occupied and none (two) zero
modes on the other end is occupied. It makes us conjecture
that the two ends in the twist sector have three zero modes
and one zero mode occupied, respectively. This intuition is

2The overlap is limited by the bond dimension of the MPS. For the
system with Nx = 4 and Ny = 4, similar states have been constructed
with higher accuracy and their overlap is 0.9997. It is almost certain
that the overlap in the case with Nx = 6 and Ny = 6 could be further
improved.
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FIG. 2. (a) The single-particle energy spectrum of the Hamiltonian HCI on a cylinder with Nx = 6 and Ny = 6. (b) The entanglement
spectrum of the free-fermion state |�CI〉 with Nx = 6 and Ny = 6 (see text for its definition).

supported by the fact that proper superpositions of three zero
modes can form the SO(5) spinor. However, we shall use the
relatively simple state

|�s〉 = PG ζ
†
L,1,↑ζ

†
L,4,↑ζ

†
L,4,↓ζ

†
R,1,↓|�〉 (11)

rather than any superpositions (see below for more discus-
sion).

The edge states can be probed using entanglement spec-
trum [41]. The cylinder is divided into two parts and the
reduced density matrix (RDM) of the left half is computed.
This operation creates a virtual edge on the cylinder and
exposes the edge physics via the spectrum of the RDM [67]. In
practice, the Schmidt decomposition of the many-body states
is sufficient because the Schmidt values are simply the square
roots of the eigenvalues of the RDM. The Schmidt states are
labeled by three quantum numbers: the total spin SL(SL + 1),
the z component SL

z of total spin, and the momentum KL
y along

the y direction. The logarithms of the eigenvalues are plotted
versus SL

z and KL
y to generate the entanglement spectrum. Let

us first explain the identity sector shown in Fig. 3. We do not
need to compute the total spin explicitly because it can be de-

duced by comparing the spectrum in different SL
z sectors. One

can see a unique lowest level and 10 quasidegenerate second
levels (2 + 1 + 2 + 2 + 2 + 1). The third and fourth levels
are more difficult to identify because the number increases
rapidly and the degeneracy is not very good. Nevertheless,
it is reasonable to claim that the number of third levels is
30 (1 + 4 + 3 + 8 + 6 + 4 + 3 + 1) and that of fourth levels
is 85 (2 + 2 + 10 + 12 + 16 + 17 + 10 + 12 + 2 + 2). The
lowest level appears in the SL

z = 0 sector, which implies that
it has total spin SL = 0. Among the ten second levels, four of
them appear in the SL

z = 0 sector and three of them appear in
each of the SL

z = ±1 sectors. This means that the second levels
can be grouped as one SL = 0 and three SL = 1. The same
analysis can be performed for the third and fourth levels. The
fermion sector shown in Fig. 4 can be analyzed in the same
way because the state is also an SU(2) singlet. In total, the
results clearly confirm the theoretical predictions summarized
in Tables I and II. The twist sector is more complicated. While
SU(2) or SO(5) symmetric states can be constructed, it is
actually undesirable to do that [61]. If either symmetry is
fulfilled, the entanglement spectrum would not exhibit pure

8

22

1

2

6

12
10

3
4

12

12
10

3
4

12
1

2

6

1

2

17

2

6

16 11

A

B

8 8

FIG. 3. The entanglement spectrum of the chiral spin liquid with Nx = 6 and Ny = 6 in the identity sector. The counting of levels is shown
in the panels. Three towers of CFT excited states are indicated using dashed lines in the middle panel. Two branches of levels are marked by
blue arrows in the middle panel. The 16 levels at KL

y = 0 belong to the B branch due to periodicity of momentum.
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4

1

3
1210

3
4

1 2

2 1

34

BBA
22

1

86

2

6 8

22

1

FIG. 4. The entanglement spectrum of the chiral spin liquid with Nx = 6 and Ny = 6 in the fermion sector. The notation is the same as in
Fig. 3.

SO(5) towers but multiple copies of them. This problem is
resolved if the anyons are polarized to one component of
the superposition as in Eq. (11). The price to pay is that the
entanglement levels do not have definite total spin values, but
this does not invalidate our theoretical prediction. As one can
see from Fig. 5, it is still feasible to group the levels in a
manner that is consistent with the SO(5) towers in Table III.

An important feature of the entanglement spectrum that
was not revealed by our analysis in Sec. II is the existence of
multiple branches. More specifically, the levels in the SL

z = 0
sector can be organized as two branches marked by the arrows
in Fig. 3. One branch contains two second levels and eight
third levels, while the other branch contains two second levels
and six third levels. This property can be traced back to the
edge states of the parton Chern insulator. It is sufficient to
consider only one spin since the two components are decou-
pled. The spin-up (or spin-down) parton state in which both
zero modes on the left are occupied is denoted as |�CI〉. As
shown in Fig. 2(b), the entanglement spectrum of |�CI〉 also
has multiple branches (labeled by the number of fermions PL

and the momentum KL
y along the y direction). In fact, this

seems to be a quite general feature in lattice models with
C > 1 [68–70]. The entanglement spectrum of the chiral spin
liquid is obtained by combining the entanglement spectrum of
the spin-up and -down partons. The momenta of two levels
can be added directly because Gutzwiller projection does not
change momentum. For example, two copies of the lowest

level with KL
y = 3 in Fig. 2(b) generate the lowest level with

KL
y = 3 + 3 ≡ 0 in Fig. 3. The excited levels are more compli-

cated because it is very likely that the combined levels are not
all linearly independent. Nevertheless, the four second levels
in the SL

z = 0 sector of Fig. 3 are easy to construct. We can
combine the two levels with KL

y = 1 (KL
y = 4) and the lowest

level with KL
y = 3 in Fig. 2(b) to produce the two levels with

KL
y = 1 + 3 = 4 (KL

y = 4 + 3 ≡ 1) in Fig. 3.

IV. CONCLUSIONS

In summary, we have uncovered that the edge state of a
non-Abelian topological state is described by SO(5)1 CFT.
The state has been studied previously in different disguises,
but the emergent SO(5) symmetry was never pointed out to
the best of our knowledge. This is reminiscent of the fact that
the ν = 1

2 bosonic Laughlin state has an emergent SU(2) sym-
metry [71] and the bilayer Halperin 221 state has an emergent
SU(3) symmetry [72]. The SU(2) gauge field in the parton
description and the emergent SO(5) symmetry also distinguish
the present state from other SO(5)1 chiral spin liquids that
were constructed by coupling topological superconductors to
Z2 gauge fields (in the spirit of Kitaev’s 16-fold way [44]) and
mostly have exact SO(5) symmetry at the microscopic level
[73–76]. The counting of edge states is computed using CFT
techniques and confirmed in the entanglement spectrum.
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FIG. 5. The entanglement spectrum of the chiral spin liquid with Nx = 6 and Ny = 6 in the twist sector. The notation is the same as in
Fig. 3.
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The modular matrices of the SO(5)1 chiral spin liquid have
been computed using Monte Carlo methods [42,43]. It would
be very useful if the MPS framework can provide more ac-
curate results. In principle, this can be done using the MPS
representation of the chiral spin liquid on infinte cylinders
[77]. Technical challenges are expected in the implementation
and computational time may be substantial. Another obvious
extension for future works is to consider parton bands with
Chern number C > 2. The edge theory of such systems is
expected to be the U(2C)1/SU(2)C CFT, which is actually
equivalent to the Sp(2C)1 CFT based on a duality relation
[78]. The C = 2 case studied in this work also fits into this
framework since Sp(4)1=SO(5)1. Gutzwiller wave functions

for Sp(2C)1 chiral spin liquids with C > 2 and possible mi-
croscopic models that can realize them are interesting topics
that deserve further investigations.

Note added. Recently we notice a paper that has some
overlap with this work [79].
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