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The possibility of “orbitally selective Mott transitions” within a multiband Hubbard model, in which one
orbital with large on-site electron-electron repulsion U1 is insulating and another orbital, to which it is hybridized,
with small U−1, is metallic, is a problem of long-standing debate and investigation. In this paper we study an
analogous phenomenon, the coexistence of metallic and insulating bands in a system of orbitals with different
electron-phonon coupling. To this end, we examine two variants of the bilayer Holstein model: a uniform bilayer
and a “Holstein-metal interface” where the electron-phonon coupling, λ, is zero in the “metallic” layer. In the
uniform bilayer Holstein model, charge density wave (CDW) order dominates at small interlayer hybridization
t3, but decreases and eventually vanishes as t3 grows, providing a charge analog of singlet (spin liquid) physics.
In the interface case, we show that CDW order penetrates into the metal layer and forms long-range CDW order
at an intermediate ratio of inter- to intralayer hopping strengths, 1.4 � t3/t � 3.4. This is consistent with the
occurrence of an “orbitally selective CDW” regime at weak t3 in which the layer with λ1 �= 0 exhibits long-range
charge order, but the “metallic layer” with λ−1 = 0, to which it is hybridized, does not.
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I. INTRODUCTION

Over the last several decades, much attention has been
focused in the condensed matter community on layered
materials. One prominent example is that of the cuprate super-
conductors [1–5]. Bilayer graphene [6–11] is another, more
recent, realization. From a theoretical perspective, bilayer ma-
terials offer an opportunity to explore the competition between
the formation of long-range order at weak interlayer coupling
and collections of independent local degrees of freedom in
the limit of strong interlayer coupling. Computational studies
have lent considerable insight into these phenomena, includ-
ing quantitative values for the quantum critical points [12–16]
separating antiferromagnetic and singlet phases at zero
temperature.

This competition is central to that which occurs in
multiorbital systems, notably the interplay of Ruderman-
Kittel-Kasuya-Yosida order and singlet formation in the
Kondo lattice and periodic Anderson models [17–19]. This
close analogy originates in the observation that, in calcula-
tions on a model Hamiltonian, there is no difference between
multilayer and multiorbital descriptions, apart from the inter-
pretation of the additional label of the fermionic species. For
this reason we will use the two terminologies interchangeably
here. In multiorbital language, one of the key conceptual in-
terests is the possibility that the distinct values of the ratio
of interaction strength to kinetic energy in the different bands
might result in separate insulator transitions, i.e., the possibil-
ity of an “orbital-selective” Mott transition [20–31].

Here we study analogous questions concerning bilayer
(biorbital) systems in which the fermions interact with phonon
degrees of freedom rather than via direct electron-electron
correlations. A precise mathematical description of the map-
ping between the two situations is discussed. Quantum Monte
Carlo (QMC) simulations have already been applied to the
analysis of charge-density wave (CDW) and superconducting
transitions in the single-band Holstein model [32]. How-
ever, thus far, work has focused mostly on two-dimensional
or three-dimensional models with a single kinetic energy
scale [33–46].

Using QMC simulations of the two-band Holstein model
at half-filling, we will address the following questions con-
cerning the effects of interband hybridization t3: (i) Is there a
transition in which CDW order is destroyed as t3 is increased?
What is the value of the critical coupling associated with
the quantum critical point (QCP) in the ground state and the
critical temperature for the thermal transitions at finite T ? (ii)
In a situation where the electron-phonon energy scales in the
two bands are very different, can CDW order in one band
coexist with metallic behavior in the other? These issues are
in direct analogy with those addressed in multiband Hubbard
Hamiltonians; we will discuss similarities and differences be-
tween the resulting phenomena.

The paper is organized as follows: Section II starts by
describing the model Hamiltonian, with Sec. III introduc-
ing the numerical algorithm employed. The main results of
both the bilayer Holstein model and the Holstein-metal in-
terface are given in Secs. IV and V, respectively. A contrast
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FIG. 1. (a) Phase diagram of the Holstein bilayer giving the CDW transition temperature Tc as a function of interlayer hopping t3. Two
values of electron-phonon coupling, λ = 0.2 and λ = 0.16, are shown. Data points are obtained by finite size scaling (FSS) analysis as shown
in Fig. 3. Dashed lines are guides to the eye. Inset shows crossing plot of SCDW/L7/4 versus t3 at λ = 0.2 and low temperature β = 20 and
determines the quantum critical value for the CDW charge singlet transition. (b) Analog of (a), but for the Holstein-metal interface. The four
data points (blue crosses) at T = 0.1 and T = 0.05 are obtained by analysis of the scaled structure factor, Fig. 6. Inset shows a sketch of a
bilayer with relevant terms in Eq. (1) marked. QCPs are marked by stars on the t3 axes in panels (a) and (b). The phonon frequency ω = 0.1
for all data.

between the two models is drawn in Sec. VI, by analyzing lo-
cal quantities and gaps to excitations. Section VII summarizes
our results.

II. LAYERED HOLSTEIN HAMILTONIAN

We focus on the bilayer Holstein model

Ĥ = −
∑

〈i j〉,l,σ
(tl ĉ†

ilσ ĉ jlσ + H.c.) −
∑
i,l,σ

μl n̂ilσ

+ 1

2M

∑
il

P̂2
il + 1

2

∑
i,l

ω2
l X̂ 2

il +
∑
i,l,σ

λl n̂ilσ X̂il

−
∑

i,〈ll ′〉,σ
(tll ′ ĉ†

ilσ ĉil ′σ + H.c.) . (1)

ĉilσ (ĉ†
ilσ ) are annihilation (creation) operators for an electron

on layer l (= ±1), site i with spin σ , and n̂ilσ = ĉ†
ilσ ĉilσ is

the number operator. tl and tll ′ = t3 denote the intra- and
interlayer hopping, respectively. Phonons are represented by
local (dispersionless) quantum harmonic oscillators with fre-
quency ωl , and on-site electron-phonon interaction on layer l
is introduced via λl . We choose intralayer hopping tl = t = 1
throughout this work to set the energy scale, and all simula-
tions are done at half-filling 〈n̂il〉 = 1, which can be achieved
by setting the chemical potential μl = −λ2

l /ω
2
l ; phonon mass

is set as M = 1. Each layer is an L × L site square lattice,
as sketched in the inset of Fig. 1(b), with N = 2 × L × L
being the total number of sites. We focus on two cases in this
work: a uniform bilayer Holstein model where t1 = t−1 = t ,
μ1 = μ−1 = μ, ω1 = ω−1 = ω, and λ+1 = λ−1 = λ; and an
interface between Holstein layer and “metal” layer, where
only layer l = +1 has a nonzero electron-phonon coupling
λ+1 �= 0 and layer l = −1 has λ−1 = 0. We employ a recently
developed Langevin QMC method [47] discussed in the next
section.

We first define the local observables including the (layer-
dependent) double occupancy,

Dl ≡ 〈n̂il↑n̂il↓〉, (2)

the near-neighbor intralayer Green’s function,

G〈i j〉l ≡ −〈ĉ†
ilσ ĉ jlσ + ĉ†

jlσ ĉilσ 〉, (3)

and the near-neighbor interlayer Green’s function,

G〈ll ′〉 ≡ −〈ĉ†
ilσ ĉil ′σ + ĉ†

il ′σ ĉilσ 〉. (4)

When multiplied by their associated hopping integrals, tG〈i j〉l
and t3G〈ll ′〉 give the intra- and interlayer kinetic energies per
site.

Two further observables, the density-density and pair-pair
correlators, aid in characterizing the excitations between the
planes.

d−1,1 ≡ 1
4 〈n̂i,1n̂i,−1 − 1〉,

p−1,1 ≡ − 1
4 〈�̂i,1�̂

†
i,−1 + �̂

†
i,1�̂i,−1〉,

�̂
†
il ≡ ĉ†

il↑ĉ†
il↓. (5)

d−1,1 and p−1,1 are the analogs of the zz and xy spin cor-
relations which enter into the characterization of interlayer
singlet formation in the Hubbard and Heisenberg bilayers
(see Appendix A). Because of rotational symmetry of those
models, their magnetic analogs, obtained by the transforma-
tion ĉil↓ → ĉ†

il↓ are identical in value. d−1,1 = p−1,1 would
also hold in the attractive Hubbard Hamiltonian. Here, in the
Holstein model, rotational symmetry is broken and we have
d−1,1 �= p−1,1. We will discuss the implications further in the
sections to follow.

Characterization of the CDW formation in the thermody-
namic limit can be made by the analysis of the (layer-resolved)
structure factor,

SCDW
l = 2

N

∑
i j

(−1)i+ j〈n̂il n̂ jl〉, (6)

with n̂il = ∑
σ n̂ilσ . SCDW

l samples correlations across the en-
tire lattice, and hence is a primary tool in the determination of
long-range order.

In the case of the uniform bilayer, the quantities defined
in Eqs. (2)–(4) and (6) are independent of the layer index l ,
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and in this case we suppress this index. But for the “interface”
geometry, which includes one layer with λ1 �= 0 and another
with λ−1 = 0, measurements performed on the two layers are
inequivalent.

The layer-resolved single-particle spectral function Al (ω)
is obtained by using the maximum entropy method to invert
the integral equation relating the imaginary time-dependent
Green’s function Gi=0(τ ) and A(ω):

Gi=0(τ ) = ∫
dω e−τω

1+eβω A(ω),

Gi(τ ) = 〈ĉi (τ )ĉ†
0(0)〉 = 〈eτHĉi (0)e−τHĉ†

0(0)〉. (7)

τ represents imaginary time; layer and spin indices are omit-
ted here for simplicity. The appropriate local G is used to get
Al (ω) for each layer l in the interface geometry.

We advance our key results in Figs. 1(a) and 1(b): (i) At
weak t3 there is a phase transition at finite temperature Tc

to a state with long-range charge order. In the bilayer case,
Tc initially increases with t3 as the charge order is enhanced
by increased coordination number. (ii) At T = 0, in both the
Holstein bilayer and the Holstein-metal interface, CDW order
is destroyed for t3 exceeding a quantum critical value. (iii) The
phase diagram of the interface geometry exhibits an “orbitally
selective CDW phase” (OSCDW) at low T and weak t3. The
specific description of how these phase diagrams are obtained
is given in the corresponding section containing the main
results of each model.

III. LANGEVIN SIMULATION ALGORITHM

We employ a recently developed Fourier accelerated
Langevin QMC method [47]. The partition function of the
Holstein Hamiltonian is written as a path integral Z =
Tre−βĤ = Tre−�τĤe−�τĤ · · · e−�τĤ where the inverse tem-
perature β = Lτ�τ is discretized along the “imaginary time”
axis. Complete sets of phonon eigenstates |{xi,τ }〉 are inserted
at each time slice, allowing the action of the phonon operators
to be evaluated. In so doing, we convert the quantum problem
into a classical problem in one higher dimension. Since the
fermion operators appear only as quadratic forms, we can
trace over the associated degrees of freedom, leaving the par-
tition function dependent only on the phonon field {xi,τ },

Z =
∫

Dxi,τ e−Sph [det M({xi,τ })]2 =
∫

Dxi,τ e−S, (8)

where the “phonon action”

Sph = �τ

2

[
ω2

∑
i

x2
i,τ +

∑
i

(xi,τ+1 − xi,τ

�τ

)2
]

(9)

and

S = Sph − ln(det M )2. (10)

Here M is a sparse matrix of dimension NLτ whose detailed
form is given in Ref. [47]. The square of the determinant
appears because up and down fermionic species have the same
coupling to the phonons. As a consequence, there is no sign
problem [48,49]. In order to sample the phonon coordinates,
instead of using the usual Metropolis algorithm, we evolve

{xi,τ } using the discretized Langevin equation, whose simplest
form is given by the first-order Euler discretization,

xi,τ,t+dt = xi,τ,t − dt
∂S

∂xi,τ,t
+

√
2 dt ηi,τ,t , (11)

where t is the Langevin time, and η is a Gaussian distributed
stochastic variable. In practice, in our simulations we make
use of a higher-order Runge-Kutta discretization [47] which
reduces the discretization error to O(dt2). Throughout this
work, the Langevin time step dt is chosen as 0.002, which has
been shown to be sufficiently small so that the Langevin time
discretization error is of the same order, or smaller than, statis-
tical errors in typical simulations [47]. It can be demonstrated
that, in the stationary limit, this Markov process generates
configurations which are drawn from the exponential of the
action of Eq. (10). The computational kernel is the calculation
of the partial derivatives of the action via

∂S

∂xi,τ,t
= ∂Sph

∂xi,τ,t
− 2Tr

∂M

∂xi,τ,t
M−1, (12)

where the trace is evaluated using a stochastic estimator [47].
Comparing to the conventional determinant quantum Monte
Carlo method, which is an O(N3Lτ ) approach, the Langevin
method scales as O(NLτ ) (although with a larger prefactor, so
that there is a crossover N at which the Langevin approach
becomes the more efficient method). This enables simulations
to reach considerably larger lattice sizes. In this work, we
analyze systems up to N = 800 sites. The efficiency of the
Langevin approach results from the sparsity of the matrix M
and the fact that computing the action of M−1 on a vector can
be done iteratively in a number of steps which does not grow
with N [47], with appropriate preconditioning. The Langevin
dynamics we employ is particularly effective in the adiabatic
limit of small phonon frequencies, where the density of ze-
ros of individual fermion determinants is negligible [50]. In
what follows we fix ω = 0.1, thus simulations are stable, and
statistical convergence is quickly obtained over the course of
Markov generation.

IV. HOLSTEIN BILAYER

We initially consider two identical layers with λ=0.2,

ω = 0.1 and the question of the destruction of CDW order via
the formation of charge singlets at large interlayer hopping
t3 before tackling the more complex issue of selective CDW
transitions.

Figure 2(a) gives the CDW structure factor Scdw as a func-
tion of t3 at low temperature for two lattice sizes. Below
t3,c ≈ 4.8, Scdw is large, and grows with lattice size, suggesting
long-range charge order. Figure 2(b) focuses on the interlayer
density-density d−1,1 and pair-pair p−1,1 correlations. For
small t3, only d−1,1 is large in magnitude, indicating coherence
in the charge order between the two layers. As t3 increases,
intersheet pair correlations p−1,1 develop. d−1,1 and p−1,1 then
become nearly degenerate at t3,c, signaling the loss of CDW
order and entry into the “charge singlet” phase. Together,
Figs. 2(a) and 2(b) motivate the bilayer phase diagram of
Fig. 1(a).

Although the QCP in this Holstein bilayer is closely anal-
ogous to that occurring in Hubbard and Heisenberg bilayers
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FIG. 2. (a) Charge structure factor SCDW and (b) p−1,1 and d−1,1

as a function of interlayer hopping t3 for the Holstein bilayer at low
temperature β = 16 and λ+1 = λ−1 = 0.2. SCDW shows significant
finite size effects in the ordered phase t3 � 4.8. Note that d−1,1

vanishes at t3 = 0, but jumps discontinuously to a nonzero value for
infinitesimal t3. Panels (c) and (d) are analogs of (a) and (b) for the
Holstein-metal interface. The two curves in (c) correspond to layers
l = +1 and l = −1, with λ+1 = 0.2 and λ−1 = 0, respectively, and
temperature β = 20. In all plots the phonon frequency is set at
ω = 0.1.

as well as the periodic Anderson model, in those cases the
electron-electron interaction gives rise to magnetic phases
which form due to the breaking of a continuous spin symme-
try. Thus in two-dimensional (2D) and quasi-2D geometries,
no long-range order is possible at finite T . In contrast, here
for the Holstein model, charge and pairing order are not
degenerate, as emphasized by the data of Fig. 2(b). CDW
correlations dominate at half-filling and a finite temperature
phase transition can occur, terminating at a QCP as shown in
Figs. 1(a) and 1(b). This distinction means that, in principle,
our characterization of the unordered phase as a “charge sin-
glet” is somewhat loose: in the usual spin singlet the x, y, z
components of the spin-spin correlations on the two layers (or
in the two orbitals) are equal. With that said, the equivalence
of p−1,1 and d−1,1 in the large t3 regime points to an emergent
restoration of the symmetry (see Appendix A). It is worth
noting that in the absence of t3, e.g., in the 2D Holstein model,
this restoration does not occur until the antiadiabatic limit is
reached, which requires very large values of ω [51].

Figure 3 provides details of the behavior of the CDW
structure factor. The top panel (a) gives raw values for SCDW

as a function of β at t3 = 2 for different lattice sizes. At low β

(high temperature), the correlation length ξ is short and SCDW

is independent of L. As β increases, so does ξ and when
ξ ∼ L, SCDW becomes sensitive to L. This separation of the
curves provides a crude estimate for βc, which may then be
determined precisely by finite size scaling (FSS).

In particular, in the vicinity of the critical temperature Tc,
the CDW structure factor measured on finite lattices of linear
dimension L should obey

SCDW ∼ Lγ /ν f
(T − Tc

Tc
L1/ν

)
. (13)

FIG. 3. (a) CDW structure factor SCDW dependence on the in-
verse temperature β and finite size scaling of the Holstein bilayer at
t3 = 2. Both the crossing plot (b) and the full data collapse (c) using
2D Ising critical exponents and βc 
 3.0.

As a consequence, when plotting SCDW/Lγ /ν as a function of
the inverse temperature β, different sizes L cross at β = βc

[Fig. 3(b)]. Following the scaling form given in Eq. (13) we
note that when plotted against (β − βc)L1/ν all data collapse
on a single curve [see Fig. 3(c) (and later for the Holstein-
metal interface in Fig. 5)]. In this analysis we have used the
critical exponents of the 2D Ising universality class (γ = 7/4
and ν = 1), since the CDW phase breaks a Z2 symmetry. A
discussion of the degree to which the collapse worsens, and
hence the accuracy with which the exponents can be deter-
mined, is given in Appendix B.

Using such scaling procedure for various values of the
interplane hybridization, allows us to extract the location of
the thermal transition, as compiled in Fig. 1(a), using two val-
ues of the electron-phonon interaction. In this geometry, the
critical temperature Tc initially increases as a consequence of
the larger coordination number when the planes are coupled—
the 2D to 3D crossover. However, at large t3 the critical
temperature decreases and ultimately vanishes at a quantum
critical point.

V. HOLSTEIN-METAL INTERFACE

We next consider the “Holstein-metal interface” in which
layer l = +1 has nonzero λ+1 but λ−1 = 0. The two layers
are in contact via hybridization. Here, in addition to the ques-
tion of charge singlet formation at large t3, quenching CDW
order, a different fundamental question arises: to what extent
do CDW correlations in layer l = +1 “penetrate” into layer
l = −1, and, conversely, is the CDW in layer l = +1 dis-
rupted by contact with the metallic layer? We choose λ = 0.2
and ω = 0.1 as in the previous section.
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FIG. 4. (a) CDW structure factor, SCDW, dependence on the inverse temperature, β, for layer l = 1 of the Holstein interface at t3 = 1;
(b) using 2D Ising critical exponents for finite size scaling (FSS). Panels (c) and (d) display the same but for the metallic layer l = −1. Panels
(e)–(h) display the corresponding data for t3 = 2. FSS in (f) and (h) show the same critical temperature for both layers at t3 = 2, in contrast to
t3 = 1, where layer l = +1 (b) exhibits a clear CDW transition whereas data for layer l = −1 (d) does not exhibit crossing when using Ising
critical exponents.

Figure 2(c) shows the CDW structure factor SCDW in the
two layers. SCDW

+1 decreases steadily with t3: additional quan-
tum fluctuations associated with contact with the metal reduce
charge order. In contrast, SCDW

−1 is nonmonotonic: charge order
is initially induced in the metal via contact with the Holstein
layer, but ultimately large t3 is inimical to it. The behavior of
SCDW

−1 provides a first clue that order in layer l = −1 might
occur only for intermediate t3. Figure 2(d) gives the interlayer
density-density d−1,1 and pair-pair p−1,1 correlations for this
interface geometry. The primary difference from the original
bilayer case is the gradual development of d−1,1 with t3. This
is a consequence of the absence of CDW in the metal layer
when t3 vanishes. The interlayer hopping thus must not only

couple the charge correlations, but also induce them in layer
l = −1. Similar to the bilayer case, d−1,1 and p−1,1 become
degenerate for large t3. This is again a signature of entering
into the charge singlet phase. We now turn to a more careful
FSS study of the layer-resolved SCDW

l . Our main interest is in
determining how long-range order in the two layers evolves
with t3. Figure 4 displays a detailed analysis of two represen-
tative values, t3 = 1 and t3 = 2. The former is a case when
SCDW

−1 is just beginning to develop, and the latter is when
SCDW

−1 has reached its maximal induced value [see Fig. 2(c)].
There is a superficial resemblance in the unscaled data for
both values of t3, which rise as the temperature is lowered (β
increases) and also increase with system size. A proper scaling

FIG. 5. Full data collapse of the scaled CDW order parameter versus scaled reduced temperature in the “Holstein interface” system. Only
the Holstein layer (layer 1) shows a single universal curve for t3 = 1 (a), while both collapse for t3 = 2t [panels (c) and (d)].
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FIG. 6. Crossing plot of SCDW
−1 /L7/4 (metallic layer) versus t3 at

λ = 0.2 and ω = 0.1, at low temperature (a) β = 10 and (b) β = 20,
for the Holstein-metal interface. Two crossings are seen in each case:
(a) t3 ∼ 1.3 and t3 ∼ 3.2 (β = 20) and (b) t3 ∼ 1.33 and t3 ∼ 3.1
(β = 10). All crossings are obtained with the critical exponents of the
two-dimensional Ising model consistent with breaking the discrete
Z2 symmetry. The metallic layer, l = −1, is in the CDW phase only
between the two values of t3 where the curves cross.

analysis, however, reveals a profound distinction. As seen in
Figs. 4(b) and 4(f), for both values of t3, the layer l = +1 with
nonzero electron-phonon coupling λ+1 = 0.2, has a scaled
structure factor L−7/4SCDW

+1 which exhibits a sharp crossing,
indicating a finite temperature transition to long-range CDW
order. When t3 = 2, this crossing occurs for the metallic layer
with λ−1 = 0 as well [Fig. 4(h)]. However, when t3 = 1 the
data for the metallic layer do not cross for the studied system
sizes [Fig. 4(d)], namely, L = 8–20 for both t3 values: The
L = 12, 16 and 20 curves converge at β > 5.4 instead of
crossing. The L = 8 data do not scale with the other lattice
sizes at all. This distinction becomes even more apparent in
Fig. 5, where a simultaneous data collapse for the scaled
structure factor can be made possible at the same temperature
for t3 = 2, while it is unattainable for t3 = 1.

We conclude that for t3 = 2, the interface geometry has
CDW order in both layers, with long-range correlations in the
metallic layer induced by proximity to the Holstein layer. For
t3 = t , the interface geometry exhibits orbital-selective CDW
order—the metal remains with only short-range correlation
despite its hybridization to the long-range CDW layer. This
conclusion is supported by the data in Fig. 6, where sweeps
of the scaled SCDW with t3 at two values β = 20, 10 show
a pair of crossings. For β = 20 these occur at t3 ∼ 1.3 and
t3 ∼ 3.2 and for β = 10 at t3 ∼ 1.33 and t3 ∼ 3.1. This analy-
sis indicates that long-range CDW order exists in layer l = −1
only between these values of t3. In particular, for t3 less than
the lower critical value, layer l = −1 is not in a CDW phase
while layer l = +1 is. All crossings are obtained with critical
exponents, of the two-dimensional Ising model, as expected
since a Z2 symmetry is being broken.

VI. SPECTRAL FUNCTIONS
AND DOUBLE OCCUPANCIES

Having examined structure factors and interlayer correla-
tors, we now turn to the spectral functions and the double
occupancies, both of which provide additional insight into
the ground state properties. The layer-resolved spectral func-
tions Al (ω), shown in Fig. 7, the many-body analog of the
single-particle density of states, provide confirming evidence
for the Holstein interface phase diagram of Fig. 1(b). In the top

FIG. 7. Spectral function A(ω) at β = 12 for several t3 values
cutting across the Holstein-metal interface phase diagram of Fig. 1.
Top: Small t3. Middle: Intermediate t3. Bottom: Large t3. Left and
right columns correspond to Holstein and metallic layers l = +1 and
l = −1, respectively.

row, for small t3, the Holstein layer l = +1 exhibits a CDW
gap. The gap at t3 = 0 is large; hybridization with the metal
produces peaks closer to ω = 0, but a smaller gap remains. On
the other hand, the metal layer l = −1 has finite Fermi surface
spectral weight A−1(ω = 0) �= 0, thus showing the OSCDW.
In the middle row, for intermediate t3, both layers have a gap,
consistent with the measurement of simultaneous long-range
CDW order. Finally, in the bottom row, for large t3, both lay-
ers have finite Fermi surface spectral weight Al (ω = 0) �= 0
for l = +1,−1. The system is in the charge singlet (charge
liquid) phase.

We note that although the bilayer and interface geometries
have many properties in common at large t3, their spectral
functions are different. There is a gap in the bilayer case,
but not for the interface. We have verified, with separate ex-
act diagonalization calculations, that for dimers (i.e., t3 � t)
with λ+1 = λ−1 one finds A(ω) is gapped, while when λ+1

is nonzero λ−1 = 0 one reproduces the behavior shown in
Figs. 7(c) and 7(f).

In a perfect CDW phase, half of the sites are doubly
occupied and half are empty, and D = 0.5. In the absence
of interactions, λ = 0, all four site occupation possibilities
|0〉, | ↑〉, | ↓〉, and | ↑↓〉 are equally likely and D = 0.25.
This is also the case in the charge singlet phase. Figure 8
shows D as a function of t3. Panel (a) is for the bilayer,
where D+1 = D−1, and panel (b) for the interface geometry
where the two are inequivalent. In both cases, D+1 is seen to
evolve between the CDW and singlet limits, although it never
attains the value D = 0.5 owing to the presence of quantum
fluctuations. For the interface, D−1 begins at the uncorrelated
value D−1 = 0.25 at t3 = 0 since λ−1 = 0. The double occu-
pancy evolution is quite similar to that of the structure factor,
Figs. 2(a) and 2(c). However, since D is a local observable,
it exhibits less sharp features than SCDW in the vicinity of
the QCP and thus only provides qualitative evidence for a
crossover between those two phases. Besides that, a simple
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FIG. 8. Double occupancy D shown as a function of interlayer
hopping t3 at low temperature β = 20. D is a local observable, and
its value is the same for L = 8 and L = 12 to within the symbol size;
we show the latter. (a) Holstein bilayer. (b) Holstein-metal interface.
In (a) the two layers are equivalent and a single curve is shown. In
(b) the green curve shows data on layer l = −1, whereas the gray
curve represents layer l = +1.

model which exhibits a layer-dependent trivial CDW forma-
tion with only electronic degrees of freedom, a bilayer ionic
model, already displays this characteristic nonmonotonicity
with growing hybridization (see Appendix C).

VII. DISCUSSION AND CONCLUSIONS

We have generalized our existing understanding of the
effect of interlayer/interorbital hybridization t3 on magnetic
order driven by an on-site electron-electron repulsion in
the Hubbard model to charge order originating in electron-
phonon interactions in the Holstein model. The two scenarios,
although qualitatively related, are quite distinct in detail owing
to the lower symmetry of the CDW order parameter relative
to the magnetic case. Despite this difference, and its con-
sequences such as the appearance of charge order at finite
temperature, the basic feature of the destruction of long-range
order in the limit of large hybridization is shown still to occur.
Indeed, one remarkable conclusion of our work is that t3
seems to restore the degeneracy of pairing and charge correla-
tions at the QCP.

Our most interesting observation is that the coexistence of
CDW order on a layer with nonzero electron-phonon coupling
λ with a metallic phase on the λ = 0 layer, which is trivially
true at t3 = 0, likely extends out to finite t3. This conclusion
is based on the inability to scale the charge correlations in the
λ = 0 layer unless t3 � 1.4 (for λ+1 = 0.2).

The possibility that charge order takes place selectively
parallels the known occurrence of distinct Mott transitions in
multiorbital Hubbard models in the coexistence of metallic
and insulating behavior. However, the connection is not exact,
since in principle a Mott transition might occur in the absence
of spontaneous symmetry breaking, whereas the insulating
CDW phase here breaks Z2 symmetry. With that said, the Mott
transition in its most common incarnation, the square lattice
Hubbard model, is always accompanied by long-range an-
tiferromagnetic order. Thus our work does provide a close
analog of the case of orbital-selective transitions in bands with
differing electron-electron interaction strengths.
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APPENDIX A: CONNECTION TO MAGNETIC LANGUAGE

In the repulsive 2D Hubbard model the dominant physics
at half-filling on a bipartite lattice is antiferromagnetic order,
characterized by the operators

Ŝ j
x = 1

2 ( Ŝ j
+ + Ŝ j

− ) = 1
2 ( ĉ†

j↑ĉ j↓ + ĉ†
j↓ĉ j↑ ),

Ŝ j
y = 1

2i ( Ŝ j
+ − Ŝ j

− ) = 1
2i ( ĉ†

j↑ĉ j↓ − ĉ†
j↓ĉ j↑ ),

Ŝ j
z = 1

2 ( n̂ j↑ − n̂ j↓ ) = 1
2 ( ĉ†

j↑ĉ j↑ − ĉ†
j↓ĉ j↓ ). (A1)

From these relations, and as a consequence of the spin SU(2)
symmetry of the Hubbard model,

〈Ŝ j
+Ŝi

− + Ŝ j
−Ŝi

+〉 = 4
〈
Ŝ j

z Ŝi
z

〉
, 〈ĉ†

j↑ĉ j↓ĉ†
i↓ĉi↑ + ĉ†

j↓ĉ j↑ĉ†
i↑ĉi↓〉

= 〈(ĉ†
j↑ĉ j↑ − ĉ†

j↓ĉ j↓)( ĉ†
i↑ĉi↑ − ĉ†

i↓ĉi↓ )〉. (A2)

If we perform a particle-hole transformation to the down
spin fermions,

ĉ†
j↓ → (−1) j ĉ j↓,

n̂ j↓ → ( 1 − n̂ j↓ ),

Ŝ j
+ = ĉ†

j↑ĉ j↓ → (−1) j ĉ†
j↑ĉ†

j↓ ≡ (−1) j�̂
†
j ,

Ŝ j
z = 1

2 (n̂ j↑ − n̂ j↓) → 1
2 (n̂ j↑ + n̂ j↓) ≡ n̂ j (A3)

we conclude that

−〈�̂†
j�̂i + �̂i �̂

†
j〉 = 〈( n̂ j − 1 )( n̂i − 1 )〉 (A4)

assuming that sites i and j are on opposite sublattices.
If, finally, assuming we are at half-filling, so that 〈n̂ j〉 = 1,

−〈�̂†
j�̂i + �̂i �̂

†
j〉 = 〈n̂ j n̂i − 1〉. (A5)

This shows that the two correlation functions of Eq. (5)
are equal: p1,−1 = d1,−1. The merging of the two curves of
Figs. 2(c) and 2(d) at a common value reflects a restoration of
an SU(2) symmetry of the Hubbard model. It is interesting that
this occurs even though the correlators are not in the singlet
limit of −1/4 (due to the fact that we are not in Holstein
analog of the large U limit).

APPENDIX B: EXTRACTING
THE CRITICAL EXPONENTS

We argue that owing to the symmetry of the order parame-
ter of the CDW phase, we make use of the critical exponents
pertaining to the 2D Ising universality class in order to sim-
plify the FSS of the CDW structure factor SCDW. Here, we
justify this choice by quantitatively extracting the best set of
exponents ν and γ that scales the curves according to the
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FIG. 9. Contour plot of the sum of squared residuals of the least-
squares fit S(ν, γ ) of the scaled data for the CDW structure factor
SCDW of the Holstein bilayer at t3 = 2 (see Fig. 3 for the original
data). A 16th-order polynomial is used to fit the data set, and the
critical inverse temperature used is βc = 3.02. The white marker
denotes the minimum S(ν, γ ) which occurs at ν = 0.95 and γ = 1.7,
agreeing with the 2D Ising exponents.

functional form in Eq. (13). We start by using the scaled data
in a large range of critical exponents; subsequently, for each
pair of (ν, γ ), we proceed with a high-order polynomial fitting
of the scaled data, storing the residual S(ν, γ ) of the fitting
procedure. The set of exponents that minimizes S(ν, γ ) is
taken as those that characterize the transition. The rationale
is that if the dataset is well collapsed for a given (ν, γ ),

FIG. 10. Contour plot of the sum of squared residuals of the
least-squares fit S(ν, γ ) of the scaled data for the CDW structure
factor SCDW of the Holstein interface; top row at t3 = 2; bottom row
at t3 = 1; left column: layer l = +1; right column: layer l = −1.
(See Fig. 4 for the original data.) A 16th order polynomial is used
to fit the data set, and the critical inverse temperatures used are
listed in Fig. 5. The white marker denotes the minimum S(ν, γ ) in
the displayed range of ν and γ . In panels (a), (b), and (c), mini-
mum residuals are at (ν = 0.95, γ = 1.69), (ν = 1.03, γ = 1.76),
and (ν = 0.89, γ = 1.66), respectively, whereas in panel (d) the
minimum occurs at ν = 0.83, γ = 1.11. Unlike panels (a), (b), and
(c), the t3 = 1 metallic layer of panel (d) does not fit the known Ising
exponents, suggesting the absence of order in this case.

a high-order polynomial fit (with the number of degrees of
freedom much smaller than the number of data points) will
turn out to have a fairly small error.

Using this procedure, we show in Fig. 9 the contour
plot S(ν, γ ) for the data corresponding to the Holstein bi-
layer at t3 = 2. The minimum residual is indicated by the
white marker. By observing its variation with slightly differ-
ent critical inverse temperature βc, and different polynomial
orders used in the fits, we estimate ν = 0.95 ± 0.07 and
γ = 1.7 ± 0.1, in agreement with the 2D Ising exponents
ν2D Ising = 1 and γ2D Ising = 7/4. The formation of the CDW
phase establishes long-range order by breaking the Z2 sublat-
tice symmetry, which is the 2D Ising universality class.

We apply the same analysis to the interface model, as
shown in Fig. 10 (see Figs. 4 and 5 for original data). Both
layers at t3 = 2 as well as layer l = +1 at t3 = 1 minimize
the residual close to the 2D Ising critical exponents. However,
in the case of layer l = −1 at t3 = 1, the minimum residue is
located at ν = 0.83, γ = 1.11 which is far from the 2D Ising
exponents. This supports our conclusion that there is no phase
transition at t3 = 1 in layer l = −1 since a transition into a
phase with long-range CDW order necessarily breaks the Z2

symmetry and must be in the Ising universality class.

APPENDIX C: INDUCED CDW IN IONIC
HUBBARD MODEL

We can get additional insight into the Holstein interface
by considering the following noninteracting, spinless, tight-
binding Hamiltonian:

ĤBI-M = − t
∑
〈i j〉,l

( ĉ†
i,l ĉ j,l + H.c.) + δ

∑
i

(−1)in̂i,1

− t3
∑

j

( ĉ†
j,1ĉ j,−1 + H.c.). (C1)

FIG. 11. Solution of the tight-binding Hamiltonian, Eq. (C1).
(a) Solid curves: occupations ρ on the +δ sites of the insulating band
as functions of the magnitude of the staggered potential δ; dashed
curves: occupations on the partner sites in the metallic band to which
those +δ sites are hybridized by t3. (b) Solid curve: occupations
on the +δ sites of the insulating band as a function of interlayer
hybridization t3; dashed curves: occupations on the partner sites in
the metallic band to which those +δ sites are hybridized by t3.
The staggered potential in this case is δ = 1.25. In both panels the
linear lattice size and the inverse temperature are L = 12 and β = 4,
respectively.
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Equation (C1) describes two bands, labeled by l = ±1, each
with hopping t on a 2D square lattice, which are hybridized
with each other by t3. Band l = −1 is metallic. At t3 = 0
it has the usual 2D dispersion relation ε(k) = −2t ( cos kx +
cos ky ). Band l = +1 is made insulating by the staggered
potential δ, so that at t3 = 0 its dispersion relation has two
branches, E±(k) = ±

√
ε(k)2 + δ2. Both bands of Eq. (C1) are

half-filled (the chemical potential μ = 0).
In addition to inducing a band gap 2δ in layer l = +1,

the staggered potential also creates a CDW phase, with low
occupancy +δ and high occupancy −δ sites. Here, the CDW
order is trivial, in the sense of being induced by an external
field, as opposed to arising spontaneously in a symmetric
Hamiltonian like the Holstein model. Nevertheless we can still
examine how this “artificial” CDW in layer l = +1 affects the
site occupations in the metallic band l = −1.

Figure 11(a) gives the occupations on the +δ sites of band
l = +1 as functions of δ for different t3. As δ grows, the
occupation of the high-energy sites in layer l = +1, which are
directly coupled to the staggered field, get increasingly small

(solid curves). In turn, the occupations of the partner sites on
layer l = −1 which are not coupled to δ are also shifted from
ρ = 1

2 . These occupations increase in order to take advantage
of the decrease in the Pauli blocking. What is interesting in the
context of the simulations of the Holstein bilayers in the main
part of this paper is that, while the layer l = +1 occupations
steadily return to half-filling with increasing t3, the evolution
of the layer l = −1 occupations is instead nonmonotonic. The
deviations of the occupations from half-filling first grow with
t3, but then shrink.

This nonmonotonicity is seen more clearly in Fig. 11(b)
which plots similar occupations as a function of t3 for a fixed
δ. The maximum at intermediate t3 ∼ 2.28 is reminiscent of
the behavior of Fig. 2(c), which similarly shows a maximum
in the induced CDW order at intermediate t3 in the metallic
layer of the Holstein interface model. Indeed, the agreement
between the values of t3 at which the induced order is maximal
is remarkably quantitative. To within error bars, the positions
of the maxima are the same, although the falloff at large t3 is
more gradual in the BI-metal interface case.
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