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We discuss a scheme for performing Jordan-Wigner transformation for various lattice fermion systems in
two and three dimensions which keeps internal and spatial symmetries manifest. The correspondence between
fermionic and bosonic operators is established with the help of auxiliary Majorana fermions. The current
construction is applicable to general lattices with even coordination numbers and an arbitrary number of fermion
flavors. The approach is demonstrated on the single-orbital square, triangular, and cubic lattices for spin-1/2
fermions. We also discuss the relation to some quantum spin liquid models.
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I. INTRODUCTION

Bosonization has long been an important technique for de-
scribing and understanding many-body quantum systems. For
instance, it allows one to directly apply tools developed for
bosonic systems, like tensor network methods, to fermionic
problems. Generally speaking, the fermionic statistics is im-
plemented on the bosonic side using nonlocal string operators,
as is well known in the classic Jordan-Wigner transformation
for one-dimensional systems [1]. Generalizations of the trans-
formation to higher dimensions using lattice gauge fields have
also been proposed [2–24]. Such exact bosonization mappings
are also important from the quantum simulation perspective,
for they address the possibility of simulating a quan-
tum many-body fermionic system using a bosonic quantum
computer [25–30].

From a condensed matter physics perspective, it is natural
to ask how symmetries on the fermionic side are represented
on the bosonic side under the bosonization scheme. The sym-
metry aspect of bosonization, however, is rather subtle. For
instance, although there is a clear physical distinction between
a square and a triangular lattice, a bosonization scheme might
effectively treat a triangular lattice simply as a sheared version
of a square lattice and ignore the differences in their spatial
symmetries [9]. Even if the bosonization transformation itself
is exact, in practice any further attempt to solve the bosonized
model typically invokes approximations. In the process, the
symmetries which are nonmanifest on the bosonic side could
be explicitly broken, and this could lead to misleading results.

In a recent work [31], we proposed an approach for per-
forming higher-dimensional Jordan-Wigner transformation
while keeping all symmetries manifest. The symmetry trans-
formations on the bosonic side can all be traced down to that
of a collection of operators denoted by �αx, which could be
viewed as the bosonic analog (up to a Jordan-Wigner string) of
the Majorana fermions defining the physical fermionic Hilbert
space. The approach in Ref. [31], however, is limited to four-
coordinated lattices like the two-dimensional (2D) square and
three-dimensional (3D) diamond lattices with a single orbital

per site. In this work, we generalize our construction to lattices
with an even coordination number and an arbitrary number of
orbitals. Our construction follows from decomposing �αx =
iηαχ x using auxiliary Majorana fermions η and χ . Here, the
η fermions carry the physical quantum numbers and their
bilinears generate internal symmetries. In contrast, the χ

fermions encode the directional dependence in the bosoniza-
tion scheme and their bilinears generate transformations
which keep spatial symmetries manifest. Representing �αx

by some tensor products of Pauli matrices provides a qubit
representation of the theory, in which every bilinear operator
acts on the Hilbert space of some two-level bosonic degrees
of freedom (e.g., spin-1/2), usually called “qubits.” For sim-
plicity, we will refer to this as the ηχ approach henceforth.

The ηχ approach discussed in the present work is in-
spired by earlier works providing lattice bosonization recipes
through the introduction of Majorana fermions [7,9,27].
It is also closely related to the approach developed in
Refs. [2,3,23,24], dubbed the “� model,” given that the η

and χ Majorana fermions provide a natural representation of
the Clifford algebra. In particular, we emphasize that in the
present bosonization scheme the number of auxiliary qubits
depends only on the lattice fermionic model, and, at the
same time, all internal and spatial symmetries relevant to the
fermionic problem are kept manifest. This can be contrasted
with some of the earlier works in which, for instance, the
number of auxiliary qubits required grows as more electron
hopping terms are considered on the fermionic model [7], or
when the geometrical difference between, for instance, square
and triangular lattices are ignored in the bosonization scheme
[9]. Furthermore, in our approach internal symmetries, which
act in an on-site manner on the fermionic side, will continue
to act on site on the bosonic side. We also allow for an arbi-
trary number of complex fermionic modes on each site and
incorporate naturally any possible internal symmetries among
the fermion flavors, although we will limit the majority of our
discussion to lattices with even coordination numbers.

The paper is organized as follows: We introduce the gen-
eral procedures of our bosonization scheme in Sec. II. We
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define the operators invoked and discuss the fermion-boson
mapping as well as the constraints of the bosonized problem.
The general procedure is then demonstrated on three succes-
sively more complicated lattices in Secs. III–V, in which we
derive the explicit representations for their associated spatial
symmetries. As a warmup, we revisit the bosonization prob-
lem on the square lattice in Sec. III within the ηχ formalism.
We review the constraints defining the fermionic states within
the bosonic Hilbert space, and also discuss how the spatial
symmetries are implemented. In Sec. IV we provide a parallel
discussion for the triangular lattice, which is six coordinated
and goes beyond the approach developed in Ref. [31]. In
Sec. V, we further apply the ηχ formalism to the 3D cubic
lattice, which is also six coordinated. The operator constraints
defining the fermionic subspace are more complicated in three
dimensions, and we provide a strategy for finding indepen-
dent constraints. We also analyze in detail how symmetries
are implemented on the bosonized model, and discuss how
fermion-odd operators can also be identified on the bosonic
side [31]. Next, as a demonstration on how our approach
could aid the design of spin liquid models respecting the
symmetries of the underlying lattice, in Sec. VI we consider
the bosonization of a chiral p-wave superconductor on the
triangular lattice. The bosonization gives a chiral spin liquid
model defined on a triangular lattice with three qubits per site.
Such models could be relevant to the correlated electronic
problem in moiré heterostructures [32–37]. We then conclude
in Sec. VII with a discussion on how the ηχ formalism might
be generalized to odd-coordinated systems, and elaborate on
the relations of our approach with the design of exactly solved
quantum spin liquid models [38–40].

II. GENERAL PROCEDURES

A. One-dimensional Jordan-Wigner transformation

To begin with, let us review the basic idea of one-
dimensional Jordan-Wigner transformation. For a one-
dimensional finite chain of complex fermions, we first
decompose complex fermion creation and annihilation oper-
ators into Majorana fermions, i.e., cx = 1

2 (γ 1
x + iγ 2

x ) on the
site x. Operators γ i

1, i = 1, 2, on a single site, say, the left end
of the chain, form a Clifford algebra, and we can use Pauli
matrices to represent them, thus obtaining a qubit description.
Furthermore, two Majorana operators γ i

x , γ
j

x′ on two different
sites anticommute with each other, and so to retain the anti-
commutation relations one introduces nonlocal Pauli strings
in the representation of γ i

x , x > 1. Formally, we can map

γ 1
1 �−→ X1, γ 2

1 �−→ Y1,

γ 1
2 �−→ Z1X2, γ 2

2 �−→ Z1Y2,

...

γ 1
x �−→

( ∏
l<x

Zl

)
Xx, γ 2

x �−→
(∏

l<x

Zl

)
Yx.

(1)

One can check that these bosonized operators obey the same
(anti)commutation relations as the original Majorana oper-
ators. For a fermion-even operator like the bilinear form
iγ 1

x γ 2
x+1, the long product of Zl operators cancels and so

the bilinear form still maps to a local operator YxYx+1. After
bosonization, we can focus on the bosonic Hilbert space of a
spin-1/2 chain. For example, consider the Kitaev chain model
with Hamiltonian

HK = −
N∑

x=1

iγ 1
x γ 2

x+1 �−→ HI = −
N∑

x=1

YxYx+1, (2)

where the bosonized Hamiltonian is an Ising model.
If we turn to higher dimensions, similar construction

can still be employed provided that one prescribes a one-
dimensional ordering of the sites along which the Pauli string
is introduced. For a generic fermionic model, the Pauli string
no longer cancels after bosonization. Thus the locality of
the operators is not well preserved. The goal of construct-
ing a higher-dimensional Jordan-Wigner transformation is to
overcome such nonlocality problems in applying the original
approach to higher dimensions. We will next discuss how
this could be achieved by introducing auxiliary Majorana
fermionic partons for each bond of the lattice, followed by
suitable constraints on the parton Hilbert space.

B. Higher-dimensional constructions

Consider an arbitrary lattice fermionic system, which can
be viewed as a connected graph consisting of some ver-
tices and edges. We first consider the operators localized to
each site r. Suppose we have m complex fermionic modes,
f 1
r , f 2

r , . . . , f m
r . We can represent them by 2m Majorana oper-

ators γ k
r , k = 1, 2, . . . , 2m, through

f n
r = 1

2

(
γ 2n−1

r − iγ 2n
r

)
, f n†

r = 1
2

(
γ 2n−1

r + iγ 2n
r

)
, (3)

for 1 � n � m. These Majorana fermions obey anticommuta-
tion relations

{
γ i

r , γ
j

r′
} = 2δi jδrr′ . (4)

All operators in fermions f i can be rewritten in terms of γ i.
In particular, terms in the Hamiltonian can always be written
as sum and product of the bilinears iγ i

r γ
j

r′ . Similar to Pauli
operators in the one-dimensional case, we want to construct
local bosonic operators (which we call 	r and �r) such that
all bilinear forms can be represented as products of them.
Then the local bosonic Hilbert space can be constructed from
qubit representations of these local bosonic operators.

The ηχ formalism provides a defining representation of
desired bosonic operators 	r,�r. It encodes the fermionic
problem in a bosonic Hilbert space as follows. To each site,
we attach Majorana operators ηα

r , α ∈ {1, 2, . . . , 2m}, and χ x
r ,

x ∈ {1, 2, . . . , nr}, where nr is the coordination number of
the site (for the examples we study in the following, nr is
a global constant independent of r). We assume nr is even
for all r, and set nr = 2n; i.e., we further restrict ourselves
to even-coordinated lattices. Then we define operators

	αβ
r = iηα

r ηβ
r , �αx

r = iηα
r χ x

r , �xy
r = −iχ x

r χ y
r . (5)

From these expressions one can readily check that 	, �, and
� satisfy the relations in Ref. [31],

�αx
r = −i	αβ

r �βx
r , �xy

r = −�αx
r 	αβ

r �βy
r , (6)

115109-2



HIGHER-DIMENSIONAL JORDAN-WIGNER … PHYSICAL REVIEW B 106, 115109 (2022)

where there is no summation on the repeated indices. Both
	

αβ
r and �αx

r are Hermitian, and meanwhile both 	
αβ
r and �

xy
r

are antisymmetric in their upper indices. Note that although
�αx is a 4 × 4 operator-valued matrix in Ref. [31], in the
current approach it can be an even-by-even rectangular matrix
in general.

Fermion bilinears in the physical problem can be mapped
to the bosonic operators 	 and � through

iγ α
r γ β

r → 	αβ
r ,

iγ α
r γ

β

r′ → �αx
r �

βy
r′ ,

(7)

where r and r′ are the ending and starting sites of a given arrow
(an oriented edge) in the lattice. If this orientation is reversed
on the left-hand side, then there is an extra minus sign on the
right-hand side. Here, x, y are numbers labeling the Majorana
χ x,y at two ends of the edge. We also demand 	αβ and �αx

satisfy the same commutation and anticommutation relations
as the fermion bilinears they represent: the two operators 	αβ

and �α′x anticommute if and only if α′ is equal to either α

or β; otherwise, they commute. Similarly, the two operators
�xy and �αz anticommute if z is equal to x or y, and commute
otherwise. The two operators 	αβ and �xy always commute.
For applications we will also discuss qubit representations of
	αβ and �αx in following sections.

In this construction, ηα′
s correspond to physical degrees of

freedom, while χ x′
s are auxiliary Majorana fermions connect-

ing different sites. We often call them Majorana partons. The
number of ηα′

s and the number of χ x′
s are not necessarily the

same. This is different from the formalism in Ref. [31], which
relied on an exceptional isomorphism of the group Spin(4).
The internal symmetries like fermion parity, time reversal,
and flavor symmetries are characterized by transformations
of ηα′

s. Spatial symmetries, like translation, reflection, and
rotation, are characterized by transformations of χ x′

s.
To be more explicit, let us take a closer look at the transfor-

mations of �αx = iηαχ x. The bilinear operators θαβ = i
2ηαηβ

form a set of generators of so(2m) algebra:

[θαβ, θρλ] = i(δαλθβρ + δβρθαλ − δαρθβλ − δβλθαρ ). (8)

The exponentiation of elements in the algebra form the
Spin(2m) group which is the double cover of SO(2m). A
similar structure can be introduced for φ

xy
r = − i

2χ xχ y which
form a set of generators of so(2n) algebra. Furthermore,
we have

[θαβ, ηλ] = i(δβληα − δαληβ ), α �= β. (9)

An element in Spin(2m) can be written as U (A) =
e−i

∑
αβ Aαβθαβ

, where A is a 2m × 2m real antisymmetric ma-
trix. Using Eq. (9), we see

U (A)ηλU (A)−1 =
∑
λ′

(
e−2A

)
λλ′η

λ′
. (10)

The matrix e−2A is an element in SO(2m), meaning ηk trans-
forms as an SO(2m) vector. Similarly we define V (A) =
e−i

∑
xy Axyφ

xy
. χ x transforms as an SO(2n) vector. Combining

these properties, �λx = iηλχ x will transform as an SO(2m)
vector in its first index and as an SO(2n) vector in its second

index independently:

U (A)�αxU (A)−1 =
∑
α′

(e−2A)αα′�α′x,

V (A)�αxV (A)−1 =
∑

x′
�αx′

(e−2A)x′x.
(11)

So to find transformations among different χ x′
s or ηα′

s, we
only need to find some suitable matrix A. This allows one to
systematically identify symmetry operations on the bosonic
side [31]. In Secs. III and IV we will discuss symmetry trans-
formations in explicit examples.

C. Enlarged Hilbert space and constraints

We have seen the mapping from a fermion problem to a
bosonic system, where auxiliary Majorana partons are intro-
duced to intermediate operators supported on multiple sites.
These partons will make the bosonic Hilbert space larger than
the original fermionic Hilbert space. For example, when the
original fermion problem is in a lattice of coordination number
4, and has a spinful fermion per site, then the bosonized sys-
tem will have four extra Majorana partons; thus the bosonized
on-site Hilbert space is enlarged to 22+2 = 16 dimensions.
To return to the same dimension of fermionic Hilbert space,
we have to impose 22 constraints per site. Generically we
argue that after imposing suitable constraints the bosonized
system has the same dimension of Hilbert space as that of the
fermion problem. Examples are presented in Secs. III–V and
Appendix B.

First we consider parton parity �r ∝ η1
r η

2
r · · · χ1

r χ2
r · · · on

each site. Fixing �r to be a constant can reduce the enlarged
Hilbert space by one dimension. If we denote the total number
of sites by N , then we have N constraints. There is some
flexibility of choosing the parity to be even or odd, but we can
always make these on-site partons translationally invariant to
simplify the bosonized problem.

A second type of constraint comes from the identities in the
original fermion problem. Because of the relation (γ i

r )2 = 1,
the product of a loop of (γ i

r )2
r∈a loop is also identity. This be-

comes a nontrivial constraint after mapping to the bosonized
problem. Each such constraint will also reduce the enlarged
Hilbert space by one dimension. So we only need to count
the independent constraints in the lattice. This is equivalent to
counting the independent cycles in the lattice.

A systematic way of doing this is to treat the lattice as a
graph consisting of vertices and edges. We should choose a set
of generators of the free Abelian group H1, which is the first
homology group of the graph. For a generic connected graph
X , the first homology group can be found with the notion
maximal tree [41]. A tree is defined as a connected subgraph
with no loops, and a maximal tree T is a tree which contains
all vertices of X . We denote the sets of edges and vertices of a
system as E (X ) and V (X ), respectively. For a concrete exam-
ple see Fig. 8, in which there are 15 edges and 9 vertices. The
number of edges in a maximal tree is |E (T )| = |V (X )| − 1,
where “| · |” means the number of elements in a set [42]. Then
every edge which is not contained in the maximal tree will be
a generator of homology class in H1(X ). Note that different
choices of maximal trees will give the same homology group.
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The first homology group is

H1(X ) ∼= Z|E (X )|−|E (T )| = Z|E (X )|−|V (X )|+1. (12)

In particular, for a planar graph, the number (|E (X )| −
|E (T )|) is equal to the number of “holes” in the graph. For
nonplanar graphs, like embedding on a closed manifold, the
choices of generators will be more complicated and depend
on the details of the graph. In our following examples, this
counting includes both plaquette constraints and large Wilson
loop constraints.

We stress that the discussion above is in general applicable
for an arbitrary lattice system in which every vertex has an
even coordination number. We can count the degrees of free-
dom and the number of independent constraints for a given
graph X . For instance, we have ηα

r , α ∈ {1, 2, . . . , 2mr}, χ x
r ,

x ∈ {1, 2, . . . , nr}. The coordination number nr is the number
of edges linking to site r. Notice that |E (X )| = ∑

r nr/2, so
combining the on-site parton parity projection and plaquette
constraints we obtain

dimHX =
∏

r 2mr 2nr/2

2|V (X )|2|E (X )|−|V (X )|+1

= 2|E (X )| ∏
r 2mr

2|E (X )|+1

= 1

2

∏
r

2mr ,

(13)

where the factor 1/2 shows the feature of a half Hilbert space
with certain global fermionic parity. For lattices with odd
coordination numbers, the above counting is still applicable,
but then it is more subtle since to construct a local Hilbert
space we should have even numbers of Majorana fermions.
We discuss these issues in Sec. VII.

III. MAJORANA REPRESENTATION FOR SQUARE
LATTICE

In this section, we study the example of a square lattice.
After introducing the operators involved, we will discuss how
to express the states in terms of qubits. We also discuss some
issues pertaining to the global properties of the transforma-
tion, e.g., issues of putting the system on a torus. We also
show the effect of locally relabeling the Majorana partons and
rotational transformations explicitly.

Let us focus on the case of spin-1/2 fermions and a single
orbital per site. On each site the Hilbert space is four di-
mensional, spanned by the basis {|0〉, f †

↑ |0〉, f †
↓ |0〉, f †

↑ f †
↓ |0〉}.

Generically the Hamiltonian of the system can be built from
quadratic forms of fermionic creation and annihilation oper-
ators. In particular, the products of quadratic forms compose
interaction terms. So we mainly focus on quadratic terms. Let
γ i, i = 1, 2, 3, 4, be on-site Majorana operators such that

f↑ = 1
2 (γ 1 − iγ 2), f †

↑ = 1
2 (γ 1 + iγ 2),

f↓ = 1
2 (γ 3 − iγ 4), f †

↓ = 1
2 (γ 3 + iγ 4).

(14)

For simplicity we choose arrow directions to be antiparallel
to directions of basis vectors x, y, as shown in Fig. 1. Then by

FIG. 1. The auxiliary Majorana fermions of a square lattice. Each
site has a tilted square, with every vertex index w ∈ {1, 2, 3, 4}
representing χw

r . Each dashed line connects two sites, and its arrow
tells how to determine the sign of an intersite product iχw

r χw′
r′ .

the definition in Eq. (5) and the mapping in Eq. (6) we obtain
	αβ,�αx,�x,y, α, β, x, y ∈ {1, 2, 3, 4}.

We can study some examples to better reveal the meaning
of the 	r and �r operators. First, consider the on-site particle
number operator for spin up (and similarly for spin down),

n↑ = f †
↑ f↑ = 1 + iγ 2γ 1

2
→ 1 + 	21

r

2
. (15)

If we replace 	21 by its η representation, then it turns out that
ηi has a similar physical meaning with γ i. In other words, if
we recombine η′s again into complex fermionic partons, say,

η1 = a + a†, η2 = i(a − a†),

η3 = b + b†, η4 = i(b − b†),
(16)

then a†a and b†b correspond to the number of spin-up and
spin-down particles, respectively. We remark that although
such equivalence is evident from the perspective of the on-site
operators, ηα

r is nevertheless different from γ α
r since γ α

r γ
β

r′ �=
ηα

r η
β

r′ . This is where χ x
r plays a crucial role—to connect dif-

ferent sites. Actually, the parton construction of 	 and �

could be done in a different way. For these spinful fermions
on a square lattice, the Lie algebra formed by 	αβ has an
equivalence so(4) ∼= su(2) ⊕ su(2); on the Lie group level
it is Spin(4) ∼= SU(2) × SU(2). Using this, one can separate
charge and spin degrees of freedom in the parton description.
In that construction the correspondence with the physical
fermions will not be as simple [31].

We further introduce complex fermionic partons for χ ,

χ1 = d + d†, χ2 = i(d − d†),

χ3 = g + g†, χ4 = i(g − g†).
(17)

Auxiliary fermion modes d† and g† enlarge the Hilbert space
of a single site to be 16 dimensional. To obtain the correct
physical Hilbert space we need some extra reductions. The
discussion in Ref. [31] requires the parton parity on site to
be frozen at −1, but such a constraint is not present here.
Nevertheless, as the bosonized Hamiltonian is built using the
	, �, and � operators, which are all bilinears in η and χ ,
the on-site parity operator for any site commutes with the
bosonized Hamiltonian. In other words, we can project to a
particular sector of on-site parton parity operator to obtain a
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bosonic model, i.e.,

�r ≡ i4η1
r η

2
r η

3
r η

4
r χ

1
r χ2

r χ3
r χ4

r
c= ρ, (18)

where ρ ∈ {+1,−1} is a constant which we take to be r
independent, and “

c=” means that the equality holds in the
constrained Hilbert space. This is because �r is the local
fermion parity of the enlarged Hilbert space. To maintain the
possible translation invariance of the states, it is natural to
project to the subspace of the same parton parity everywhere.

A. Qubit representation

The on-site Hilbert space in the ηχ description is generated
by acting creation operators a†, b†, d†, and g† on the vacuum.
We can introduce some qubits for each site, and identify an
unoccupied state |0〉 with |↑〉 and an occupied state |1〉 with
|↓〉; then the Hilbert space can be represented by four qubits.
Let the base states be defined as

|nanbnd ng〉 = (a†)na (b†)nb (d†)nd (g†)ng|0〉. (19)

They correspond to a four-qubit basis naturally; for instance,

|1000〉 = |↓↑↑↑〉, |0110〉 = |↑↓↓↑〉.

The actions of 	r,�r, and �r on the Hilbert space can be
represented as strings of Pauli matrices and identity operator,
{1, X,Y, Z}. For instance,

	12 = i2(a + a†)(a − a†) = (1 − 2na) = Z (1), (20)

where the superscript “1” refers to the first qubit. The equality
holds in the sense of acting on quantum states. The operators
in qubit representation are as follows:

	12 = Z (1),	34 = Z (2),

	13 = Y (1)X (2),	24 = −X (1)Y (2),
(21a)

	14 = −Y (1)Y (2),	23 = X (1)X (2),

�11 = Y (1)Z (2)X (3),�22 = −X (1)Z (2)Y (3),
(21b)

�33 = Y (2)Z (3)X (4),�44 = −X (2)Z (3)Y (4),

�12 = −Z (3),�34 = −Z (4),

�13 = −Y (3)X (4),�24 = X (3)Y (4),
(21c)

�14 = Y (3)Y (4),�23 = −X (3)X (4).

We can, however, impose the projection �r =
Z (1)

r Z (2)
r Z (3)

r Z (4)
r

c= ρ to reduce the degrees of freedom by half.
Equivalently, the last qubit Z (4) is in fact fully determined
by the other three qubits. We can therefore obtain a more
efficient description using only the first three qubits, with
the state in the last qubit understood to be constrained by
that of the first three. This way, we can simply replace the
Pauli operators on the fourth qubit by the coefficient they
generate, i.e.,

X (4) ⇒ 1,

Z (4) ⇒ ρZ (1)Z (2)Z (3),

Y (4) ⇒ iρZ (1)Z (2)Z (3).

(22)

The last line can also be obtained from Y (4) = iX (4)Z (4). By
these replacements, the last qubit is “hidden” while the possi-
ble coefficients from actions on the last qubit are absorbed
into operators acting on other qubits. Then �αx is a 4 × 4
operator-valued matrix

�αx =

⎛
⎜⎜⎝

Y (1)Z (2)X (3) −Y (1)Z (2)Y (3) Y (1)Z (2)Z (3) ρX (1)

X (1)Z (2)X (3) −X (1)Z (2)Y (3) X (1)Z (2)Z (3) −ρY (1)

Y (2)X (3) −Y (2)Y (3) Y (2)Z (3) ρZ (1)X (2)

X (2)X (3) −X (2)Y (3) X (2)Z (3) −ρZ (1)Y (2)

⎞
⎟⎟⎠

αx

. (23)

Compared to fermionic Hilbert space, we have an extra
qubit as an auxiliary degree of freedom. This unphysical de-
gree of freedom is consumed when we consider the mapping
of an identity from the fermionic side:

1 = (
iγ 2

r γ 4
r

)(
iγ 4

r γ 3
r+x

)(
iγ 3

r+xγ
2
r+x

)(
iγ 2

r+xγ
1
r+x+y

)
× (

iγ 1
r+x+yγ

3
r+x+y

)(
iγ 3

r+x+yγ
4
r+y

)(
iγ 4

r+yγ
1
r+y

)(
iγ 1

r+yγ
2
r

)
→ 1 = 	24

r �44
r �33

r+x	
32
r+x�

22
r+x�

11
r+x+y	

13
r+x+y

× �33
r+x+y�

44
r+y	

41
r+y�

11
r+y�

22
r

⇒ Ĉr ≡ �24
r �32

r+x�
13
r+x+y�

41
r+y

c= −1. (24)

The minus sign in the last line is due to the anticommut-
ing property of 	24

r and �22
r , as we move �22

r to the left
end. As discussed above, Majorana operators χ x are auxiliary
and “unphysical,” so �xy′

s as bilinears of auxiliary operators

somehow play the role of “gauge operators.” Equation (24)
is a constraint such that auxiliary degrees of freedom are
restricted to be consistent with the fermion identity on the
first line. For each plaquette there is a constraint equation, so
effectively there is one independent constraint for each site
and thus the on-site Hilbert space of the system is reduced
to four dimensions. By degree counting, all extra degrees
of freedom are killed by the parton parity constraint �r and
this plaquette constraint, so there are no other independent
constraints.

In the qubit representation, by exploiting expressions of
�xy the constraint can be shown as

Y (3)
r X (3)

r+xY
(3)

r+x+yX (3)
r+y = (Z (1)Z (2) )r(Z

(1)Z (2) )r+y. (25)

The left-hand side of the constraint is the Hamiltonian in
Wen’s plaquette model [43], which is known to be equivalent
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to the toric code model [44] and describes the Z2 topolog-
ical order. In the work of Chen et al. such constraints are
interpreted as flux attachments of gauge fields [20–22]. In
our construction, the left-hand side is not fixed but depends
on values of physical degrees of freedom. These independent
plaquette constraints can be implemented in the Hamiltonian
as a summation K

∑
r Ĉr with coupling K sufficiently large so

that the Ĉr are enforced to be −1.

B. Wilson loops and fermion-odd operators

If we put the lattice system of N sites on a torus manifold,
i.e., with periodic boundary conditions, then only N − 1 pla-
quette constraints will be independent since the product of all
plaquette operators Cr is the identity operator on the bosonic
side by definition (5). Moreover, there will be extra global
constraints from Wilson loops. To see this, let the lattice size
be Lx × Ly and rx,y ∈ Z/(Lx,yZ). From the fermionic side,
there is an identity for products of Majorana operators along
a y loop,(

iγ 1
r γ 2

r

)(
iγ 2

r γ 1
r+y

) · · · (iγ 2
r−yγ

1
r

) = i2L = (−1)Ly . (26)

Mapped to bosonic side, it becomes a constraint:

Wy(r) ≡ �12
r �12

r+y · · · �12
r−y = −1. (27)

Notice that this constraint is independent of the choice of base
point r. Topologically the y loop is a homology class, whose
various deformations can be achieved by plaquette constraints
[Eq. (24)] in the last section. Along the x direction there is
also a similar constraint

Wx(r) ≡ �34
r �34

r+x · · · �34
r−x = −1. (28)

From two classes of Wilson loop constraints we obtain a
global constraint of fermion parity:

P̂ ≡ ρLxLy

Lx−1∏
n=0

Wy(r + nx)
Ly−1∏
n=0

Wx(r + ny)

= ρLxLy

Lx−1∏
m=0

Ly−1∏
n=0

�12
mx+ny�

34
mx+ny

=
Lx−1∏
m=0

Ly−1∏
n=0

	12
mx+ny	

34
mx+ny

c= (−1)Lx+LyρLxLy ,

(29)

where we have used the parton parity on each site, �r =
	12

r 	34
r �12

r �34
r = ρ. On the fermionic side, 	12

r 	34
r is equal

to on-site fermion parity (−1)nr , so the product over the
lattice gives global fermion parity. Combining Wilson loop
constraints and on-site parton parity fixing, we can describe
half of the physical Hilbert space where fermion parities of
states are fixed. For instance, to make the vacuum state parity
even, Lx and Ly should be both odd or both even. In the former
case ρ has to be +1 while in the latter case ρ can be either
+1 or −1.

To describe the whole Hilbert space, we can consider
bosonization of fermion-odd operators, like γ α

r . The basic
idea is that we may modify the fermion-boson mapping such
that one of the LxLy Wilson loop constraints is violated so

FIG. 2. Two choices of labeling. The right choice can be obtained
by doing local unitary transformation of the left one.

there is an extra minus sign in the expression of P̂. This
can be implemented by introducing a “defect” on a certain
site, making an arrow of one link reversed. Then by checking
the commutation relations we can regard a certain �αx

r as
bosonization of γ α

r after such manipulations. This is similar to
the case where we choose a starting point in one-dimensional
(1D) Jordan-Wigner transformation so that fermion-odd oper-
ators are mapped to Pauli strings. For a square lattice this has
been discussed in detail in Ref. [31]. We do not show details
temporarily, but will discuss this in Sec. V B for cubic lattices.

C. Local permutations and symmetries

In the setup above, we have labeled the four auxiliary
Majorana χ x′

s in an antipodal way. One may ask if there is
any preference in choosing a certain labeling order: in other
words, what is the connection and difference between two
artificial choices (see Fig. 2 for example)? It turns out that
different choices of labeling are physically equivalent by local
unitary transformations. To see this, we look for a SO(4) rota-
tional transformation of χ x from one labeling order to another
as discussed in Sec. II. For instance, the transformation in
Fig. 2 is

(�α1�α2�α3�α4) ⇒ (�α1 �α2 �α3 �α4)

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎠.

(30)

The transformation matrix is a permutation operation with
determinant 1 (if the determinant is −1 then one needs to
add a minus sign before one nonvanishing entry to preserve
orientation), and thus is an element in group SO(4). Generi-
cally we can find an antisymmetric real matrix A such that the
transformation matrix is equal to e−2A; then a unitary matrix
V (A) = e−i

∑
xy φxyAxy will permute the second index of �αx. In

the example above, the solution is

A = −1

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 − 2π

3
√

3
2π

3
√

3

0 2π

3
√

3
0 − 2π

3
√

3

0 − 2π

3
√

3
2π

3
√

3
0

⎞
⎟⎟⎟⎟⎠, (31a)

V (A) = e−i 2π

3
√

3
(−φ23+φ24−φ34 )

. (31b)

The example above does not touch physical symmetries.
If we consider internal unitary symmetries, like charge con-
jugation and particle-hole symmetry, we can use U (A) and
V (A) with different A matrices. For spatial symmetry trans-
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FIG. 3. The right figure is a triangular lattice with two basis
vectors in red. The left figure shows that six auxiliary Majorana
fermions are attached to each site, with labels 1 to 6.

formation, besides rotating the lattice sites (we call it “bare
rotation”), we should also rotate both labels of χ ′s and in-
tersite arrows correspondingly. For example, the C4 rotation
transformation can be represented by a combination of bare
rotation Cb

4 and internal unitary VC4 :

C4 = VC4C
b
4 , (32a)

Cb
4�44

r �33
r+x(Ĉb

4 )−1 = �44
r �33

Ĉ4r+y,

VC4 = e−i π
4

∑
r

(
φ12

r +φ34
r −√

2
(
φ13

r +φ24
r +φ14

r −φ23
r

))
,

(32b)

such that

(�α1 �α2 �α3 �α4) ⇒ (−�α4 �α3 �α1 �α2), (33)

where we have added a minus sign to preserve the direc-
tions of arrows. For the square lattice more details of these
transformations can be found in Ref. [31]. In this sense, our
bosonization strategy makes symmetries of the lattice system
manifest.

To conclude this section, we compare the present ηχ

construction with the approach in Ref. [31]. In Ref. [31],
the parton construction is designed to implement a sense of
spin-charge separation, so partons therein have different phys-
ical meaning. This can be regarded as choosing a different
basis for the Clifford algebra generated by ηα and χ x. In
Appendix A, we show that qubit representation here can be
turned into qubit representation (Eq. (112) in Ref. [31]) by
a local unitary transformation. We also show that after im-

posing the parity constraint on the partons, the on-site Hilbert
space for both approaches furnishes a spinor representation
of SO(8), and states with the same weight on the two sides
correspond to the same fermionic state.

IV. TRIANGULAR LATTICE

Our second example is the bosonization of a triangular lat-
tice system (see Fig. 3). Each vertex has coordination number
six. We will consider a spinful fermion, although it can be
generalized to an arbitrary number of flavors.

For a triangular lattice, on each site there are six links,
so similar to the square lattice case we start from χ x, x =
1, 2, . . . , 6 and ηα , α = 1, 2, 3, 4. The on-site Hilbert space
is now 25 = 32-dimensional. Based on the square lattice case,
we extend the complex fermion representation to χ5, χ6:

χ5 = h + h†, χ6 = i(h − h†). (34)

The basis states of the on-site Hilbert space are in the form

|nanbnd ngnh〉 = (a†)na (b†)nb (d†)nd (g†)ng (h†)nh |0〉. (35)

On each site we also define a parton parity operator and make
projection to its eigenspace with eigenvalue ρ,

�r ≡ −i5η1
r η

2
r η

3
r η

4
r χ

1
r χ2

r χ3
r χ4

r χ5
r χ6

r
c= ρ,

⇔ 	12
r 	34

r �12
r �34

r �56
r = ρ.

(36)

A. Qubit representation

As shown in Eq. (35), we can use five qubits to repre-
sent the states similar to Eq. (19). For α, β ∈ {1, 2, 3, 4} the
expressions of 	αβ are the same as in Eq. (21a). For other
operators, one should notice that anticommutation relations
bring extra Pauli Z operators.

The parity operator is �r = Z (1)Z (2)Z (3)Z (4)Z (5). We fix
�r = ρ ∈ {+1,−1} so that the last qubit can be hidden as
in Eq. (22). Operations acting on the last qubit can be
replaced by

X (5) ⇒ 1,

Z (5) ⇒ ρZ (1)Z (2)Z (3)Z (4),

Y (5) ⇒ iρZ (1)Z (2)Z (3)Z (4).

(37)

Then the �αx matrix is

�αx =

⎛
⎜⎜⎝

Y (1)Z (2)X (3) −Y (1)Z (2)Y (3) Y (1)Z (2)Z (3)X (4) −Y (1)Z (2)Z (3)Y (4) Y (1)Z (2)Z (3)Z (4) ρX (1)

X (1)Z (2)X (3) −X (1)Z (2)Y (3) X (1)Z (2)Z (3)X (4) −X (1)Z (2)Y (3)Y (4) X (1)Z (2)Z (3)Z (4) −ρY (1)

Y (2)X (3) −Y (2)Y (3) Y (2)Z (3)X (4) −Y (2)Z (3)Y (4) Y (2)Z (3)Z (4) ρZ (1)X (2)

X (2)X (3) −X (2)Y (3) X (2)Z (3)X (4) −X (2)Z (3)Y (4) X (2)Z (3)Z (4) −ρZ (1)Y (2)

⎞
⎟⎟⎠

i j

. (38)

We also list extra � operators besides Eq. (21c) for
later use:

�56 = −Z (5),

�15 = Y (3)Z (4)X (5),�16 = Y (3)Z (4)Y (5),

�25 = −X (3)Z (4)X (5),�26 = X (3)Z (4)Y (5), (39)

�35 = −Y (4)X (5),�36 = Y (4)Y (5),

�45 = −X (4)X (5),�46 = X (4)Y (5).

We turn to plaquette constraints. For a triangular lattice
there are two types of inequivalent plaquettes, which we de-
note as I and II. For instance, a type I plaquette gives the
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FIG. 4. The combined constraints.

constraint

−1 = (
iγ i1

r γ i2
r

)(
iγ i2

r γ
i3
r+u

)(
iγ i3

r+uγ
i4
r+u

)(
iγ i4

r+uγ
i5
r+v

)
× (

iγ i5
r+vγ

i6
r+v

)(
iγ i6

r+vγ
i1
r

)
(40)

→ ĈI
r ≡ �35

r �61
r+u�

24
r+v

c= 1,

where we choose i1 �= i2, i3 �= i4, i5 �= i6, and the superscript
“I” for ĈI

r stands for type I plaquette. Similarly one can obtain
the constraint for a type II plaquette:

ĈII
r ≡ �52

r �13
r+u−v�

46
r+u

c= −1. (41)

Using the qubit representation of �xy and replacements in
Eq. (37), we obtain constraints in terms of Pauli matrices:

type I: Y (4)
r X (3)

r+aX (3)
r+vY

(4)
r+v

= −ρ
(
Z (1)Z (2)

)
r+u,

× type II: X (3)
r Z (4)

r Z (3)
r+uY (4)

r+uY (3)
r+u−vX (4)

r+u−v (42)

= ρ
(
Z (1)Z (2))

r+u.

We can also combine these two constraints, up-down and
left-right, as noted in Fig. 4. The second equation in the
figure shows again similarity to Wen’s plaquette model [43],
if we consider all states in eigenstates of Pauli Z .

The counting of degrees of freedom is as follows. Each
plaquette constraint is shared by three sites, so it contributes
1
3 constraints for each site. Then each site effectively has 6 ×
1
3 = 2 plaquette constraints. Combining the local parton parity
projection, we get back to a physical Hilbert space.

B. Wilson loops

For triangular lattices with periodic boundary conditions,
we can also understand the systems as if they are on a torus
manifold. Suppose the system size is La × Lb; we have two
extra Wilson loop constraints as follows. In the u direction,
we have

Wa(r) ≡ �65
r �65

r+u · · · �65
r−u

c= −1. (43)

Similarly along the v direction,

Wb(r) ≡ �43
r �43

r+v · · · �43
r−v

c= −1. (44)

There is a remaining type of loop along the (u − v) direction,
which can be expressed as products of Wilson loops along u
and v directions and some plaquettes.

One may wonder if the system is overconstrained. Similar
to the square lattice case, with periodic boundary conditions

FIG. 5. Majorana fermions attached to a site in the cubic lattice
with labels. The double lines with arrows represent the sign of map-
ping iγ i

r γ
j

r′ to products of �′s.

the product of all plaquette constraints is equal to the identity,
meaning one of them is dependent on others. So finally we are
left with a half Hilbert space with fixed global fermion parity,
just like the discussions following Eq. (29).

C. Symmetries

Besides translation symmetry along the u and v directions,
the triangular lattice also has dihedral group symmetry D6

generated by a 60◦ rotation C6, and two reflections. C6 rota-
tional symmetry can be represented by bare rotation Cb

6 and
local unitary transformation. Bare C6 rotation,

Cb
6 : �αx

r ⇒ �αx
C6r, (45)

and internal unitary transformation permutes χ indices

(�α1 �α2 �α3 �α4 �α5 �α6)

⇒ (�α6 − �α5 �α1 �α2 �α3 �α4). (46)

This can be realized by VC6 = e−iπ/6
∑

r,x,y φ
xy
r Ãxy , where

Ã = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −2 − 2√
3

2√
3

2

−1 0 2√
3

−2 −2 2√
3

2 − 2√
3

0 1 −2 − 2√
3

2√
3

2 −1 0 2√
3

−2

− 2√
3

2 2 − 2√
3

0 1

−2 − 2√
3

2√
3

2 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

Reflection with respect to the u axis leads to

(�α1 �α2 �α3 �α4 �α5 �α6)

⇒ (−�α4 �α3 − �α2 �α1 �α3 �α4), (48)

so the reflection operator is a bare reflection Mb
u with a unitary

operator VMu ,

Mu = VMu Mb
u, VMu = e− π

2

∑
r (φ23

r −φ14
r ). (49)

Similarly, reflection with respect to the (û + v̂) axis is

Mû+v̂ = VMû+v̂
Mb

û+v̂,

VMû+v̂
= e− π

2

∑
r

(
φ12

r +φ34
r +φ45

r +φ56
r −φ36

r

)
.

(50)

V. CUBIC LATTICE

In this section, we discuss how to apply our ηχ formalism
to the 3D cubic lattice (see Fig. 5). Compared to the 2D
lattice system, the plaquette constraints in 3D lattice systems
become more complicated since visually there are many more
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FIG. 6. Constraints for three types of plaquettes.

cycles and many of them are not independent. Since the cubic
lattice is also six coordinated, the operator content is the
same as in the triangular lattice. We first consider plaquette
constraints and global constraints, with details on how to
bosonize fermion-odd operators through the introduction of a
“decorated link” [31]. We then discuss various symmetries in
the cubic lattice. We show strategies for finding independent
plaquette constraints in Appendix B.

A. Qubit representation

All operators 	
αβ
r , �αx

r , and �
xy
r are the same as in the tri-

angular case. Differences appear in the plaquette constraints.
In a cubic lattice there are three types of plaquettes; we can
call them the xy plaquette, yz plaquette, and xz plaquette:

xy : Ĉxy,r ≡ �24
r �32

r+x�
13
r+x+y�

41
r+y

c= −1,

yz : Ĉyz,r ≡ �62
r �16

r+y�
51
r+y+z�

25
r+z

c= −1,

xz : Ĉxz,r = �64
r �36

r+x�
53
r+x+z�

45
r+z

c= −1.

(51)

These three constraints are not fully independent. To see
this, we first assume the cubic lattice has open boundary
conditions at least for one direction, for example, the y direc-
tion. Then consider a cube. Applying constraint equations to
the pair of xy surfaces and the pair of yz surfaces, and by
multiplying these equations, we get a product of the pair of
xz constraints. We can pick up cubes contiguously along the
y direction, so xz interfaces of these cubes cancel with each
other, leaving finally

Ĉxz,rĈxz,Ly = 1, (52)

where r = (rx, ry, rz ), Ly = (rx, Ly, rz ), i.e., Ly is the projec-
tion of y to the boundary of the y direction. As long as we
fix the boundary xz constraints, in the bulk all xz constraints
are automatically true from the other two types of constraints.
If the system is periodic in all three directions, i.e., on a
3-torus manifold, then we may choose a reference xz plane,
and it is enough to fix the constraints on this xz plane rather
than imposing three constraints for each cube. Graphically we
show these constraints in Fig. 6.

We remark that although these three types of constraints
are not independent, it is advantageous to keep track of all
of them to simplify computing in real applications. We also
notice that although we have used parton parity projection, the
final forms of plaquette constraints are independent of which
subspace of �r the states are projected to.

B. Wilson loops and fermion-odd operators

If the system is on a three-dimensional torus, i.e., having
three periodic boundary conditions, then we have three Wilson
loop constraints. For instance, the fermion loop along the x
direction gives the identity(

iγ 3
r γ 4

r

)(
iγ 4

r γ 3
r+x

) · · · (iγ 4
r−xγ

3
r

) = (−1)Lx . (53)

Similarly we have constraints for y and z directions. Mapping
these to bosonic operators, we obtain

Wx(r) ≡
Lx−1∏
n=0

�12
r+nx

c= −1,

Wy(r) ≡
Ly−1∏
n=0

�34
r+ny

c= −1,

Wz(r) ≡
Lz−1∏
n=0

�56
r+nz

c= −1.

(54)

As we mentioned, the three types of plaquette constraints
are not independent, so we have to be careful to choose
independent constraints for the whole system. The general
counting is discussed in Sec. II C, and we give a set of gen-
erators explicitly in Appendix B.

For the cubic lattice, we define

P̂ ≡ ρLxLyLz
∏

r,rx=0

Wx(r)
∏

r,ry=0

Wy(r)
∏

r,rz=0

Wz(r)

= ρLxLyLz
∏

r

�12
r �34

r �56
r

=
∏

r

	12
r 	34

r 	56
r

c= (−1)Lx+Ly+LzρLxLyLz .

(55)

The last line shows that if Lx, Ly, and Lz are all odd, the
parity is −ρ; if one of them is odd, the parity is −1; oth-
erwise, the parity is +1. For the odd-parity case we cannot
describe a fermion-even vacuum state, unless we release some
of the constraints above. In general, if we want to describe the
whole Hilbert space with different fermion parities, we should
expect that some fermion-odd operators are also mapped to
bosonic side.

In Ref. [31], this is done by introducing a “decorated link”
to the square lattice. The basic idea is that in our mapping
between the fermionic side and bosonic side, there is some
artificial choice of corresponding signs; i.e., the algebra will
be the same for ±iγ i

r γ
j

r′ → �ii
r �

j j
r′ for neighboring sites r, r′.

By reversing the direction of one of the mapping arrows, four
plaquette constraints (living on faces attaching to the edge rr′)
and one Wilson loop constraint will have their signs reversed.
In practice, we consider

iγ 4
−xγ

3
0 → −�44

−x�
33
0 . (56)

Under this mapping, the modified Wilson loop constraint is
now Wx(nx) = +1, 0 � n � Lx − 1, and signs of four plaque-
tte constraints are also reversed.

Consider �33
0 , it is anticommuting with 	α3

0 , α �= 3, and
commuting with other 	

αβ

0 s. �33
0 also commutes with the
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decorated link −�44
−x�

33
0 . We remind that 	α3

0 ↔ iγ α
0 γ 3

0 . It
is clear that �33

0 has the same commutation relations with
fermion-odd operator γ 3

0 . Based on this identification, we can
map arbitrary Majorana operators in the lattice to the bosonic
side and thus all fermion-odd operators, by a few number of
�xy′

s connecting intermediate sites. For instance, γ 2
x can be

expressed as follows:

γ 2
x = iγ 3

0 · (
iγ 3

0 γ 4
0

)(
iγ 4

0 γ 3
x

)(
iγ 3

x γ 2
x

)
→ i�33

0 	34
0 �44

0 �33
x 	32

x = −i�34
0 �23

x .
(57)

In defining the map of fermion-odd operators we have
chosen a link to modify the mapping, and one may ask
whether the choice is special, since the lattice is homogeneous
and a decorated link appears superficially like a defect. Actu-
ally, different positions of the decorated link can be related by
a unitary operator M̂(�),

M̂(�) = 1 + P̂

2
+ 1 − P̂

2
�, (58)

where � represents a Jordan-Wigner string of �
xy
r . P̂ com-

mutes with an arbitrary Jordan-Wigner string �. Meanwhile,
an operator in the form of products of �

xy
r and �α′x′

r
will commute or anticommute with P̂ and Jordan-Wigner
string �.

We briefly show M̂ moves the decorated link in the follow-
ing example and refer to Ref. [31] for details. Considering γ 2

x
again, we can take � = −�34

0 �32
x , then one can readily find

M̂(�)
(
i�34

0 �23
x

)
M̂(�)† = �22

x . (59)

This means that, after unitary transformation of M̂(�), γ 2
x is

mapped to �22
x . Furthermore, one can find

M̂(�)
(−�44

−x�
33
0

)
M̂(�)† = �44

−x�
33
0 ,

M̂(�)
(
�22

x �11
x+y

)
M̂(�)† = −�22

x �11
x+y,

(60)

which means the decorated link is moved to iγ 2
x γ 1

x+y →
−�22

x �11
x+y.

C. Symmetries

In this section we discuss how spatial symmetries of the
cubic lattice are represented on the bosonic side.

First we consider translation symmetry TR : Or �→ Or+R.
For the odd fermion parity case we have to move the decorated
link simultaneously. Similar to discussions in the previous
section, we can use M̂(�) to move the decorated link along
three axes:

Tx = M̂
(
�34

0

)
T b

x , (61a)

Ty = M̂
(
�32

0 �13
y

)
T b

y , (61b)

Tz = M̂
(
�36

0 �53
z

)
T b

z . (61c)

Next, consider reflection with respect to the yz plane. The
bare reflection Mb

x flips the sign of x coordinates for all sites.
Meanwhile the auxiliary Majoranas should be reflected as

follows:

(�α1 �α2 �α3 �α4 �α5 �α6)

⇒ (�α1 �α2 − �α4 �α3 �α5 �α6). (62)

For odd fermion parity case, the decorated link is not
moved during reflection. So combining internal unitary trans-
formation and bare reflection, the full reflection can be
achieved with

Mx = VMx M
b
x , VMx = e−i π

2

∑
r φ34

r . (63)

Similarly reflections with respect to the zx plane and xy
plane can be achieved with

My = VMy M
b
y , VMy = e−i π

2

∑
r φ12

r , (64a)

Mz = VMz M
b
z , VMz = e−i π

2

∑
r φ56

r . (64b)

For rotations of cubic lattice, there are three fourfold axes,
four threefold axes, and six twofold axes. The rotation around
the z axis is similar to the discussion in the square lattice case
[Eq. (32)], where we just need to composite C4 with an extra
M̂(�31) so as to move the decorated link. So here we focus
on other axes. Details of transformation matrices of all these
axes are collected in Appendix C. Here we first consider 180◦
rotation around the 2-axis [110]. It is a bare rotation Cb

2,[110]
accompanied by a internal unitary which transforms

(�α1 �α2 �α3 �α4�α5 �α6)

⇒ (�α3 �α4 �α1 �α2 − �α6 �α5). (65)

The full rotation is

C2,[110] = M̂(�31
r )VC2,[110]C

b
2,[110],

VC2,[110] = e−i π
2

∑
r (φ12

r +φ23
r +φ34

r −φ14
r −φ56

r ).
(66)

For 120◦ rotation around the 3-axis [111], the internal
unitary transforms as

(�α1 �α2 �α3 �α4 �α5 �α6) ⇒ (�α5 �α6 �α1 �α2 �α3 �α4).
(67)

The full rotation is

C3,[111] = M̂(�31
r )VC3,[111]C

b
3,[111],

VC3,[111] = e−i 2π
3

∑
r

1√
3

(
φ15

r +φ26
r −φ13

r −φ24
r −φ35

r −φ46
r

)
.

(68)

VI. EXAMPLE: CHIRAL p-WAVE SUPERCONDUCTOR ON
TRIANGULAR LATTICE

As a concrete example, we apply our bosonization to a
chiral p-wave superconductor model on a triangular lattice
(Fig. 3).

An example of a Bogoliubov–de Gennes (BdG)
Hamiltonian of a chiral p-wave superconductor for a
triangular lattice is

Ĥ = 1

2

∑
k

(c†
k c−k)

(
εk �(k)

�(k)† −εk

)(
ck

c†
−k

)
,

εk = 4t − μ − 4t

3
(cos k · u + cos k · v + cos k · w),

�(k) = −i�0(sin k · u + φ sin k · v + φ2 sin k · w),
(69)
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where �0 is a real number representing the energy gap, and
φ = eiπ/3 is a phase factor. Here u, v, and w are lattice vectors
defined in Fig. 3. Expanding near the k = 0 point, and setting
t = 1

2m , we see that the BdG Hamiltonian reduces to

H (k) =
( k2

2m − μ −i 3
2�0(kx + iky)

i 3
2�0(kx − iky) −(

k2

2m − μ
)

)
. (70)

For a fixed hopping coefficient t , the chemical potential
μ can be tuned to present different topological phases. By
Fourier transformation we obtain the real space Hamiltonian,

H =
∑

r

− t (c†
r cr + u + c†

r cr + v + c†
r cr+w + h.c.)

+ (4t − μ)c†
r cr

+ �0(c†
r c†

r+u + φc†
r c†

r+v + φ2c†
r c†

r+w + H.c.). (71)

For simplicity we rescale 2t
3 → t from now. To bosonize, we

first turn the complex fermions into Majorana fermions: cr =
1
2 (γr − iγ 2

r ), c†
r = 1

2 (γr + iγ 2
r ). In Majorana representation,

H = Hu + Hv + Hw + H0,

H0 = −(4t − μ)
∑

r

iγ 1
r γ 2

r ,

Hu = 1

4

∑
r

(−t + �0)
(
γ 1

r γ 1
r+u + iγ 2

r γ 1
r+u

)

+ (−t − �0)
(
γ 2

r γ 2
r+u − iγ 1

r γ 2
r+u

) + H.c.

= 1

2

∑
r

(−t + �0)iγ 2
r γ 1

r+u + (t + �0)iγ 1
r γ 2

r+u,

Hv = 1

4

∑
r

(−t + φ�0)
(
γ 1

r γ 1
r+v + iγ 2

r γ 1
r+v

)
(72)

+ (−t − φ�0)
(
γ 2

r γ 2
r+v − iγ 1

r γ 2
r+v

) + H.c.

= 1

2

∑
r

(−t + φ�0)iγ 2
r γ 1

r+v + (t + φ�0)iγ 1
r γ 2

r+v,

Hw = 1

4

∑
r

(−t + φ2�0)
(
γ 1

r γ 1
r+w + iγ 2

r γ 1
r+w

)

+ (−t − φ2�0)
(
γ 2

r γ 2
r+w − iγ 1

r γ 2
r+w

) + H.c.

= 1

2

∑
r

(−t + φ2�0)iγ 2
r γ 1

r+w + (t + φ2�0)iγ 1
r γ 2

r+w.

After bosonization, it turns out to be

H0 −→ HB
0 = −(4t − μ)

∑
r

	12
r = −(4t − μ)

∑
r

Z (1)
r , (73a)

Hu −→ HB
u = 1

2

∑
r

(−t + �0)�25
r �16

r+u + (t + �0)�15
r �26

r+u

= 1

2

∑
r

(−t + �0)X (1)
r Z (2)

r Z (3)
r (−X (1)

r+u) + (t + �0)Y (1)
r Z (2)

r Z (3)
r (Y (1)

r+u), (73b)

Hv −→ HB
v = 1

2

∑
r

(−t + φ�0)�23
r �14

r+v + (t + φ�0)�13
r �24

r+v

= 1

2

∑
r

(−t + φ�0)X (1)
r Z (2)

r X (3)
r (−Y (1)Z (2)Y (3) )r+v + (t + φ�0)Y (1)

r Z (2)
r X (3)

r (−X (1)Z (2)Y (3) )r+v, (73c)

Hw −→ HB
w = 1

2

∑
r

(−t + �0)�21
r �12

r+w + (t + �0)�11
r �22

r+w

= 1

2

∑
r

(−t + φ2�0)X (1)
r X (2)

r (−Y (1)Y (2) )r+w + (t + φ2�0)Y (1)
r X (2)

r (−X (1)Y (2) )r+w. (73d)

In the above equations, we have used the Majorana parton
parity constraints to eliminate one qubit per site. The qubit
representation follows directly from Eq. (38) by freezing the
spin degree of freedom of original fermions. Besides these
terms, we also include the plaquette constraint terms into
the bosonized Hamiltonian, HB = HB

0 + HB
u + HB

v + HB
w +

Hplaquettes. This model can then be interpreted as an exactly
solved chiral spin liquid emerging from our bosonization of a
triangular lattice p-wave superconductor.

The emergence of quantum spin liquid models is general in
our bosonization scheme, due to the emergent plaquette con-
straints. If we start from an exactly solvable fermion problem,

like free fermion problems, we should expect the obtained
spin liquid to be also solvable. From this perspective, our
bosonization scheme provides a way to engineer quantum spin
liquid models, while preserving symmetries manifestly. It will
be interesting to study the interplay between topological or-
der and spontaneous symmetry breaking from a bosonization
perspective.

VII. DISCUSSIONS

In this work, we discuss how symmetries could stay
manifest on the bosonic side under a higher-dimensional
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Jordan-Wigner transformation, similar in spirit to the ap-
proach in Ref. [31]. While the approach presented here can
be traced to the existing discussions on the bosonization of
lattice fermions through the introduction of a Z2 lattice gauge
field and, associated with them, Majorana fermions [7,9,27],
our main focus is on how the symmetries, especially spatial
ones, are represented on the bosonic side for the physically
interesting cases of the square, triangular, and cubic lattices.
As described, however, our formalism applies only to even-
coordinated lattices. In the following, we describe how sites
with odd coordination number could be treated, and also draw
connections to earlier works related to the design of exactly
solved spin liquid models.

First, we address the issue of lattices with odd coordi-
nation numbers. As discussed in Sec. III B, by counting the
constraints it can be seen that ηχ construction is in principle
suitable for all kinds of graphs, at least in terms of the Hilbert
space dimension. But if some vertices in the graph have odd
coordination numbers, then our approach requires introducing
an odd number of χ ′s on the site, and so we do not have a valid
on-site Hilbert space unless the number of η′s is also odd.

Given the number of η Majorana fermions is fixed by the
physical problem of interest, the ηχ approach as we discussed
is applicable to lattices with oddly coordinated sites only if
we start with an odd number of Majorana fermions on such
sites. In contrast, most models of interest in condensed matter
physics are defined using complex fermions (at least those de-
scribing electrons hopping on a lattice), and so the number of
Majorana fermions is always even on each site. One possible
resolution to this dilemma is to recognize that the graph defin-
ing the operator content, and hence the effective coordination
number of a site (more accurately, its degree as a vertex on
the graph) is not as rigid as it may seem. One could add ad-
ditional edges to the graph while maintaining the symmetries,
such that all sites effectively become even coordinated. For
instance, consider the trivalent honeycomb lattice. Each site
has three nearest neighbors, six second-nearest neighbors, and
three third-nearest neighbors. Therefore, by including also
links between third-nearest neighbors each site becomes six
coordinated, and we could proceed with the ηχ construction
without spoiling any spatial symmetries. A trade-off, however,
is that we introduce more degrees of freedom on the bosonic
side, and that there are more loops and hence constraints.

The present ηχ formalism can also be related to some well-
known quantum spin liquid models. For example, Kitaev’s
honeycomb model [38] has Majorana fermion representations,
and our ηχ formalism can also be used to obtain such mod-
els in a natural way. We present two examples here: one is
Kitaev’s honeycomb model, and the other is Ryu’s diamond
model [39]. One important feature here is that the fermionic
system is taken to be emergent instead of physical, and as
such there is no restriction on the number of η Majorana
fermions per site. It will be natural to leverage such freedom
and consider an odd (even) number of η fermions on sites with
odd (even) coordination numbers.

Consider a honeycomb lattice with one Majorana fermion
mode per site. In the ηχ formalism �αx is then a 1 × 3 matrix;
i.e., there are one η and three χ ′s per site. Nearest-neighbor
fermion bilinear iγrγr+e j then gets mapped to �

1 j
r �

1 j
r+e j

for

j = 1, 2, 3 denoting the three neighbor links. Since any two
operators among {�11

r ,�12
r ,�13

r } should anticommute, and
the site Hilbert space is two dimensional (four auxiliary
Majorana fermions subjected to a parity constraint), we nat-
urally get back Kitaev’s honeycomb model [38]. Similar
constructions with two η′s and four χ ′s per site on the square
[40] and diamond [39] lattices would also lead to exactly
solved spin liquid models, as we demonstrate in detail in
Appendix D. With the same logic, it is possible to construct
spin liquid models on more general lattices, and we leave this
as an interesting future direction.

Note added. Recently, a related paper appeared [45]. Part of
the present work overlaps with Ref. [45] in that both discuss
how existing methods for bosonizing spinless fermions can
be naturally generalized to cover multiple fermion flavors per
site.
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APPENDIX A: RELATIONS BETWEEN SO(8)
REPRESENTATIONS

In our ηχ formalism of square lattice, the qubit representa-
tion forms a spinor representation for SO(8) or, say, Spin(8).
In Ref. [31] the qubit representation is also constructed using
auxiliary Majorana fermions. We show that the two ways
are physically equivalent. There are some subtle issues about
finding a transformation of Clifford basis η, χ to η1, . . . , η8 in
the Appendix of Ref. [31], since Clifford algebra intrinsically
lives on the 16-dimensional Hilbert space, while in the case of
spin-charge separation, the physical meaning of �+ subspace
is vague. But restricting to �− subspace, we can take a simpler
way to look for local unitary transformations of qubit repre-
sentations of operators, such that �′s can be mapped to their
expressions in Ref. [31] correspondingly. Without ambiguity,
we may abuse the notation of indices i, j, α, x.

We first review some basic facts of the SO(8) group [46]. It
is a simple Lie group of rank 4. In terms of orthonormal basis
vector ei the four simple roots are α1 = e1 − e2, α2 = e2 − e3,
α3 = e3 − e4, and α4 = e3 + e4. Its fundamental weights in
the same basis are

μ1 = (1, 0, 0, 0), μ2 = (1, 1, 0, 0),

μ3 = 1
2 (1, 1, 1,−1), μ4 = 1

2 (1, 1, 1, 1).
(A1)

All inequivalent irreducible representations can be con-
structed from highest weight states |μ〉, μ = miμi with mi ∈
N. Fundamental representation |μ1〉 is vector representation,
denoted as 8v . |μ3〉 and |μ4〉 are two spinor representations
corresponding to different parity, denoted as 8s− and 8s+ ,
respectively.

In the ηχ formalism, the generators H = (H1, H2, H3, H4)
of Cartan subalgebra are chosen from θ and φ in Eq. (8) (for
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FIG. 7. Weight diagrams of two irreps.

convenience we replace na,b,d,g by n1,2,3,4, respectively):

H1 = −θ12 = 1
2 (2n1 − 1), H2 = −θ34 = 1

2 (2n2 − 1),

H3 = φ12 = 1
2 (2n3 − 1), H4 = φ34 = 1

2 (2n4 − 1).
(A2)

Then irreducible representation (irrep) 8s− has the highest
weight state |1110〉.

Although it is not obvious how to find a local unitary
operator by η′s and χ ′s such that our formalism here can be
turned into ones of spin-charge separation in Ref. [31], we
can first consider local unitary transformations between qubit
representations. We look for a unitary matrix U such that

U�i jU −1 = �i j
sc, (A3)

where �sc means the corresponding expression in Eq. (112)
of Ref. [31]. When ρ = −1, this 8 × 8 matrix U turns
out to be

U =

⎛
⎜⎝

0 0 0 X
0 0 −iX 0
X 0 0 0
0 −iX 0 0

⎞
⎟⎠, (A4)

where X is a 2 × 2 Pauli matrix, and each entry denotes
a 2 × 2 block. Under this transformation, the generators
in Eq. (A2) are mapped to another form. We can readily
check that the states after being mapped by U still form an
8s− irrep. More explicitly, for a state with weight |μi〉 in the ηχ

qubit representation, if we operate with transformed Cartan
generators on these states,

UHαU −1 · U
∣∣μi

〉 = μi
αU

∣∣μi
〉
, α ∈ {1, 2, 3, 4}, (A5)

which means |μi〉 still has weight μi. We have summarized the
weight diagram of states in the ηχ qubit representation and the
transformed qubit representation. Notice that in Ref. [31] spin
representations are defined from particle number representa-
tions in a different way from ours.

After unitary transformation the irrep 8s− has the highest
weight state |1000〉′ (we use ′ to distinguish states in the sense
of spin-charge separation). Notice in Ref. [31] the particle
number is n = 1 + nc − nh, and z-component spin is Sz =
1
2 (nu − nd ). So |1000〉′ represents a state n = 2, Sz = 0, which
is the same as |1110〉 in the ηχ formalism (if we ignore the
auxiliary degrees of freedom). Similarly one may compare all
descendants in the two irreps as shown in Fig. 7.

FIG. 8. A planar graph with some vertices and edges. The thick
lines constitute a maximal tree T , and every edge not belonging to
T generates a homology class, namely, a 1-cycle. The number of
generators is equal to the number of “holes” (Euler characteristic).

APPENDIX B: GENERATORS OF H1(X,Z) OF
CONNECTED GRAPHS

In this Appendix we discuss how to find generators of the
first homology group for a connected graph. For example,
Fig. 8 is a planar graph that consists of 9 vertices and 15 edges.
A maximal tree T is emphasized by thick lines. Then for every
edge e /∈ T , adding it to this maximal tree will produce a
class of cycle, like adding the edge BM to T will produce
a cycle ABM. In the language of bosonization, each cycle on
the fermionic side is an identity, while mapping to the bosonic
side gives a constraint. In Fig. 8 there are seven edges not
included in T and they generate the whole H1(X,Z) ∼= Z7.

For a nonplanar connected graph, for instance, a lattice
with periodic boundary conditions, the counting of generators
of H1(X,Z) is also similar, but the counting of independent
“holes” is not as obvious as in the planar case. In a generic
situation, we can start from one vertex of the graph and find a
maximal tree, count edges not included in the tree, and assign
each of them with a cycle.

We start from an example of a 2 × 2 square lattice. In Fig. 8
the dangling edges with crosses (“crossed edge”) are linking
to periodic sites respectively. The maximal tree is stressed
with thick lines. The left-most crossed edge gives the Wilson
loop constraint along the y direction, and the bottom crossed
edge gives the Wilson loop constraint along the x direction.
The right edge of the square gives a plaquette to its left. The

FIG. 9. Plaquette constraints for cubic lattice on 3-torus. The left
figure shows independent plaquettes colored in cuboid (for vision the
upper surface is not exhibited). The right figure shows Wilson loops
and extra plaquettes from periodic boundary conditions.
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two crossed edges at the top-right corner give two plaquettes
to their left and right.

Now we consider a cubic lattice. To make it concrete we
set Lx = 6, Ly = 3, Lz = 2. We first consider the (Lx − 1) ×
(Ly − 1) × (Lz − 1) cuboid; its maximal tree is chosen to be
double layers of “E” shape with an extra edge connecting
two layers. Using edges in this cuboid we can get plaque-
ttes living on five surfaces of the cuboid. We use different
colors to shade the plaquette constraints from those edges;
these surfaces include (y = 0, xz), (y = 2, xz), (x = 0, yz),
(z = 0, xy), and (z = 1, xy) (see Fig. 9). Then we turn to those
dangling edges. The strategy is as follows. First determine
the Wilson loop constraints, and then assign each dangling
edge to a plaquette on the extension of cuboid surfaces. This
strategy makes Wilson loops move freely in the whole graph,
and plaquette constraints are all independent and easy to
count.

The counting of plaquettes is straightforward. Combining
these contributions, we have

#{constraints} = (LxLz − 1)Ly + (Ly − 1)(Lx − 1)Lz

+ (Lx − 1)Lz + (LyLz − 1) + (Ly − 1) + 3

= 2LxLyLz + 1.

The last line is exactly the same as the exponent of the denom-
inator in Eq. (13).

APPENDIX C: ROTATION MATRICES AND
EXPONENTIAL MAPS

In this section we list some useful equations of rota-
tion matrices of cubic lattice for all types of axes. As the
notation in main text, we denote a 6 × 6 rotation matrix
as R, for �T ⇒ �T R, and its exponential form R = e−2A

where A is a 6 × 6 antisymmetric real matrix. We summa-
rize some equations of exponential maps so that one can
readily write down the corresponding unitary operator of
rotation.

For fourfold axes we just use the VC4 of a square lattice to
write down similar operators in the cubic lattice:

V[0,0,1] = e−i π
4

∑
r

(
φ12

r +φ34
r −√

2
(
φ13

r +φ24
r +φ14

r −φ23
r

))
, (C1a)

V[1,0,0] = e−i π
4

∑
r

(
φ56

r +φ12
r −√

2
(
φ51

r +φ62
r +φ52

r −φ61
r

))
, (C1b)

V[0,−1,0] = e−i π
4

∑
r

(
φ56

r +φ34
r −√

2
(
φ53

r +φ64
r +φ54

r −φ63
r

))
. (C1c)

For twofold axes:

[1, 1, 0] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 −1 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
1 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C2)

[1,−1, 0] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C3)

[1, 0, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 −1
−1 0 0 0 1 0
0 0 0 1 0 0
1 0 −1 0 0 0
0 −1 0 0 0 1
1 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C4)

[−1, 0, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

−1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C5)

[0, 1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 −1
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C6)
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[0,−1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

−π

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

. (C7)

For threefold axes:

[1, 1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

2π

3
√

3

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 −1 0
0 0 0 1 0 −1

−1 0 0 0 1 0
0 −1 0 0 0 1
1 0 −1 0 0 0
0 1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

, (C8)

[1,−1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
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−1 0 0 0 0 0
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⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

2π

3
√

3

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 −1
0 0 −1 0 1 0
0 1 0 0 −1 0

−1 0 0 0 0 −1
0 −1 1 0 0 0
1 0 0 1 0 0

⎞
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⎤
⎥⎥⎥⎥⎥⎦

, (C9)

[−1,−1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
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⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

2π

3
√

3

⎛
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⎞
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⎤
⎥⎥⎥⎥⎥⎦

, (C10)

[−1, 1, 1] : R =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0

−1 0 0 0 0 0
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0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

= exp

⎡
⎢⎢⎢⎢⎢⎣

2π

3
√

3

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0
0 0 −1 0 0 1
0 1 0 0 0 −1

−1 0 0 0 1 0
−1 0 0 −1 0 0
0 −1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

. (C11)

APPENDIX D: CONNECTION TO SPIN LIQUID MODELS

We consider a diamond lattice. There are two sets of sub-
lattices, and each vertex has four types of links to its nearest
neighbors. Each vertex can be assigned a tetrahedron, whose
four vertices correspond to χ i, i ∈ {1, 2, 3, 4}, labeled as in
Fig. 10. We label the two χ i′s on the same edge with the
same number, so the number can be regarded as assigned
to the edge. The four types of edges are denoted by μ(e) =

FIG. 10. Ryu’s model on a diamond lattice. The figure shows two
types of sites in the diamond lattice with red A type and blue B type.
Numbers label the edge to which a pair of χ i′ s is attached. Each site
has a tetrahedron. Tetrahedrons of blue sites are not shown in the
figure.

1, 2, 3, 4. Besides, there are another two Majorana fermions
η1, η2 on each site. The representation we choose is as
follows:

�12 = X (1),�23 = Z (1),�13 = Y (1),

�41 = Z (1)Y (2),�42 = −Y (1)Y (2),�43 = X (1)Y (2). (D1)

Representation for �αx = iηαχ x is chosen as

�11 = Z (1)X (2),�12 = −Y (1)X (2),

�13 = X (1)X (2),�14 = Z (2),

�21 = Z (1)Z (2),�22 = −Y (1)Z (2),

�23 = X (1)Z (2),�24 = X (2). (D2)

We use μ(e), s(e), and t (e) to denote edge type, red site,
and blue site of an edge e, with mapping arrows from red sites
to blue sites. With such a qubit representation, a Hamiltonian
H = ∑

e Jμ(e)(iγ 1
s(e)γ

1
(t ) + iγ 2

s(e)γ
2

t (e) ) on the fermionic side is
mapped to

H = −
∑

e

Jμ(e)�
1μ(e)
s(e) �

1μ(e)
t (e)

= −
∑

e

Jμ(e)σ
μ(e)
s(e) σ

μ(e)
t (e)

(
X (2)

s(e)X
(2)

t (e) + Z (2)
s(e)Z

(2)
t (e)

)
,

(D3)
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which is Ryu’s diamond model [39]. This is an example of
3D quantum spin liquid model. Both Hamiltonians of Ryu’s
diamond model and Kitaev’s honeycomb model pick up the
unique ground state satisfying the plaquette constraints so
there is no need to include constraints in the Hamiltonians,

according to Lieb’s theorem [47]. These plaquette terms ap-
pear as effective theories automatically in the strong-coupling
limit. In fact, the same Hamiltonian can be constructed for a
square lattice with two types of sites interspersed. Interested
readers are referred to Ref. [40].
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