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Given a critical quantum spin chain with a microscopic Lie group symmetry, corresponding, e.g., to U (1)
or SU (2) spin isotropy, we numerically investigate the emergence of Kac-Moody symmetry at low energies
and long distances. In that regime, one such critical quantum spin chain is described by a conformal field
theory where the usual Virasoro algebra associated with conformal invariance is augmented with a Kac-Moody
algebra associated with conserved currents. Specifically, we first propose a method to construct lattice operators
corresponding to the Kac-Moody generators. We then numerically show that, when projected onto low-energy
states of the quantum spin chain, these operators indeed approximately fulfill the Kac-Moody algebra. The
lattice version of the Kac-Moody generators allows us to compute the so-called level constant and to organize
the low-energy eigenstates of the lattice Hamiltonian into Kac-Moody towers. We illustrate the proposal with
the XXZ model and the Heisenberg model with a next-to-nearest-neighbor coupling.
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I. INTRODUCTION

Near a continuous phase transition, microscopically differ-
ent systems may display low-energy, long-distance behavior
that is remarkably similar. Such universality is explained by
saying that those systems flow to the same fixed point of
the renormalization group (RG) [1]. In 1+1 dimensions, the
universality class of a (massless) RG fixed point is often
described by a conformal field theory (CFT) which, in turn,
is completely characterized by a set of parameters known as
the conformal data [2,3].

In this work we are concerned with critical quantum spin
chains, as specified in terms of a local lattice Hamiltonian in
one spatial dimension. Given one such Hamiltonian, a natural
goal is to numerically compute the conformal data of the
emergent 1+1 CFT that describes the behavior of the spin
chain at long distances and low energies—in other words, to
numerically characterize the emergent universal behavior of
the phase transition realized by the quantum spin chain. For
this purpose, one may follow an approach, initiated in the
1980s [4–7], that is based on the operator-state correspon-
dence. Given a 1+1 CFT on the circle, this correspondence
establishes that each simultaneous eigenstate |ψCFT

α 〉 of the
Hamiltonian HCFT and momentum PCFT of the CFT on the
circle corresponds to a scaling operator ψCFT

α (an operator that
transforms covariantly under scale transformations). More-
over, the energy and momentum of the state |ψCFT

α 〉 relate
to the universal scaling properties of the operator ψCFT

α . Im-
portantly, the low-energy states of a critical quantum spin
chain on the circle are organized as in the emergent CFT.
Accordingly, Cardy and others [4–7] proposed that one could
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extract the conformal data by simply studying the low-energy
states of the critical quantum spin chain. Over the years,
several other authors have contributed additional insights into
this strategy. A crucial step was to identify operators on
the lattice with operators of the CFT. In particular, certain
lattice operators can be identified with Virasoro generators
of the conformal symmetry in the CFT [8–14]. This means
that such lattice operators act on the low-energy states of the
critical quantum spin chain approximately (up to finite-size
corrections) in the same way that the Virasoro generators
act on the corresponding states in the CFT. The lattice Vi-
rasoro generators allow us to see the emergence of conformal
symmetry directly on the lattice, offering a way to system-
atically identify primary operators and conformal towers in
the low-energy spectrum of a quantum critical spin chain
[14–16].

In some CFTs, conformal symmetry is enhanced to a larger
symmetry, which further relates different Virasoro primary
operators and conformal towers. Extended symmetries exist in
many CFTs that describe lattice models, such as quantum spin
chains [17,18], classical statistical-mechanics models [19,20],
and edge modes of topological orders [21,22]. One important
implication of the extended symmetry is that it reduces the
number of independent primary operators in the conformal
data. In the cases known as rational CFTs [23], the number
of primary operators with respect to the extended symmetry
is finite, while the number of Virasoro primary fields can be
infinite. This makes the extraction of complete conformal data
possible. A prominent example is when conformal symmetry
is enhanced by a global symmetry with Lie group G. In this
case, scaling operators are organized by an extension of the
Virasoro algebra, the Kac-Moody algebra [24,25], denoted by
gk , where g is the Lie algebra of the the group G and k ∈ Z is
the level constant. A remarkable consequence of the extension
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is that the global symmetry of the CFT becomes G × G, which
acts independently on left and right moving fields.

In this paper we investigate how the Kac-Moody symmetry
emerges from critical quantum spin chains with a Lie group
symmetry G. We construct lattice operators that correspond
to the generators of the Kac-Moody algebra. We numerically
confirm that the global symmetry is enhanced to G × G in the
low-energy subspace and that the eigenstates can be organized
into Kac-Moody towers. We test our proposal with the XXZ
model for the G = U (1) case and the Heisenberg model with
next-to-nearest-neighbor interactions for the G = SU (2) case.
In both cases we find that the proposed lattice Kac-Moody
generators act on the low-energy states as their CFT coun-
terparts in the thermodynamic limit. In particular, we can
extract the level constant k by computing the commutators of
lattice Kac-Moody generators in the low-energy subspace. In
previous work by some of the authors, lattice operators that
correspond to generators of another form of extended sym-
metry, namely superconformal symmetry [26], were found
numerically. Here, in contrast, we provide an analytical ansatz
for the lattice Kac-Moody generators. For the specific case of
the XXZ model, which is an integrable model, the lattice Kac-
Moody generators can also be found via bosonization [27]
(as reviewed in Appendix A), and we can use this previous
result to further validate our proposal. In contrast, no previous
results appear to be known for the Heisenberg model with
next-to-nearest-neighbor interactions. The performance of our
method, which treats all models on the same footing, is seen
to not rely on integrability.

The rest of the paper is organized as follows. In Sec. II, we
review the conformal symmetry and the Virasoro algebra in
a CFT, as well as the approximate lattice version of Virasoro
generators. In Sec. III, we consider the Kac-Moody algebra
for the Abelian group G = U (1). We first review the free
boson CFT and the action of the Kac-Moody algebra, and then
propose our method to build an approximate lattice version of
the Kac-Moody generators. We also present numerical tests
of the lattice Kac-Moody generators in the XXZ quantum spin
model. In Sec. IV we generalize the formalism to general non-
Abelian group G. We will focus on G = SU (2) and construct
an approximate lattice version of the Kac-Moody generators
for the Heisenberg model with next-to-nearest-neighbor inter-
actions. In Sec. V we conclude with discussions and future
directions.

II. CONFORMAL SYMMETRY AND LATTICE
VIRASORO GENERATORS

In this section we review conformal symmetry, the Vira-
soro algebra, and its approximate realization in the low-energy
states of a quantum critical spin chain; see Ref. [14] and
Ref. [24] for an introduction. Throughout this paper, we use
superscript CFT to denote objects in a CFT, e.g., T CFT, LCFT

n ,
Jα,CFT

n , and in this way distinguish them from the correspond-
ing objects in a lattice, e.g., T , Ln, Jα

n .

A. Virasoro algebra

Consider a conformal field theory in 1+1 dimensions.
Conformal transformations on the plane are generated by

Virasoro generators LCFT
n , L̄CFT

n (n ∈ Z) that satisfy the Vira-
soro algebra,

[
LCFT

n , LCFT
m

] = (n − m)LCFT
n+m + cCFT

12
n(n2 − 1)δn+m,0, (1)

[
L̄CFT

n , L̄CFT
m

] = (n − m)L̄CFT
n+m + cCFT

12
n(n2 − 1)δn+m,0, (2)[

LCFT
n , L̄CFT

m

] = 0. (3)

In particular, dilations and rotations of the plane are generated
by DCFT = LCFT

0 + L̄CFT
0 and RCFT = LCFT

0 − L̄CFT
0 , respec-

tively. The Hilbert space of the CFT is supported on circles
around the origin. Any state in the Hilbert space can be
spanned by simultaneous eigenstates |ψCFT

α 〉 of LCFT
0 and

L̄CFT
0 ,

LCFT
0

∣∣ψCFT
α

〉 = hCFT
α

∣∣ψCFT
α

〉
, L̄CFT

0

∣∣ψCFT
α

〉 = h̄CFT
α

∣∣ψCFT
α

〉
, (4)

where (hCFT
α , h̄CFT

α ) are the holomorphic and anti-holomorphic
conformal dimensions of the state. The eigenvalues of DCFT

and RCFT are �CFT
α = hCFT

α + h̄CFT
α and sCFT

α = hCFT
α − h̄CFT

α ,
known as scaling dimensions and conformal spins, respec-
tively.

Setting n = 0 in Eq. (1), we see that acting with LCFT
m on a

state changes the holomorphic dimension by −m. Therefore,
LCFT

m lowers the scaling dimensions and the conformal spins
by m. Similarly, L̄CFT

m lowers the scaling dimensions by m and
increases the conformal spins by m. A Virasoro primary state
|φCFT

α 〉 is defined such that its scaling dimension cannot be
lowered,

LCFT
n

∣∣φCFT
α

〉 = 0, L̄CFT
n

∣∣φCFT
α

〉 = 0, ∀n > 0. (5)

Each primary state is associated with a Virasoro conformal
tower, which contains that primary state as well as all its Vira-
soro descendant states. The descendant states are obtained by
acting successively with raising operators LCFT

m , L̄CFT
m (m < 0)

on the primary state.

B. CFT on the cylinder

In 1+1 dimensions one can use a conformal transforma-
tion to map the CFT from the plane to a cylinder S1 × R,
where the axial direction is the imaginary time direction with
coordinate τ ∈ (−∞,∞), and the angular direction is the
spatial direction with coordinate x ∈ [0, L). The Hilbert space
is supported on the equal-time slices. We will focus on the
τ = 0 slice, and denote the fields with its spatial coordinate x.
In any CFT, there exist the holomorphic and anti-holomorphic
energy-momentum tensors T CFT and T̄ CFT, with conformal
dimensions (2,0) and (0,2), respectively. The Hamiltonian and
momentum can be expressed as an integral of the stress tensor,

HCFT =
∫ L

0
dx hCFT(x), (6)

PCFT =
∫ L

0
dx pCFT(x), (7)
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where

hCFT(x) = 1

2π
[T CFT(x) + T̄ CFT(x)], (8)

pCFT(x) = 1

2π
[T CFT(x) − T̄ CFT(x)]. (9)

The Virasoro generators are the Fourier modes of T CFT and
T̄ CFT,

LCFT
n = L

(2π )2

∫ L

0
dx e+inx 2π

L T CFT(x) + cCFT

24
δn,0,

L̄CFT
n = L

(2π )2

∫ L

0
dx e−inx 2π

L T̄ CFT(x) + cCFT

24
δn,0.

(10)

We may express the Hamiltonian and momentum as

HCFT = 2π

L

(
LCFT

0 + L̄CFT
0 − cCFT

12

)
, (11)

PCFT = 2π

L

(
LCFT

0 − L̄CFT
0

)
. (12)

We see that each simultaneous eigenstate |ψCFT
α 〉 of HCFT and

PCFT has energy and momentum

ECFT
α = 2π

L

(
�CFT

α − cCFT

12

)
, (13)

PCFT
α = 2π

L
sCFT
α . (14)

It is also useful to express the Fourier mode of the Hamilto-
nian density as a linear combination of Virasoro generators
LCFT

n and L̄CFT
−n ,

LCFT
n + L̄CFT

−n = HCFT
n ≡ L

2π

∫ L

0
dx e+inx 2π

L hCFT(x). (15)

These operators transform states within the same conformal
tower of the CFT.

C. Lattice Virasoro generators

Given a critical quantum spin chain on a circle with Hamil-
tonian

H =
∑

j

h j, (16)

its low-energy eigenstates |ψα〉 are in one-to-one correspon-
dence with CFT states |ψCFT

α 〉. The energies and momenta of
|ψα〉 are related to the scaling dimensions and conformal spins
by [4–6]

Eα = A + B
2π

N

(
�CFT

α − cCFT

12

)
+ O(N−x ), (17)

Pα = 2π

N
sCFT
α , (18)

where the O(N−x ) with x > 1 is the nonuniversal finite-size
correction. These relations are direct lattice versions of ex-
pressions (13) and (14) for the CFT, in that upon identifying
the circle size L with the size N of the spin chain, we could
rewrite them as Eα = A + BEα + O(N−x ) and Pα = PCFT

α .
From Eqs. (17) and (18), one may extract approximate scaling
dimensions �α and exact conformal spins sα from the low-
energy spectrum of the spin chain. In particular, the constants

A, B (which depend on how the lattice Hamiltonian is nor-
malized) may be determined by demanding that the scaling
dimensions of the identity operator and the stress tensor be
�1 = �CFT

1 = 0 and �T = �CFT
T = 2 [14]. Notice that for a

CFT that describes the continuum limit of a local critical spin
chain Hamiltonian, the states |1CFT〉 and |T CFT〉 must exist,
so the above procedure to determine constants A and B can
always be applied.

The lattice operator Hn that corresponds to HCFT
n is the

Fourier mode of the lattice Hamiltonian density hj ,

Hn = N

B

∑
j

ein j 2π
N h j ∼ HCFT

n . (19)

There is both analytical and numerical evidence that Hn acts
on the low-energy eigenstates of the lattice Hamiltonian as
HCFT

n acts on the corresponding CFT states [8–14]. We stress
that the lattice Virasoro generators Hn only (approximately)
satisfy the algebra obeyed by the CFT operators HCFT

n when
projected onto the low-energy eigenstates of the quantum spin
chains. At the level of lattice operators, it is easily checked
(e.g., numerically) that the Hn operators do not satisfy the
Virasoro algebra. Similar to the O(N−x ) term in Eq. (17),
there are also nonuniversal finite-size corrections in the matrix
elements of Hn, which can be reduced by an extrapolation to
the thermodynamic limit (that is, the limit of an infinitely large
spin chain, N → ∞).

Since the lattice Virasoro generators Hn connect low-
energy eigenstates within the same conformal tower, they can
be used to identify Virasoro primary states and their conformal
towers on the lattice [14].

III. LATTICE REALIZATION OF KAC-MOODY ALGEBRA:
THE U (1) CASE

In this section we first review the U (1) Kac-Moody algebra
and its manifestation in the free compactified boson CFT.
We then consider a critical quantum spin chain with U (1)
symmetry and construct a lattice version of the Kac-Moody
generators. Finally we numerically verify the actions of the
proposed lattice Kac-Moody generators in the XXZ model.

A. U (1) Kac-Moody algebra

We consider a CFT with a global U (1) symmetry, with
conserved U (1) charge QCFT, which is an integral over space
of a conserved local current qCFT(x),

QCFT =
∫

dx qCFT(x). (20)

In a CFT, it turns out that the conserved current can be further
divided into holomorphic and anti-holomorphic parts which
are separately conserved,

qCFT(x) = JCFT(x) + J̄CFT(x), (21)

where JCFT and J̄CFT are current operators with conformal
dimensions (1,0) and (0,1), respectively. Since both current
operators satisfy conservation laws, namely ∂̄JCFT = 0 and
∂ J̄CFT = 0, there is an additional conserved charge

MCFT =
∫

dx mCFT(x), (22)
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where

mCFT(x) = JCFT(x) − J̄CFT(x). (23)

The global symmetry is therefore U (1) × U (1).
For later reference, let us combine Eqs. (21)–(23) and the

conservation relations above, to obtain

−i∂τ qCFT(x) = ∂xmCFT(x). (24)

Then, upon substituting the time derivative with the commu-
tator by the Hamiltonian we further obtain

i[HCFT, qCFT(x)] = ∂xmCFT(x). (25)

Similarly to Eq. (10), which defined the Virasoro gen-
erators, we may define the generators of the Kac-Moody
algebra by

JCFT
n = 1

2π

∫ L

0
dx e+inx 2π

L JCFT(x), (26)

J̄CFT
n = 1

2π

∫ L

0
dx e−inx 2π

L J̄CFT(x). (27)

They satisfy the u(1)k Kac-Moody algebra for some value k ∈
Z, known as the level constant,[

JCFT
m , JCFT

n

] = kmδm+n,0,[
J̄CFT

m , J̄CFT
n

] = kmδm+n,0,[
JCFT

m , J̄CFT
n

] = 0.

(28)

The Virasoro generators and Kac-Moody generators satisfy
the commutation relations[

LCFT
m , JCFT

n

] = −nJCFT
m+n,[

L̄CFT
m , J̄CFT

n

] = −nJ̄CFT
m+n,

(29)

which is compatible with the fact that JCFT is a Virasoro
primary operator with conformal dimensions (1,0). Setting
m = 0 in Eq. (29), we see that JCFT

m changes the holomorphic
dimension by −m, as what LCFT

m does. Therefore, JCFT
m is a

raising operator with negative m, and a lowering operator with
positive m. When m = 0, JCFT

0 commutes with LCFT
0 and they

have the same eigenstates. This reflects the fact that JCFT(x)
is a conserved current.

In analogy with the definition of Virasoro primary states in
Eq. (5), we define Kac-Moody primary states,

JCFT
n

∣∣φCFT
α

〉 = 0, J̄CFT
n

∣∣φCFT
α

〉 = 0, ∀n > 0. (30)

A Kac-Moody tower consists of a Kac-Moody primary state
|φCFT

α 〉 with scaling dimension �α and conformal spin sα and
their descendent states, obtained from the primary state by
sequentially acting with the generators.

For instance, examples of Kac-Moody descendants include∣∣φCFT
β

〉 = JCFT
−n

∣∣φCFT
α

〉
,

∣∣φCFT
β

〉 = J̄CFT
−n

∣∣φCFT
α

〉
, for n > 0,

(31)
with

�β = �α + n, sβ = sα ± n, for n > 0. (32)

It can be shown that all Kac-Moody primary states are
also Virasoro primary states. However, there are Virasoro
primary states that are not Kac-Moody primary states. For

FIG. 1. Spectra of Q = 0 sector (top) and Q = 1 sector (bottom)
of the free boson theory at compactification radius R = 2 and some
examples of the actions of Kac-Moody generators JCFT

n and J̄CFT
n on

the low-energy eigenstates. States marked with diamonds are Vira-
soro primary states. Different Virasoro towers are shown in different
colors. States marked with dots on top of the diamonds are the
primary states with respect to the Kac-Moody symmetry in these two
sectors. For the purpose of visibility, we shifted states horizontally to
better show the energy-momentum degeneracies. It should be kept in
mind that in these figures the conformal spin S is quantized to only
take exact integer numbers.

example,

|JCFT〉 = JCFT
−1 |1CFT〉, (33)

|J̄CFT〉 = J̄CFT
−1 |1CFT〉, (34)

|JJ̄CFT〉 = JCFT
−1 J̄CFT

−1 |1CFT〉, (35)

that is, the states corresponding to the holomorphic current
JCFT, the anti-holomorphic current J̄CFT, and their composite
operator JJ̄CFT, which can be seen to be Virasoro primary
states, all belong to the same Kac-Moody tower.

B. Free compactified boson CFT

A simple example of CFT that has Kac-Moody symmetry
is a free compactified boson CFT (Fig. 1), with action

SCFT = 1

2

∫
dτdx[(∂τφ)2 + (∂xφ)2], (36)

where φ is identified with φ + 2πR, and R is the compactifica-
tion radius. The holomorphic and anti-holomorphic conserved
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currents read

JCFT = i∂φ, J̄CFT = i∂̄φ, (37)

where ∂ = (∂τ + i∂x )/2 and ∂̄ = (∂τ − i∂x )/2 are holomor-
phic and anti-holomorphic derivatives. In this CFT, the
conservation relations ∂̄JCFT = 0 and ∂ J̄CFT = 0 follow from
the equation of motion ∂∂̄φ = 0. Now, using the definition of
Kac-Moody generators in Eqs. (26) and (27) and the canoni-
cal commutation [φ(x), ∂τφ(y)] = δ(x − y), we can verify the
Kac-Moody algebra,[

JCFT
m , JCFT

n

] = [
J̄CFT

m , J̄CFT
n

] = mδm+n,0,[
JCFT

m , J̄CFT
n

] = 0,
(38)

which corresponds to level constant k = 1.
The free compactified boson CFT has infinitely many pri-

mary states with respect to the u(1)1 Kac-Moody algebra.
They are vertex operators V CFT

Q,M labeled by integers Q and M,
with scaling dimensions and conformal spins

�CFT
VQ,M

= Q2

R2
+ R2M2

4
, SCFT

VQ,M
= QM, Q, M ∈ Z, (39)

where Q and M are the eigenvalues of QCFT and MCFT,
respectively.

C. Lattice Kac-Moody generators

Consider now a critical quantum spin chain on the circle
with Hamiltonian H and global U (1) symmetry (see, e.g.,
the XXZ model below). Our goal is to construct lattice op-
erators Jn, J̄m that correspond to the Kac-Moody generators
JCFT

n , J̄CFT
m . On the lattice, let the conserved U (1) charge be

Q =
∑

j

q j, (40)

which commutes with the Hamiltonian [H, Q] = 0. We iden-
tify Q with the CFT charge operator QCFT in Eq. (20), and q
with the CFT current density qCFT in Eq. (21). In order to find
the Kac-Moody generators, one also needs to find the lattice
operator m corresponding to mCFT in Eq. (23).

Our proposal is that the corresponding lattice operators
should satisfy an equation analogous to Eq. (25), after re-
placing the spatial derivative ∂x with a finite difference; see
Eq. (41) below. Then by Eqs. (21)–(23), the lattice operators
Jj and J̄ j that correspond to JCFT and J̄CFT can be identified
as in Eq. (42) below. Finally the lattice operators Jn and J̄n

corresponding to the Kac-Moody generators are constructed
as Fourier modes in Eq. (43).

i[H, q j] = mj − mj−1, (41)

Jj = q j + mj

2
, J̄ j = q j − mj

2
, (42)

Jn =
N∑
j

ei jn 2π
N Jj, J̄n =

N∑
j

e−i jn 2π
N J̄ j . (43)

Equations (41), (42), and (43) are the main proposal of
this paper (together with their generalization below to the
non-Abelian case).

Let us elaborate on the form of mj when H is a nearest-
neighbor and a next-to-nearest-neighbor Hamiltonian. These
specializations will be useful in the applications to specific
lattice models.

1. Nearest-neighbor Hamiltonian

Consider a nearest-neighbor Hamiltonian H = ∑
j h j, j+1

with a global symmetry that is realized on-site with charge
Q = ∑

j q j . It follows from [H, Q] = 0 that for any pair
( j, j + 1) of contiguous sites,

[h j, j+1, q j + q j+1] = 0. (44)

The left-hand side of Eq. (41) then becomes

i[H, q j] = i([h j−1, j, q j] + [h j, j+1, q j])

= i(−[h j−1, j, q j−1] + [h j, j+1, q j]), (45)

and matching it with the right-hand side of Eq. (41), we obtain

mj = i[h j, j+1, q j], (46)

which is our proposal as a lattice version of the locally con-
served current mCFT(x).

2. Next-to-nearest-neighbor Hamiltonian

As a second example, consider a next-to-nearest-neighbor
Hamiltonian H = ∑

j h j−1, j, j+1, again with a global symme-
try that is realized on-site with charge Q = ∑

j q j . To simplify
the notation, in the following h( j) := h j−1, j, j+1.

At any set ( j − 1, j, j + 1) of three consecutive sites,

[h( j), q j−1 + q j + q j+1] = 0, (47)

we can check that

i
[
H,

q j + q j+1

2

]
= 1

2
(mj+1 − mj−1), (48)

where

mj = i([h( j+1), q j] − [h( j), q j+1]). (49)

This is a discrete version of Eq. (25) in the case of next-to-
nearest-neighbor Hamiltonian. Therefore we identify mj in
Eq. (49) with mCFT(x).

To reiterate, given a local Hamiltonian H with a micro-
scopic global symmetry realized on-site, that is with charge
Q = ∑

j q j , our proposal gives a concrete way of constructing
the lattice current density mj via Eq. (41) and subsequently
lattice Kac-Moody generators Jn and J̄n via Eqs. (42) and (43).

D. Example: XXZ model

As a test of our construction of lattice current generators
Jn and J̄n for a critical quantum spin chain with a global U (1)
symmetry, we consider the XXZ model

H = − 2γ

π sin γ

N∑
j=1

(
SX

j SX
j+1 + SY

j SY
j+1 − cos γ SZ

j SZ
j+1

)
(50)

with anisotropy γ ∈ [0, π ) and Sα = σα/2, where σ x, σ y,
and σ z stand for the Pauli matrices. This model displays
indeed a global U (1) symmetry realized on-site, generated
by the charge operator Q = ∑N

j=1 SZ
j , which commutes with
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the Hamiltonian, [Q, H] = 0. In the continuum limit the XXZ
model is equivalent via bosonization to the Gaussian model of
a free massless boson compactified on a circle with radius R =√

2π/(π − γ ) and the symmetry algebra in the corresponding
CFT theory is the Kac-Moody algebra with g = u(1).

As discussed in the last section, we use Eq. (46) to compute
the lattice current mj ,

mj = 2γ

π sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)
. (51)

We note that the lattice currents q j and mj for the XXZ model
can also be understood using bosonization, as discussed in
Appendix A.

Following Eq. (79) the lattice versions of Kac-Moody gen-
erators can be constructed as

Jn =
N∑

j=1

e+i jn 2π
N

1

2

[
SZ

j + 2γ

π sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)]
,

J̄n =
N∑

j=1

e−i jn 2π
N

1

2

[
SZ

j − 2γ

π sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)]
.

(52)

To numerically check our proposal, we use exact diago-
nalization to find a set of low-energy eigenstates |ψα〉. We
simultaneously diagonalize the Hamiltonian and the transla-
tion operator with periodic boundary conditions to get the
scaling dimensions �α and conformal spins sα . We also sort
the low-energy eigenstates into different sectors according to
the eigenvalues of Q = ∑

j SZ
j . As an example, in Fig. 2 the

low-energy spectra of the XXZ spin chain of 20 sites with
γ = π/2 in the Q = 0 sector and Q = 1 sector are plotted.

That the above lattice generators Jn and J̄n approximately
satisfy the Kac-Moody algebra at low energies can be verified
by directly evaluating Eqs. (28) and (29) on low-energy states.
Those constitute an infinite set of conditions. In the following,
we will demonstrate it for a subset of these conditions that
are physically important. Other conditions can be confirmed
similarly. From Eq. (29) for m = n = 0, we see that the
charge M = J0 − J̄0 should approximately satisfy [M, H] = 0
and [M, Q] = 0 when acting on low-energy states. While for
general anisotropy γ the operator M = ∑

j m j does not nec-
essarily commute with the Hamiltonian, in the specific case
of the XX model (γ = π/2), M ∼ ∑

j SX
j SY

j+1 − SY
j SX

j+1 does
commute with H . In fact, there exists a series of conserved
charges in the XX model [28]. However M does not exactly
commute with Q on the lattice. To confirm that the micro-
scopic global U (1) symmetry turns indeed into an emergent
U (1) × U (1) symmetry at low energies, we check both the
commutation relation 〈ψ |[Q, M]|ψ〉 and the expectation value
〈ψ |M|ψ〉 in the eigenbasis of Q. For low-energy eigenstates,
we find that Q and M commute, up to a finite-size error.
We further show that the expectation value of the charge M
approaches an integer value; see Fig. 3. This is compatible
with the emergence of a global U (1) × U (1) symmetry and
allows us to identify vertex operators VQ,M according to their
eigenvalues of Q and M.

We can also examine the commutation relations in Eq. (28)
in the energy-momentum eigenbasis by calculating matrix
elements 〈ψ |[Jn, Jm]|ψ〉. The level constant k can be ex-
tracted from 〈ψ |[Jn, J−n]|ψ〉, according to Eq. (38). For

FIG. 2. Spectra of Q = 0 sector and Q = 1 sector of the XXZ
model with γ = π/2 at system size N = 20. We find the spectrum
here in good agreement with the exact free boson spectrum in Fig. 1.
Kac-Moody primary states are labeled with dots. Some examples of
actions of Jn and J̄n are illustrated.

example, we can estimate k using the three expectation
values k1 = 〈1|[J1, J−1]|1〉, k2 = 1

2 〈1|[J2, J−2]|1〉, and k3 =
1
3 〈1|[J3, J−3]|1〉, as shown in Fig. 4. Linear extrapolation gives
k1 = 1.0000, k2 = 0.9999, and k3 = 0.9992, which are in
good agreement with theoretical value k = 1.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

1/N 2

−1.0

−0.5

0.0

0.5

1.0

M

Δ = 0, γ = π/2

1 V0,−1 V0,+1 V±1,−1 V±1,+1

FIG. 3. Expectation values of M in the eigenbasis of Q ap-
proach integers in the thermodynamic limit. Finite-size scaling
of 〈ψ |M|ψ〉 with |ψ〉 = |1〉, |V0,±1〉, |V±1,±2〉 at system sizes N =
12, 14, 16, 18, 20. Results for different compactification radii can be
found in Appendix C.
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0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

1/N 2

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

k
(N

)

〈1|[J1, J−1]|1〉
fit: k = 1.0000

〈1|[J2, J−2]|1〉/2

fit: k = 0.9999

〈1|[J3, J−3]|1〉/3

fit: k = 0.9992

FIG. 4. Extracting level constant from matrix elements k1 =
〈1|[J1, J−1]|1〉, k2 = 1

2 〈1|[J2, J−2]|1〉, and k3 = 1
3 〈1|[J1, J−1]|1〉 at

system sizes N = 12, 14, 16, 18, 20.

We check the action of Jn on low-energy eigenstates by
examining matrix elements 〈ψα|Jn|ψβ〉 (similarly for the an-
tichiral part J̄n). By numerically checking whether a state is
annihilated by J1, J̄1 and J2, J̄2, up to finite-size error, we
successfully identify all the Kac-Moody primaries. In Fig. 2,
the candidate primary states in the Q = 0 and Q = 1 sectors
are marked. Compared with the analytical result of free boson
CFT in Fig. 1, our lattice generators identify the primary
states correctly. By acting on a primary state with the lattice
generators Jn and J̄n, we can obtain all the descendant states
of that primary state. Up to finite-size error, Jn and J̄n act
as ladder operators; they change the scaling dimension and
conformal spin as illustrated in the example of Eq. (32). We
plot a few examples of their actions in Fig. 2. Together we
are able to organize all low-energy eigenstates into different
Kac-Moody towers.

In addition to the case of the XX model with γ = π/2,
our proposal can be verified for the general XXZ model.
We provide numerical results for some other values of γ in
Appendix C. Up to an overall normalization constant of J and
J̄ , we find consistently k = 1 and expectation values of M to
be integers, confirming the Kac-Moody algebra.

IV. LATTICE REALIZATION OF KAC-MOODY ALGEBRA:
THE SU (2) CASE

In this section we generalize the construction of lattice
Kac-Moody generators to general Lie groups. We will first in-
troduce the Kac-Moody algebra with general semisimple Lie
groups. Then we consider a specific example, the free com-
pactified boson with compactification radius R = √

2, which
possesses an su(2)1 Kac-Moody symmetry. We then con-
sider critical quantum spin chains with semisimple Lie group
symmetry and construct approximate lattice Kac-Moody gen-
erators. Finally we present the numerical verification with the
Heisenberg model with next-to-nearest-neighbor interactions.

A. Kac-Moody algebra with a non-Abelian group

We consider a CFT that has an internal semisimple Lie
group symmetry G, where the Lie algebra is denoted as g. The
extended symmetry is generated by Kac-Moody generators

that form the Kac-Moody algebra, denoted as ĝk , where k
is the level constant of the Kac-Moody algebra. In a CFT
with Kac-Moody algebra, there exists a set of chiral and
antichiral current operators Jα,CFT and J̄α,CFT with conformal
dimensions (1,0) and (0,1), where α = 1, 2, . . . , dim g labels
different currents.

The Kac-Moody generators are Fourier modes of the
currents,

Jα,CFT
n = 1

2π

∫ L

0
dx e+inx 2π

L Jα,CFT(x), (53)

J̄α,CFT
n = 1

2π

∫ L

0
dx e−inx 2π

L J̄α,CFT(x). (54)

They satisfy the Kac-Moody algebra ĝk ,[
Jα,CFT

m , Jβ,CFT
n

] = i
∑

γ

f αβγ Jγ ,CFT
m+n + kmδαβδm+n,0,

[
Jα,CFT

m , J̄β,CFT
n

] = 0,[
J̄α,CFT

m , J̄β,CFT
n

] = i
∑

γ

f αβγ J̄γ ,CFT
m+n + kmδαβδm+n,0,

(55)

where f αβγ are the structure constants of the Lie algebra g

and k is the level constant.
Setting n = m = 0 in Eq. (55), we see that the zero modes

of the currents form exactly the ordinary Lie algebra g of the
global symmetry G,[

Jα,CFT
0 , Jβ,CFT

0

] = i
∑

γ

f αβγ Jγ ,CFT
0 . (56)

Since Jα,CFT
0 and J̄α,CFT

0 are separately conserved, the global
symmetry is G × G, as it also happened in the Abelian U (1)
case of the previous section.

The holomorphic and anti-holomorphic currents transform
into each other under spatial parity. We may consider the
linear combinations of currents that have definite parity,

qα,CFT(x) ≡ Jα,CFT(x) + J̄α,CFT(x), (57)

mα,CFT(x) ≡ Jα,CFT(x) − J̄α,CFT(x). (58)

They correspond to charges

Qα,CFT ≡ Jα,CFT
0 + J̄α,CFT

0 , (59)

Mα,CFT ≡ Jα,CFT
0 − J̄α,CFT

0 . (60)

From Eq. (56), it follows that charges Qα,CFT satisfy the Lie
algebra g,

[Qα,CFT, Qβ,CFT] = i
∑

γ

f αβγ Qγ ,CFT. (61)

B. Free compactified boson at R = √
2

At R = √
2, the free compactified boson has three Virasoro

primary operators with conformal dimension (1,0),

Jx,CFT = 1√
2

(
V CFT

1,1 + V CFT
−1,−1

)
, (62)
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Jy,CFT = 1√
2i

(
V CFT

1,1 − V CFT
−1,−1

)
, (63)

Jz,CFT = i∂φ. (64)

Together with three anti-holomorphic currents (with sim-
ilar expressions), their Fourier modes constitute the su(2)1

algebra,[
Jα,CFT

m , Jβ,CFT
n

] =
∑

γ

i
√

2εαβγ Jγ ,CFT
n+m + mδm+n,0δ

αβ,

[
Jα,CFT

m , J̄β,CFT
n

] = 0,[
J̄α,CFT

m , J̄β,CFT
n

] =
∑

γ

i
√

2εαβγ J̄γ ,CFT
n+m + mδm+n,0δ

αβ,

(65)

where we can read off the structure constants f αβγ = √
2εαβγ

and the level constant k = 1. For later convenience, we also
define

J±,CFT
n = 1√

2

(
Jx,CFT

n ± iJy,CFT
n

)
,

J3,CFT
n = 1√

2
Jz,CFT

n .

(66)

While there can be infinite (but countable) Virasoro pri-
mary states, in the presence of additional symmetry, the
number of primary states with respect to the extended symme-
try can be finite. In the case of su(2)1, a Kac-Moody primary
state | jCFT〉 satisfies

Jα,CFT
n | jCFT〉 = 0 for n > 0,

J+,CFT
0 | jCFT〉 = 0,

J3,CFT
0 | jCFT〉 = j| jCFT〉,

(67)

where j = 0, 1
2 . The only two SU (2) level 1 Kac-Moody pri-

mary operators are the identity operator 1CFT with �CFT = 0
and sCFT = 0 and V CFT

1,0 with �CFT = 1/2 and sCFT = 0. Other
Virasoro primary operators can be obtained by acting with
Kac-Moody generators on these primaries, as in the examples
shown in Fig. 5. For instance, in the Kac-Moody tower of the
identity, |V CFT

1,1 〉 and |V CFT
2,0 〉 can be obtained in the following

way,

J+,CFT
−1 |1CFT〉 = ∣∣V CFT

1,1

〉
, (68)

J̄+,CFT
−1 |V CFT

1,1 〉 = ∣∣V CFT
2,0

〉
. (69)

Other Virasoro primary operators with scaling dimension 1 or
2 can be obtained in an analogous way. In the Kac-Moody
tower of V1,0,

J+,CFT
0

∣∣V CFT
−1,0

〉 = ∣∣V CFT
0,1

〉
, (70)

J−,CFT
0

∣∣V CFT
1,0

〉 = ∣∣V CFT
0,−1

〉
, (71)

J+,CFT
−2

∣∣V CFT
1,0

〉 = ∣∣V CFT
2,1

〉
, (72)

J−,CFT
−2

∣∣V CFT
−1,0

〉 = ∣∣V CFT
−2,−1

〉
. (73)

Other Virasoro primary operators with scaling dimension 1/2
or 5/2 can be obtained in a similar way. These relations can be

FIG. 5. Exact spectrum of the free boson at compactification ra-
dius R = √

2 divided into two Kac-Moody towers. Virasoro primary
states are labeled with diamonds, among which Kac-Moody primary
states are marked with dots. Top: Kac-Moody tower of the identity
operator |1CFT〉. The current operators Jα, J̄β, Jα, J̄β are labeled.
Bottom: Kac-Moody tower of operator |V CFT

1,0 〉. Some vertex states
Vm,n are labeled. Some examples of actions of Jα,CFT

n are illustrated
with arrows.

justified by the operator product expansion of vertex operators
(see Appendix B).

C. Lattice Kac-Moody generators for general G

Consider a lattice model with Hamiltonian H and an
on-site symmetry G with Lie algebra g. The symmetry is
associated with a set of conserved charges

Qα =
N∑
i

qα
i , α = 1, 2, . . . , dim g. (74)

The charges commute with the Hamiltonian, [H, Qα] = 0, and
satisfy

[Qα, Qβ] = i f αβγ Qγ . (75)

The one-site lattice operator qα
j corresponds to the CFT opera-

tor qα,CFT(x) in Eq. (57), because they are both conserved and
have even spatial parity. As in the U (1) case, we need to find
the lattice operator mα

j corresponding to mα,CFT(x) in Eq. (58).
The derivation that leads to Eq. (25) goes through for each

conserved current Jα,CFT(x), and we obtain

i[HCFT, qα,CFT(x)] = ∂xmα,CFT(x), (76)
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which on the lattice transforms to Eq. (77) below. Then anal-
ogously to Eqs. (57) and (58), we can write down the lattice
operators that correspond to the chiral current density Jα

j and
antichiral current density J̄α

j as in Eq. (78) below. Finally the
lattice Kac-Moody generators Jα

n and J̄α
n can be constructed as

the Fourier modes of Jα
j and J̄α

j .

i
[
H, qα

j

] = mα
j+1 − mα

j , (77)

Jα
j = qα

j + mα
j

2
, J̄α

j = qα
j − mα

j

2
, (78)

Jα
n =

N∑
j

ei jn 2π
N Jα

j , J̄α
n =

N∑
j

e−i jn 2π
N J̄α

j . (79)

This completes the construction of lattice Kac-Moody gener-
ators for general symmetry G.

D. Example: XXX model with next-to-nearest-
neighbor coupling

Consider an antiferromagnetic spin-1/2 chain with next-
to-nearest-neighbor coupling Jc = 0.241167 [29,30],

H = N
(

N∑
j=1

�S j · �S j+1 + Jc

N∑
j=1

�S j · �S j+2

)
, (80)

where Sα
j = 1

2σα
j and α = x, y, z. Overall normalization factor

N = 0.856 is determined by fixing the energy spectrum to be
Eq. (13) in the large-N limit.

This model has three exact conserved charges Qα =∑N
j=1 qα

j = ∑N
j=1

√
2Sα

j which commute with the Hamil-
tonian: [Qα, H] = 0. These charges satisfy [Qα, Qβ] =
i f αβγ Qγ with structure constants f αβγ = √

2εαβγ . In the con-
tinuum limit, this model corresponds to the SU (2) WZW
model at level k = 1.

To find the lattice Kac-Moody generators, first we calculate
the current mα

j using Eq. (49),

mα
j = − f αβγN

(
Sβ

j Sγ

j+1 + JcSβ
j Sγ

j+2

)
. (81)

Then following Eq. (79), we construct Jα
n and J̄α

n as fol-
lows:

Jα
n =

N0∑
j=1

e+i jn 2π
N

√
2

2

[
Sα

j − εαβγN
(
Sβ

j Sγ

j+1 + JcSβ
j Sγ

j+2

)]
,

J̄α
n =

N0∑
j=1

e−i jn 2π
N

√
2

2

[
Sα

j + εαβγN
(
Sβ

j Sγ

j+1 + JcSβ
j Sγ

j+2

)]
.

(82)
In order to confirm that they correspond to Kac-Moody

generators in the continuum, we perform simultaneous ex-
act diagonalization of the above lattice Hamiltonian H and
of the lattice translation operator to obtain the low-energy
eigenstates. Scaling dimensions and conformal spins can be
computed using Eqs. (17) and (18).

Now we check various matrix elements of the lattice Kac-
Moody generators. We start by examining the zero modes
of the lattice generators Jα

0 and J̄α
0 . While Qα = Jα

0 + J̄α
0 are

exact symmetries, the charges Mα = Jα
0 − J̄α

0 do not com-

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

1/N 2

−2

−1

0

1

2

M

R =
√

2

1 V±1,±1 V±2,±1 V0,±1 V±1,±2 V0,±2

FIG. 6. Expectation values of Mz approach integers in the ther-
modynamic limit. Finite-size scaling of expectation value 〈ψ |Mz|ψ〉,
for |ψ〉 = |1〉, |V±1,±1〉, |V±2,±1〉, |V0,±1〉, |V±1,±2〉, |V0,±2〉, extrapo-
lated from system sizes N = 12, 14, 16, 18, 20. This suggests that
Mz is an emergent conserved charge.

mute with the Hamiltonian on the lattice, i.e., [Mα, H] �= 0.
However linear extrapolation of matrix elements 〈ψ |Mα|ψ〉
suggests that in the thermodynamic limit each Mα becomes
indeed a conserved charge, as illustrated in Fig. 6. We also nu-
merically confirmed that the matrix elements 〈ψ |[Qα, Mβ ]|ψ〉
approximately vanish for low-energy eigenstates, up to finite-
size error (not shown in Fig. 6).

FIG. 7. XXX model spectrum with NNN interaction at system
size N = 20, separated into two Kac-Moody towers. Top: Kac-
Moody tower of |1〉. Bottom: Kac-Moody tower of |V1,0〉. Some
examples of actions of Jα

n and J̄α
n are plotted.
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fit: 1.0025

fit: 1.0013

fit: 1.0024

fit: 0.9985

FIG. 8. Matrix elements from Eqs. (68)–(70) and Eq. (72).

Kac-Moody primary states can be identified numerically
by checking conditions in Eq. (67). Up to finite-size error,
the only eigenstates that satisfy the conditions in Eq. (67)
are |1〉 = |V0,0〉 and |V0,1〉. For other Virasoro primary states
that are not Kac-Moody primary states, we confirm that they
can be obtained as descendants of these two Kac-Moody pri-
mary states using the lattice generators. For example, among
the four Virasoro primary states |V0,±1〉 and |V±1,0〉 at con-
formal spin S = 0 and dimension � = 1/2, only |V1,0〉 is a
Kac-Moody primary state. We show that |V0,±1〉 are indeed
Kac-Moody descendant states of |V1,0〉 by checking matrix
elements 〈V0,±1|J±

0 |V1,0〉, as plotted in Fig. 8.
Acting on the Kac-Moody primary states with Jα

−n and J̄α
−n,

all other descendant states can be reached and classified into
Kac-Moody towers. While J3

n preserves the eigenvalue of Jz,
J±
−n changes the eigenvalue of Jz by ±n. We illustrate some

examples of the actions of Jα
−n and J̄α

−n in Fig. 7 and present
the finite-size scaling results of some corresponding matrix
elements in Fig. 8.

Moreover, we are able to confirm not only the level con-
stant k but also the structure constants f αβγ . While the
structure constants of the diagonal subalgebra are given, it
is nontrivial to check the commutation relations of the chi-
ral algebra Eq. (65). For example, we confirm [Jx

m, Jy
n ] =

i
√

2Jz
m+n in the low-energy subspace by calculating the ra-

tio between 〈ψ |[Jx
m, Jy

n ]|ψ〉 and 〈ψ |i√2Jz
m+n|ψ〉. In Fig. 9,

we show that in the thermodynamic limit 〈1|Jy
−1Jx

−1|1〉 ≈
0.9787 × (i

√
2〈1|Jz

−2|1〉), which is in good agreement with

0.000 0.002 0.004 0.006 0.008

1/N 2

1.03

1.04

1.05

1.06

1.07

k
(N

)

0.000 0.002 0.004 0.006 0.008

1/N 2

0.94

0.95

0.96

0.97

0.98

FIG. 9. Left: Level constant extracted from matrix elements
〈1|[Jx

+1, Jx
−1]|1〉 and 〈1|[Jx

+2, Jx
−2]|1〉. Right: Finite-size scaling of

structure constant f from Eq. (65).

Eq. (65), up to finite-size effects. Other components of f αβγ

can be checked numerically in similar fashion using the pro-
posed lattice Kac-Moody generators.

V. DISCUSSION

Since the ground-breaking work by Cardy and others in the
1980s, there have been a series of studies on numerically ob-
taining conformal data from critical lattice systems (see, e.g.,
[4–16,26]). Our paper adds new capabilities and applications
to this line of work, by addressing the very important case of
quantum critical spin chains with a global symmetry.

As we have reviewed, a critical quantum spin chains with
a microscopic Lie group symmetry G corresponds to a CFT
with Kac-Moody symmetry. In this paper, we have proposed
a concrete construction of Kac-Moody currents Jα

n and J̄α
n on

a lattice with the Hamiltonian and its microscopic symmetry
as the only input. Our construction allows us to observe the
emergence of Kac-Moody symmetries numerically.

We illustrated our methods using two spin models, each
having a global symmetry with Lie group G, namely the
XXZ model as an Abelian example and the XXX (or Heisen-
berg) model with next-to-nearest-neighbor coupling as a
non-Abelian example. First, we obtained the low-energy spec-
trum of the Hamiltonian using exact diagonalization. We
then verified our proposal by studying the action of lat-
tice Kac-Moody generators on low-energy energy-momentum
eigenstates. As we consider larger system sizes, a second
copy of the symmetry is observed to emerge, making the
global symmetry G × G. We also successfully demonstrated
the identification of the Kac-Moody primary states and their
Kac-Moody towers. We show that the proposal works for both
the Abelian and non-Abelian cases, and with independence of
whether the model is integrable.

To apply our method to larger system sizes, and thus further
reduce finite-size corrections in the extracted conformal data,
tensor network techniques such as puMPS [15] can be em-
ployed. It would also be interesting to study the realizations
of other extended symmetries on the lattice, such as the W
algebra appearing in the three-state Potts model [19].

Note added. In subsequent work (which was posted re-
cently [31]), one of the authors generalized some of the
aspects of our work to a more general setting that includes
critical systems for which an explicit local Hamiltonian de-
scription is not available.
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APPENDIX A: CONTINUUM LIMIT OF XX MODEL
AND ABELIAN BOSONIZATION

In this Appendix, we discuss lattice Kac-Moody generator
construction of the XX model through bosonization [27]. The
result is consistent with the Kac-Moody generator we found
in the main text.

The Hamiltonian of XX model on a 1-dimensional lattice
of N sites is

H =
N∑

k=1

(
SX

k SX
k+1 + SY

k SY
k+1

)
, (A1)

where Sα = σα/2. It can be brought to a fermionic represen-
tation

H = 1

2

N∑
k=1

(ia†
kak+1 + H.c.) (A2)

by introducing fermionic variables

ak = i−k exp

(
π i

k−1∑
j=1

S+
j S−

j

)
S−

k , (A3)

where S±
k = SX

k ± iSY
k .

Define spinor field φα (α = 1, 2) by

φα (k) =
{
φ1(k) = a2s, k = 2s,
φ2(k) = a2s+1, k = 2s + 1.

(A4)

It can be easily checked that

{φ†
α (n), φβ (m)} = δαβδmn. (A5)

In the continuum limit, define ψα (x) = 1√
2�

φα (k) where
x = 2s� and � is the lattice spacing. Then Eq. (A2) can be
rewritten as

H = i

2

N∑
k=1

a†
k (ak+1 − ak−1)

= i

2

N/2∑
s=1

{φ†
1 (2s)[φ2(2s + 1) − φ2(2s − 1)]

+ φ
†
1 (2s + 1)[φ2(2s + 2) − φ2(2s)]}

∼
∫ N�

0
dx ψ†(x)σ xi∂xψ (x),

(A6)

where we have replaced finite differences by derivatives and
the finite sum by an integral. The Hamiltonian has a U (1)
symmetry ψ (x) → eiαψ (x). Fermionic currents jμ associated
with the symmetry are

j0 = ψ
†
1 ψ1 + ψ

†
2 ψ2,

j1 = ψ
†
2 ψ1 − ψ

†
1 ψ2,

(A7)

where j0 is the total charge density and j1 equals the differ-
ence of densities of left and right movers. To make connection
with our notation, we can go back to the lattice where the
currents can be written as

j0 ∼ SX
k SX

k+1 + SY
k SY

k+1,

j1 ∼ SX
k SY

k+1 − SY
k SX

k+1.
(A8)

Currents j0 and j1 correspond to q and m in our notation.

APPENDIX B: MATRIX ELEMENTS OF KAC-MOODY
GENERATORS

In this Appendix we compute matrix elements of Kac-
Moody generators that appear in the main text. We will omit
the CFT superscript in the Appendix. It should be understood
that all operators and states are in the CFT. Here we will
only discuss the chiral part of the operators; the antichiral part
yields analogous properties.

First, consider the u(1)k Kac-Moody algebra. We would
like to show that

J−n|1〉 =
√

nk|∂n−1J〉 (n � 1). (B1)

On the cylinder Jn is the Fourier mode of the current density
J (x),

J−n = 1

2π

∫ L

0
dx e−inx 2π

L J (x). (B2)

This can be mapped to the complex plane, where the integral
in x becomes a contour integral around the origin,

J−n = 1

2π i

∮
0

dzz−nJ (z). (B3)

Using the residue theorem, when n � 1,

J−n = (n − 1)!
dn−1

dzn−1
J (z)|z=0. (B4)

Using the operator-state correspondence,

O(0)|1〉 ∝ |O〉, (B5)

we know that J−n acting on the vacuum gives the |∂n−1J〉 state.
The overall normalization

√
nk can be determined by

〈1|JnJ−n|1〉 = nk (n � 1), (B6)

which follows from the Kac-Moody algebra.
Next, we compute the action of Jn on a vertex operator state

|VQ,M〉. To do this, first recall that the vertex operator can be
decomposed into a chiral part and an antichiral part,

VQ,M (z, z̄) = eiαφL (z)eiβφR (z̄), (B7)

where φL and φR represent the chiral and antichiral boson
operator, and

α = Q

R
+ MR

2
, (B8)

β = Q

R
− MR

2
, (B9)

where R is the compactification radius. The Kac-Moody gen-
erators Jn only act on the chiral part eiαφL . If α = 0, then the
chiral part is the identity operator. Then

J−n|VQ,M〉 =
√

nk|∂n−1JeiβφR〉 (n � 1), (B10)

where ∂n−1JeiβφR is the composite operator of the chiral com-
ponent ∂n−1J and the antichiral component eiβφR . This is a
result of combining Eq. (B1) and the antichiral part of the
vertex operator. If n < 1, then J−n annihilates the vertex oper-
ator state. Equation (B1) can be seen as a special case where
Q = M = 0.
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Below we consider the case where α �= 0. The result of act-
ing Jn on a vertex operator can be represented as the contour
integral of an operator product expansion (OPE),

(JneiαφL )(w) = 1

2π i

∮
z

dz (z − w)nJ (z)eiαφL (w), (B11)

where

J (z) = i∂φ(z). (B12)

The OPE can be computed in a standard way via Wick con-
traction,

J (z)eiαφL (w) = α

z − w
eiαφL (w) + 1

α
∂weiαφL (w) + · · ·,

(B13)
where · · · represents terms with positive powers of z − w.
This implies that

(JneiαφL )(w) = 0 (n > 0), (B14)

(J0eiαφL )(w) = αeiαφL (w), (B15)

(J−1eiαφL )(w) = 1

α
∂weiαφL (w). (B16)

The first equation implies that the vertex operator is a Kac-
Moody primary operator. The second equation implies (via
operator-state correspondence) that |VQ,M〉 is an eigenstate
of J0,

J0|VQ,M〉 = α|VQ,M〉. (B17)

The third equation implies

J−1|VQ,M〉 =
√

k|∂VQ,M〉, (B18)

where we have normalized the state |∂VQ,M〉 to unit norm. In
general, acting with J−n on a vertex operator produces a linear
combination of Virasoro descendant states at level n.

Next, we consider the su(2)1 Kac-Moody algebra. Note
that J3

n is identical to Jn in the u(1)1 case with the compactifi-
cation radius R = √

2. We will then focus on the action of J+
n

and J−
n . Recall that

J+(z) = V1,1(z), J−(z) = V−1,−1(z). (B19)

By the same argument that leads to Eq. (B1), we have

J±
−n|1〉 = √

n|∂n−1V±1,±1〉. (B20)

In order to see how the Kac-Moody generators act on vertex
operator states, we need the OPE of vertex operators,

VQ,M (z, z̄)VQ′,M ′ (w, w̄)

= (z − w)αα′
(z̄ − w̄)ββ ′

VQ+Q′,M+M ′ (w, w̄) + · · ·, (B21)

where α, β and α′, β ′ are determined by Q, M and Q′, M ′
with Eqs. (B8) and (B9), respectively, and · · · represents
terms that contain descendants of VQ+Q′,M+M ′ . In particular,
at R = √

2,

J+(z)VQ,M (w, w̄) = (z − w)Q+MVQ+1,M+1(w, w̄) + · · ·,
(B22)
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FIG. 10. Finite-size scaling of level constant k from XXZ model
with γ = 2π/3 at system sizes N = 12, 14, 16, 18, 20.

J−(z)VQ,M (w, w̄) = (z − w)−(Q+M )VQ−1,M−1(w, w̄) + · · · .

(B23)

Let Q = 1, M = 0, and w = 0; we obtain

J+(z)V1,0(0, 0) = zV2,1(0, 0) + · · ·, (B24)

J−(z)V1,0(0, 0) = z−1V0,−1(0, 0) + · · · . (B25)

Acting with both sides on the vacuum states and using the
Laurent expansion of J±(z), we obtain

J+
−2|V1,0〉 = |V2,1〉, (B26)

J−
0 |V1,0〉 = |V0,−1〉. (B27)

Other matrix elements used in the main text can be derived in
an analogous way.

APPENDIX C: XXZ MODEL AT DIFFERENT RADII

Our construction of lattice Kac-Moody generators works
for the general XXZ model. To illustrate, we study the XXZ
model with γ = 2π/3 as an example of a rational CFT, and
γ = 1.7 as an example of an irrational CFT.

As opposed to the non-Abelian case, the normalization of
charge density q is not fixed by the Lie algebra. Thus we
have freedom to add an overall normalization constant in front
of J and J̄ . In order to fix the normalization, we use the
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FIG. 11. Finite-size scaling of 〈ψ |M|ψ〉 from XXZ model with
γ = 2π/3 at system sizes N = 12, 14, 16, 18, 20.

normalization of the CFT

JCFT
0 = Q

R
+ MR

2
, J̄CFT

0 = Q

R
− MR

2
, (C1)

where Q and M are integers and R is the compactification
radius. We thus identify

R

2

(
JCFT

0 + J̄CFT
0

) ∼
N∑

j=1

SZ
j , (C2)

since they both have integer eigenvalues. Now we run the
general procedure to construct the current operators on the
lattice, and we obtain

Jn =
N∑

j=1

ei jn 2π
N

1

R

[
SZ

j + 2γ

π sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)]
,

J̄n =
N∑

j=1

e−i jn 2π
N

1

R

[
SZ

j − 2γ

π sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)]
.

(C3)
They are the same as Eq. (52) up to an overall factor. We
expect that they satisfy the U (1) Kac-Moody algebra at level
k = 1. This is checked and shown in Fig. 10. In order to check
the emergent charge M, we note that in the CFT

M = R
(
JCFT

0 − J̄CFT
0

)
, (C4)

and thus on the lattice we have

M ∼
N∑

j=1

4γ

πR2 sin γ

(
SX

j SY
j+1 − SY

j SX
j+1

)
. (C5)

The expectation value of M on low-energy eigenstates is ex-
pected to be an integer. This is indeed the case; see Fig. 11.
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