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Probing the quantum noise of the spinon Fermi surface with NV centers
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We study the transverse electrical conductivity and the corresponding magnetic noise of a two-dimensional
U(1) spin liquid state with a spinon Fermi surface. We show that in the quasistatic regime these responses have the
same wave-vector dependence as that of a metal but are reduced by a dimensionless prefactor controlled by the
ratio of orbital diamagnetic susceptibilities of the spinons and chargons, correcting previous work. We estimate
that this quasistatic regime is comfortably accessed by the typical nitrogen vacancy (NV) center splittings of a
few gigahertz and estimate that the expected T1 times for an NV center placed above candidate materials, such
as organic dmit and ET salts and monolayer 1T -TaS2/Se2, would range from several tens to a few hundred
milliseconds.
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I. INTRODUCTION

Nitrogen vacancy (NV) centers are defects in diamond that
carry a well-isolated spin [1] and have been finding promis-
ing applications in quantum computation [2–5], in quantum
simulation [6,7], and also as powerful sensors of magnetic
fields and magnetic noise correlations [8–10]. Their ability
to measure local magnetic fields and their noise has recently
attracted attention as a new technique to probe correlations
and nonequilibrium states of metals [11–13] and could offer
new ways to detect the elusive and complex quantum spin
liquid states in correlated materials [14,15].

In its simplest mode of operation the magnetic noise is
probed by measuring the spin relaxation time T1 of the NV
center, which is inversely proportional to the autocorrelation
function quantifying the temporal fluctuations of the magnetic
field at the NV center location [1,8–10]. While the physics is
conceptually similar to that controlling the T1 time of, e.g.,
nuclear spins embedded in the sample (as used in NMR tech-
niques), the control of the NV center splitting as well as the
control of its distance from the sample can allow for enhanced
information on the frequency and wave-vector dependence
of such magnetic fluctuations, which ultimately can provide
enhanced information about the correlations in the sample that
act as a source of such magnetic noise.
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A recent work [15] showed that even when a metallic
Fermi surface has a complex shape, the dissipative real part of
the transverse conductivity is a universal quantity controlled
entirely by its geometric shape, which in turn gives rise to
a universal T1 time for an NV center controlled only by the
length of the perimeter of the Fermi surface, in the regime
where the NV center distance z satisfies p−1

F � z � lmfp,
where pF is the Fermi radius and lmfp is the electron mean
free path of the metal. However, while the conclusions of
Ref. [15] on metallic Fermi surface states remain valid, the
same work concluded incorrectly that the spinon Fermi sur-
face state would have the same value for the low-frequency
limit of the transverse conductivity and the associated T1 time
as a metallic Fermi liquid.

The reason for this discrepancy is that Ref. [15] inadver-
tently missed the diamagnetic contributions of the spinons.
As we will discuss here, the spinon transverse conductivity
assumes a standard form of a Fermi liquid given by (in the
limit ω � vFq � εF) [16,17]

σ
spinon
⊥ (q, ω) ≈ e2

h

pF

q
+ χs

q2

iω
. (1)

Moreover, we will show that the expression for the physical
transverse electrical conductivity of the spinon Fermi surface
state (in the low-frequency limit) is given by

σ⊥(q, ω) ≈
(

χc

χs + χa + χc

)2 e2

h

pF

q
+ χ

q2

iω
. (2)

The above expressions apply in the zero-temperature and
clean limit of a spin-degenerate, circular Fermi surface with
radius pF. χs,c are spinon and chargon orbital diamagnetic
susceptibilities, χa is a diamagnetic susceptibility associated
with the Maxwell term of the emergent U(1) gauge field,
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TABLE I. Order-of-magnitude estimates for material candidates
(dmit stands for EtMe3Sb[Pd(dmit)2]2 and κ-ET stands for κ-
(ET)2Cu2(CN)3). We took c = 0.5vF, F1 = 0, and χc = χs + χa, and
for simplicity εs = εa = 0, so that the Mott scale ω̄ is determined by
the chargon dielectric constant εc. We have taken the temperature to
be T = 10 K, the NV center-to-sample distance to be z = 1 nm, and
the NV center splitting to be ω = 3 GHz (we take q = 1/z to estimate
�ωs). εF and �ωs of 1T -TaS2 are left blank because they are still
uncertain (see the discussion in the text). These values correct those
of Table 2 in Ref. [15]. Notice that the above values are estimates for
a single layer of each material. For multilayered or bulk samples we
can add up the contributions of each layer, and there will be reduction
of the T1 time by a factor of the order of T1 → T1

d
z ln(lmfp/z) ∼ T1

d
z ,

where d is the interlayer distance (assuming lmfp � z � d).

k−1
F εF ωp �ωs/2π T1

(A) (meV) (meV) (GHz) (ms)

dmit 2.4 59 80 [27] 215 58
κ-ET 3.2 98 87 [27] 2 × 103 78
1T -TaS2/Se2 4.4 200 [27] 109
WTe2 26 29 60 [18] 6 × 104 630

and χ−1 = (χs + χa)−1 + χ−1
c . Therefore, we see that while

the transverse conductivity has the same form as that of an
ordinary metal in this quasistatic regime, its real (dissipative)
part is corrected by the dimensionless factor χ2

c /(χs + χa +
χc)2. As a consequence, the remarkable result of Ref. [15]
that the relaxation rate 1/T1 of an NV center coupled to
a two-dimensional spinon Fermi surface state has the same
dependence on distance, frequency, and temperature as in the
metallic case remains valid, albeit with an extra prefactor,
χ2

c /(χs + χa + χc)2 (see Table I for specific estimates).

II. SPINON FERMI SURFACE LOW-ENERGY THEORY

The following low- energy effective Lagrangian captures
the orbital coupling of the spinon Fermi surface state to the
physical electromagnetic fields (denoted by E = −∂rϕ − ∂t A
and B = ∂r × A):

L =Lspinon(p − a) + Lchargon(p − A + a)

+ εa

2
e2 − χa

2
b2 + · · · . (3)

Let us briefly explain the physical meaning of the various
terms. Here we are imagining that deconfinement of the U(1)
gauge field has taken place and thus the emergent electric and
magnetic fields, denoted by e = −∂rφ − ∂t a and b = ∂r × a,
can be taken to be noncompact. The emergent gauge field
now acquires dynamics which is described by a Maxwell-like
term and parametrized by emergent dielectric and diamag-
netic constants εa and χa. Lspinon(p − a) is shorthand for the
Lagrangian of a fermion (the spinon) minimally coupled to
the emergent U(1) gauge field a but neutral under the phys-
ical gauge field A. On the other hand, Lchargon(p − A + a)
describes the Lagrangian of a boson (the chargon) that min-
imally couples to the physical field and carries a gauge charge
opposite that of the spinon with respect to the emergent field.
The above Lagrangian can be motivated from a slave-boson
(or the closely related slave-rotor [19]) parton decomposition

of the electron operator, which is viewed as the composite
of the spinon and chargon (see, e.g., [20,21]). Nevertheless,
we would like to emphasize that in the above Lagrangian the
spinon and chargon should not be viewed, strictly speaking,
as the same objects as the unphysical UV partons, but rather
as low-energy deconfined physical quasiparticles. In fact, due
to the presence of the Maxwell term, if we were to change the
Lagrangian in Eq. (3) by coupling the spinon to the physical
gauge field instead of the chargon, we would obtain different
predictions for physical gauge-invariant observables. There-
fore, in this sense, we no longer have the freedom to assign
the coupling of the electromagnetic field to either the chargon
or the spinon and get the same answer.

Because the chargons are gapped, they can be integrated
out for the purpose of the low-energy description, and thus,
their Lagrangian can be replaced by a Maxwell term of the
form

Lchargon(p − A + a) ≈ εc

2
(e − E )2 − χc

2
(b − B)2. (4)

The effective dielectric and diamagnetic constants of the
chargons, εc and χc, will depend on their detailed microscopic
dispersion. For example, within a relativistic boson model of
the chargon dispersion, one obtains χc = 1/(24πmc), where
mc = �c/v

2
c is the effective mass of the chargons with a speed

vc and a gap �c, as shown in Ref. [22].
On the other hand, for the spinons, one can keep track

of their occupation of momentum states only within a nar-
row sliver around the Fermi surface while integrating out
higher-energy modes. This amounts to replacing Lspinon by the
following Lagrangian:

Lspinon(p − a) ≈ LFS
spinon(p − a) + εs

2
e2 − χs

2
b2

. (5)

The Maxwell terms for the emergent electromagnetic fields
arise from integrating out the modes away from the Fermi sur-
face; in particular, the magnetic term accounts for the spinon
diamagnetism χs. These terms were missed in Ref. [15].
For a nonrelativistic parabolic dispersion for the spinons
one obtains χs = gs/(24πms) (namely, the standard Landau
diamagnetic constant with gs = 2 accounting for the spin
degeneracy).

Next, we follow the classic work of Ioffe and Larkin [23]
to derive a relation between the physical conductivity and
the spinon and chargon conductivities. Due to the appearance
of the Maxwell term in Eq. (3), which was absent in the
original Ioffe-Larkin paper, the derivation is a little different,
and the result is slightly modified. First, the Euler-Lagrange
equation of motion that follows from Eq. (3), by taking its
variational derivatives with respect to a, δL/δa = 0, is given
by

χa∂r × b − εa∂t e = js − jc, (6)

where js = δLspinon/δa and jc = −δLchargon/δa are the
spinon and chargon current densities, respectively. Second,
by taking functional derivatives with respect to the physical
gauge field, we find that

je = δL
δA

= jc, (7)
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so that the physical electric current density je is the same as
the chargon current jc but is modified from the spinon current.
To obtain explicit dependence on the electric fields, we use
Faraday’s law ∂r × e = −∂t b to eliminate b in Eq. (6). It is
convenient to decompose the currents into perpendicular and
transverse components and define the corresponding conduc-
tivity as

je⊥ = σ⊥E⊥,

js⊥ = σs⊥e⊥, (8)

jc⊥ = σc⊥(E⊥ − e⊥),

with similar notation for the longitudinal components. Going
to Fourier space, we find the relations between e and E:

(σc‖ + σs‖ + iεaω)e‖ = σc‖E‖,(
σc⊥ + σs⊥ + iεaω + χa

q2

iω

)
e⊥ = σc⊥E⊥, (9)

where the conductivities are understood to be frequency and
wave vector dependent. It is convenient to introduce

σ ′
s‖ ≡ σs‖ + iεaω,

σ ′
s⊥ ≡ σs⊥ + iεaω + χa

q2

iω
. (10)

Then, by using Eqs. (7) and (8) to compute σ and using
Eq. (9) to eliminate e, we arrive at a result with the same
form as the classic Ioffe-Larkin formula, σ−1 = σ−1

c + σ ′
s
−1.

The longitudinal and transverse components of the physical
conductivity σ are

σ−1
‖ (q, ω) = σ−1

c‖ (ω) + [σs‖(q, ω) + iωεa)]−1, (11)

σ−1
⊥ (q, ω) = σ−1

c⊥ (q, ω) +
(

σs⊥(q, ω) + iωεa + χa
q2

iω

)−1

.

(12)

Compared with the standard Ioffe-Larkin formula, the spinon
conductivity has extra terms which are proportional to εa

and χa.
Now we apply Eq. (12) to the problem at hand. Since

we are interested in the limit ω � vFq � εF, we can drop
the term iωεa in Eq. (12). We first treat the spinon as a free
Fermi liquid and use the form given by Eq. (1) for σs⊥. Since
the chargon is gapped, we set σc⊥ = χc

q2

iω . Making the above
substitutions in Eq. (12), we obtain our main result given by
Eq. (2). The first term is the real (dissipative) part that enters
into the calculation of the relaxation rate of the NV center. As
noted in the Introduction, it is reduced from that of a metal by
the factor χ2

c /(χs + χa + χc)2. We can interpret this result as
originating from the fact that the physical fluctuating current
is reduced from that of a free Fermi sea by the factor F =
χc/(χs + χa + χc) because its flow is restricted by coupling
to the emergent gauge field. The conductivity is suppressed
by F 2 because it is proportional to a product of two current
operators. It is also worth noting that when compared with
the standard Ioffe-Larkin formula, χs is replaced by χs + χa.
Thus, the appearance of the Maxwell term in the gauge field
Lagrangian can be absorbed as a redefinition of the spinon

diamagnetic susceptibility if one chooses to use the original
Ioffe-Larkin formula.

In Ref. [15] the spinon conductivity was treated more
accurately, including Fermi liquid corrections due to the scat-
tering of quasiparticles near the Fermi surface, as well as
accounting for Landau parameters. For completeness, below,
we give the relevant formulas which can be plugged into
Eq. (12) to give the physical conductivity. Nevertheless, as
we will see, in the low-frequency limit ω � vFq � εF and
clean limit q � l−1

mfp (see the discussion in Sec. III), the same
reduction factor F 2 appears in the dissipative part of the
conductivity which enters into the relaxation rate of the NV
center, and therefore, we recover the same limit as in Eq. (2)
even within this more accurate description of the spinon
conductivity.

The contribution to the spinon density ρFS and current jFS
arising from fluctuations in the vicinity of the Fermi surface
can be expressed in terms of the change in the spinon occupa-
tion near the Fermi surface δnp as follows:

ρFS = 1

A
∑

p

δnp, jFS = 1

A
∑

p

vpδn̄p, (13)

δn̄p = δnp +
∑

p′
fpp′δ(εp − εF)δnp′ , (14)

where vp = ∂pε(p) is the spinon quasiparticle velocity and
fp,p′ accounts for Landau parameters. The spinon distribution
function obeys the linearized kinetic equation

∂tδnp + vp · ∂rδn̄p + e · vpδ(εp − εF) = I[δnp], (15)

where I[δnp] accounts for momentum-relaxing and
momentum-preserving collisions with the respective
scattering rates �1 and �2 based on the model for collisions
described in Refs. [15,24–26]. By solving the kinetic
equation for a circular Fermi surface, one obtains the
following expressions for the different conductivities:

σs‖ = i
n

m

[
2

2in
m ρ∗(q, ω) + F1ω− − ω+ − 2i�2

]
+ iωεs, (16)

σs⊥ = i
n

m

[
2

F1ω− − ω+ − 2i�2

]
+ iωεs + χs

q2

iω
, (17)

ρ∗(q, ω) = −i
1

n2κ

q2

ω
, κ = 1

nEF

1

1 + F0
, (18)

ω± = ω − i(�1 + �2) ±
√

[ω − i(�1 + �2)]2 − (vFq)2,

(19)

σc‖ = iωεc, σc⊥ = iωεc + χc
q2

iω
, (20)

where n = p2
F/4π is the spinon density, EF = p2

F /2m∗ is
the Fermi energy, and we have included only two nonzero
Landau parameters, F0 and F1. The Landau parameter F1 de-
termines the renormalization of the spinon quasiparticle mass
m∗ relative to its transport mass m: m = m∗/(1 + F1). The
above expressions from Eqs. (20) can then be plugged onto
Eq. (12).

Although we focus on the properties of the transverse con-
ductivity in this study, we mention in passing that the optical
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FIG. 1. Comparison of the conductivity of the spinon Fermi
surface state (SFSS; blue) and a metal (black). This corrects
Fig. 3 in Ref. [15] by including the spinon Landau diamagnetism.
(a) Reσ⊥(q, ω) for q = 0.3pF,0 [along the solid vertical line cut in
(b)]. (b) Dispersion of collective modes and particle-hole excita-
tions in the spinon Fermi surface state (Fl = 0). (c) Reσ‖(q → 0, ω)
with weak collisions: �1 = �2 = 0.1vF pF,0. In (b) and (c) the op-
tical pseudogap is ω̄ (see Supplemental Material [28] for details).
(d) Reσ⊥(q, ω) at different (small) frequencies. We take here χs +
χa = χc and εs = εa = 0.

conductivity peaks at some typical scale that can be viewed
as the optical pseudogap associated with the Mott scale (see
Fig. 1 and further information in Ref. [28]). The expression
for this scale is

ω̄ =
√

n

m(εc + εs + εa)
. (21)

III. CONDUCTIVITIES AND MAGNETIC NOISE
OF THE SPINON FERMI SURFACE STATE

As discussed in Ref. [15], the clean limit of the quasistatic
conductivity is attained for wave vectors above an inverse
spinon mean free path, q � l−1

mfp, given by

l−1
mfp = max(qC, qD), (22)

vFqD = 2�1

(1 + F1)
, vFqC = (�1 + �2). (23)

In this wave-vector regime, Eq. (2) can be obtained by taking
the limit ω → 0 from the expressions in Eqs. (11)–(20). At
fixed wave vector but finite frequency, the real part of the
transverse conductivity vanishes above a typical frequency
window �ωs, as illustrated in Fig. 1, which can be estimated
to be

�ωs

2π
� (χc + χs + χa)q3

pF
. (24)

Hence, measuring the quasistatic conductivity requires exper-
iments to operate at frequencies ω � �ωs. NV centers have a
level splitting of about 3 GHz [10], well below typical values
for �ωs listed in Table I, making them ideally suited to probe
the quasistatic regime of the conductivity. As we will see later
on, the main challenge is their rather weak coupling to the spin
liquid, which leads to relatively long T1 times.

In the more general case of a noncircular spinon Fermi
surface, the real part of the quasistatic transverse conductivity
(at low temperatures and for p−1

F � q � 1/lmfp) is given by

Re σ⊥ =
(

χc

χs + χa + χc

)2

(2S + 1)
e2

2hq

∑
i

RF|p∗
i (q̂), (25)

where (2S + 1) is the spin degeneracy factor, {p∗
i } is the set

of points on the Fermi surface at which the Fermi velocity is
orthogonal to q̂, and RF|p∗

i (q̂) is the absolute value of the local
radius of curvature of the Fermi surface at p∗

i . Therefore, the
conductivity depends only on the geometry of the Fermi sur-
face and is reduced by the same factor, χ2

c /(χs + χa + χc)2,
as in the case of metals described in Ref. [15].

The above quasistatic transverse conductivity can be
probed by measuring the T1 time of a single spin (NV center)
placed above the sample at distance z [10,14,29]. This T1

time is inversely proportional to the imaginary part of the
magnetic field autocorrelation function (magnetic noise) at
the NV center location, ImχBμBν

(z, ω) and at the frequency
ω given by the energy splitting of the NV center [10,30]. For
the circular Fermi surface, we have

ImχBzBz (z, ω) = μ2
0ω

8π

∫
qdqe−2qzRe σ⊥(q, ω). (26)

More general expressions are discussed in Ref. [15]. With
our complete expressions for the conductivity from Eqs. (11)–
(20), we plot the above autocorrelation function at low
frequencies in Fig. 2 as a function of the NV center distance
z. We see that when the distance of the NV center is smaller
than the spinon mean free path (p−1

F � z � lmfp), the mag-
netic noise approaches the following universal value at low
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FIG. 2. Magnetic noise of the SFSS (blue) analogous to those
shown in Fig. 5 in Ref. [15], but including the Landau diamagnetism,
for εs = εa = 0 and χs = χc. The analogous behavior of the metals
is shown by the black and red curves.

frequencies:

ImχBzBz �
(

χc

χs + χa + χc

)2 e2μ2
0

16πh

ω

z

(2S + 1)

2π
PFS, (27)

with subleading corrections to the above starting at O(ω3).
The above formula applies to Fermi surfaces of arbitrary
shapes, and here PFS is the length of the perimeter of the
spinon Fermi surface, which in the case of the circle is PFS =
2π pF. The above expression contains the dimensionless pref-
actor, χ2

c /(χs + χa + χc)2, which was missing in Ref. [15].
From the above we estimate the T1 times in Table I using the
following formula [10,30]:

1

T1
= μ2

B

2h̄
coth

(
β h̄ω

2

)
ImχBzBz (z, ω), (28)

where here we have simply set the magnetic moment of
the NV to be the Bohr magneton for purposes of order-of-
magnitude estimates. For Table I we take z = 1 nm, ω =
3 GHz, and T = 10 K as parameters for the NV center [10].
The search for potential spin liquid states in 1T -TaS2 and
1T -TaSe2 [31–34] might be simpler in monolayers compared
to bulk samples, as there are two possible types of surfaces
for the latter: an unpaired single layer or a paired double layer
[35]. Unfortunately, so far the specific heat has been measured
only in bulk samples, which complicates the extraction of

the spinon Fermi energy from bulk measurements, such as
the specific heat [36]. This is why we do not indicate values
for εF and �ωs in Table I. Nevertheless, the estimate of the
T1 time can be performed without detailed knowledge of the
spinon Fermi energy scale, thanks to its simple dependence
on the length of the perimeter of the Fermi surface (which can
be estimated from the spinon density). This is why we have
been able to provide an estimate of the expected T1 time of
1T -TaS2/Se2 in Table I.

We also would like to mention in passing that the dis-
cussion in this work does not necessarily apply to the
“pseudoscalar” spinon Fermi surface introduced in Ref. [37]
to explain the oscillations of thermal conductivity in α-RuCl3

[38,39].

IV. SUMMARY AND OUTLOOK

We have shown that in the regime of wave vectors l−1
mfp �

q � pF, the dissipative part of the transverse electrical con-
ductivity of a spinon Fermi surface state has the same form
as that of a metal, but it is multiplied by the overall prefactor
χ2

c /(χs + χa + χc)2, where χs/c are the spinon and chargon
orbital diamagnetic susceptibilities and χa is the diamagnetic
susceptibility of the emergent U(1) gauge field, correcting the
results of Ref. [15]. Interestingly, this prefactor also controls
the effective magnetic field that the spinons experience in
response to a physical magnetic field and, consequently, the
period of their quantum oscillations [40–42].

The 1/T1 decay rate of an NV center placed near the spin
liquid is therefore determined by the product of this pref-
actor and the length of the perimeter of the spinon Fermi
surface, according to Eqs. (27) and (28). We have estimated T1

times for several spinon Fermi surface candidate materials and
found that they range from a few tens of to a few hundred mil-
liseconds, as summarized in Table I. The remaining challenge,
therefore, is to attain the experimental conditions required
to measure these relatively long T1 times. Nonetheless, NV
centers are ideally suited for measuring the quasistatic regime
of the transverse conductivity as they probe frequencies of
the order of gigahertz, which are very small compared to the
typical energy scales of these systems.
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