
PHYSICAL REVIEW B 106, 115103 (2022)

Phase diagram of a bilinear-biquadratic spin-1 model on the triangular lattice
from density matrix renormalization group simulations
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We investigate a highly frustrated spin-1 model on the triangular lattice, with nearest- and next-nearest-
neighbor antiferromagnetic S · S interactions and nearest-neighbor (S · S)2 interactions. Using the density matrix
renormalization group technique, we find three magnetically ordered phases, namely 120◦ spiral order, stripe
order, and tetrahedral order, as well as two spin nematic phases: ferroquadrupolar and antiferroquadrupolar.
While our data could be consistent with a spin liquid phase between the 120◦ spiral and antiferroquadrupolar
orders, the more likely scenario is a direct continuous transition between these two orders.
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I. INTRODUCTION

Geometric frustration of antiferromagnetism can lead to
novel phases of matter such as spin liquids, which preserve
all symmetries of the system down to zero temperature and
feature gapless or topological quasiparticle excitations [1–3].
Such a spin liquid state was first predicted by Anderson
in 1973 for the antiferromagnetic nearest-neighbor spin-1/2
Heisenberg model on the triangular lattice [4]. Although
that particular model was later shown to realize a three-
sublattice magnetic order in the ground state [5,6], in 2003
spin liquid-like behavior was indeed observed in a material
approximately described by weakly coupled triangular lattice
layers, κ-(BEDT-TTF)2Cu2(CN)3 [7], which was found to
have no magnetic ordering down to low temperature. Subse-
quent experiments demonstrated further properties suggestive
of a (possibly topological) spin liquid, including specific heat
consistent with gapless low-energy excitations [8] and thermal
conductivity consistent with a gapped bulk [9].

As κ-(BEDT-TTF)2Cu2(CN)3 and other spin liquid-
candidate materials such as EtMe3Sb[Pd(dmit)2]2 [10–16],
YbMgGaO4 [17–19], and herbertsmithite [20,21] have one
free electron per effective lattice site, theory work has
largely focused on the half-filled Hubbard model and its
strong-coupling limit, the spin-1/2 Heisenberg model with
higher-order terms beyond nearest neighbor. Recent numer-
ical studies confirm that these models indeed have spin liquid
ground states, including chiral spin liquids and Dirac spin
liquids on the triangular [22–28] and kagome lattices [29–33].

There are also materials realizing higher-spin frustrated
antiferromagnets. In 2005, Nakatsuji et al. discovered a possi-
ble spin-liquid candidate material that can be approximately
described by a spin-1 triangular lattice, NiGa2S4, which
also shows a lack of magnetic order down to low tempera-
ture [34–40]. First-principles electronic structure calculations
and other methods have suggested that NiGa2S4 has strong
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third-neighbor Heisenberg (bilinear) interactions, as well as
significant nearest-neighbor and possibly second-neighbor in-
teractions [41–45]. Furthermore, the most general two-body
interactions for spin-1 systems include (S · S)2 (biquadratic)
interactions [46], which are believed to be significant in a
variety of materials [47]; following an initial proposal by
Tsunetsugu and Arikawa [48], nearest-neighbor biquadratic
interactions are typically included in phenomenological mod-
els of NiGa2S4.

The spin-1 triangular lattice model with nearest-neighbor
bilinear and biquadratic terms has been studied extensively
since the mid-2000s and has been shown to host four phases:
the same three-sublattice magnetic order found in the spin-1/2
triangular lattice, ferromagnetic order, and two types of ne-
matic order [49–52]. These nematic states have been proposed
to explain the behavior of NiGa2S4 [48,53,54], but the matter
remains unresolved.

One of our goals in the present work is to generalize
these spin-1 triangular lattice studies by incorporating longer-
ranged interactions. The specific model we study is presented
in Eq. (1) below; in summary, the model has antiferro-
magnetic Heisenberg (bilinear) interactions between nearest
and next-nearest neighbors and biquadratic interactions (of
both signs) between nearest neighbors. While we consider
a second-neighbor interaction rather than the (in principle
more relevant to NiGa2S4) third-neighbor interaction, our re-
sults still shed light on how the nearest-neighbor-only phase
diagram changes when additional terms are included. Addi-
tionally, second-neighbor interactions may be relevant to other
spin-1 triangular lattice systems, including the spin liquid
candidate Ba3NiSb2O9 [55–60] and materials with magnetic
ground states such as Ba2La2NiTe2O12 [61], Na2BaNi(PO4)2

[62], and FeI2 [63].
We have two key motivations for including specifically

the second-neighbor interaction. First, a large-S expansion
of precisely this model shows the possible appearance of a
quantum disordered phase as S becomes small [64]. Second,
we aimed to study a model that could feature a Stiefel liq-
uid; Stiefel liquids are a recently predicted novel class of
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FIG. 1. Phase diagram of spin 1s on the triangular lattice
with three competing interactions, based on simulations on a
circumference-six cylinder with YC boundary conditions. Axes
are strength of next-nearest-neighbor interactions, J2, and nearest-
neighbor biquadratic interactions, K , relative to antiferromagnetic
nearest-neighbor interactions, J . There are three magnetic orders
(120◦, stripe, and tetrahedral) and two nematic orders, ferro-
quadrupolar (FQ) and antiferroquadrupolar (AFQ). We do not find
a disordered phase.

disordered quantum phases generalizing the Dirac spin liquid
and deconfined quantum critical point [65,66]. The simplest
never-yet-observed example of a Stiefel liquid should occur
in proximity to the non-co-planar tetrahedral magnetic order
[65], while another Stiefel liquid could arise near a nematic
phase [66]. The spin-1 model we consider is expected, based
on the large-S predictions and past results on the nearest-
neighbor model, to host both ordered phases, and hence could
plausibly realize these Stiefel liquids.

We study the extended bilinear-biquadratic model us-
ing density matrix renormalization group (DMRG) [67–70]
simulations on infinitely-long finite circumference cylinders;
DMRG finds the lowest energy state within the variational
class of matrix product states (MPS). We find precisely all
five expected phases, namely the three magnetic orders (120◦,
stripe, tetrahedral) from the classical limit and the two nematic
orders (ferroquadrupolar, antiferroquadrupolar) found in the
limit of no second-neighbor interaction. Our phase diagram
is shown in Fig. 1. Our results are plausibly consistent with
a disordered phase, which could be a spin liquid, between
the 120◦ and antiferroquadrupolar phases, but there is no
compelling evidence favoring this interpretation over a direct
continuous phase transition. Our results do suggest that there
is no first-order transition between these phases, in contrast to
the conclusions of some previous works [51,52].

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model and comment on our DMRG
implementation. We also provide a review of both spin-
quadrupole order and past results from the literature. In
Sec. III we present detailed results from our simulations,
including key data such as structure factors and correlation
lengths that we use to identify the phases and locate their
boundaries; we explain why we interpret our data as indicating
the absence of a disordered phase. Finally, in Sec. IV, we
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FIG. 2. (a) The YC6 triangular lattice. There are periodic bound-
ary conditions in the direction along the vertical bond, so that the
two dashed lines are identified together to form a cylinder. The two
circled points are equivalent. (b) The corresponding Brillouin zone.
The finite circumference cylinder restricts ky to lie on the horizontal
cuts shown. For the YC6 cylinder in particular, these cuts contain
all the high-symmetry points indicated in the figure: � at the zone
center, K and K′ at the corners, and the three M points at the centers
of the edges.

summarize our findings and discuss possible modifications to
the model that could lead to spin liquid ground states.

II. THE MODEL

We study spin-1 degrees of freedom on the triangular lat-
tice, with the Hamiltonian

H =
∑
〈i j〉

[J Si · S j + K (Si · S j )
2] + J2

∑
〈〈i j〉〉

Si · S j, (1)

where 〈i j〉 denotes pairs of nearest-neighbor sites and 〈〈i j〉〉
denotes next-nearest neighbors; S on each site is the usual
spin-1 operator. We consider only the case of J , J2 > 0, but
allow K to have both signs. Throughout the paper, we refer to
the S · S and (S · S)2 interactions as bilinear and biquadratic,
respectively.

We study this model using DMRG simulations on infinite
cylinders with a finite circumference of six sites, using YC
boundary conditions [24] as shown in Fig. 2(a). We improve
the efficiency of our simulation by using delinearization [71]
to perform lossless compression of the matrix product op-
erator representation of H . In momentum space, the finite
cylinder circumference discretizes the allowed momentum in
the direction around the cylinder. In Fig. 2(b), we show the al-
lowed momenta in the Brillouin zone for the cylinder we con-
sider. Importantly, the allowed momentum cuts for the YC6
cylinder include all high-symmetry points in the Brillouin
zone, namely the M, K, and � points as labeled in the figure.

Before proceeding to discuss our findings, we review the
expected behavior of the model, in limiting cases and based
on results from the literature.

A. Limiting cases and quadrupolar order

We consider the following three limits of the model: J >

0 only, K > 0 only, and K < 0 only. We also discuss the
parameter point J = K , J2 = 0, where there is an emergent
larger global symmetry group.
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FIG. 3. (a) A visualization of single-site spin-quadrupole order.
The distance of the surface from the origin in each direction n̂ shows
〈(n̂ · S)2〉. Spin fluctuations are small along the “director” and large
in the two perpendicular directions. (b) AFQ and FQ order on the tri-
angular lattice. The cartoon picture of AFQ order is a three-sublattice
product state of single-site quadrupoles; the director is the same for
all sites within a sublattice, and the directors on the three sublattices
lie along three orthogonal directions. The quadrupole structure factor
has peaks at the K points. The cartoon picture of the FQ order is a
product state of single-site quadrupoles with parallel directors on all
sites. The quadrupole structure factor has a peak at the � point.

For the pure nearest-neighbor Heisenberg antiferromagnet,
with K = J2 = 0, the ground state has 120◦ three-sublattice
magnetic order. This is the classical (large-S) ground state
and has also been established by various numerical methods,
including exact diagonalization [49], cluster mean-field theory
[50], and tensor network simulations [51,52], as the ground
state for spin 1. In momentum space, the spin structure factor

S(q) = 1

N

∑
i j

eiq·ri j 〈SiS j〉 (2)

has peaks at the K and K′ points at the corners of the hexago-
nal Brillouin zone.

More interesting is the purely biquadratic Hamiltonian,
with J = J2 = 0, which gives rise to spin-nematic order
[72–76]. Like a magnetically ordered state, a spin-nematic
state breaks spin rotation symmetry; unlike a magnetic state,
it preserves time reversal. This combination is possible if the
spin dipole moment is zero, but higher-order multipoles are
nonzero. Quadrupole order in particular is very natural for
spin 1, as we now explain.

The key insight is that each spin-1 Hilbert space has
an orthonormal basis of spin-quadrupole states, namely
the 0-eigenvectors of n̂ · S along any three orthogonal di-
rections. For example, the 0-eigenvectors of Sz, Sx, and
Sy are, when written in the z basis, |z〉 ≡ −i(0, 1, 0)T ,
|x〉 ≡ (i, 0,−i)T /

√
2, and |y〉 ≡ (1, 0, 1)T /

√
2; the somewhat

strange coefficients are chosen for convenience, following
Ref. [49].

Each of these 0-eigenvectors is a single-site (quadrupo-
lar) nematic state. Consider, for example, |z〉. This state has
〈z|n̂ · S|z〉 = 0 for all n̂, so time-reversal symmetry is not
broken; however, 〈z|(n̂ · S)2|z〉 = sin2(θ ) where θ is the angle
between ẑ and n̂. As illustrated in Fig. 3(a), spin-rotation
symmetry is broken to the symmetry of an ellipsoid, which
has a quadrupole moment but no dipole moment. More
generally, the state |n〉 = n̂ · (|x〉, |y〉, |z〉), for any real unit
vector n̂, is the 0-eigenstate of n̂ · S, and hence is likewise a
spin-quadrupole. The direction with no spin fluctuations, ±n̂,
is called the “director” of the nematic state.

To more precisely characterize quadrupolar nematic order,
we use the spin-quadrupole operator Q given by

Qαβ√
2

= SαSβ + SβSα

2
− S(S + 1)

3
δαβId, (3)

for α, β ∈ {x, y, z}, a traceless symmetric rank-2 tensor [77].
The symmetry and trace conditions imply there are only five
independent components, so Q can equivalently be written as
the vector:

Qv =

⎛
⎜⎜⎜⎜⎝

S2
x − S2

y(
2S2

z − S2
x − S2

y

)
/
√

3
{Sx, Sy}
{Sy, Sz}
{Sx, Sz}

⎞
⎟⎟⎟⎟⎠

(4)

with { , } the anticommutator. The square of the quadrupole
operator is Tr[QQ] = Qv · Qv = (10/3)Id. (Note that the
trace is taken over the components of the operator-valued
matrix Q2, and not over the spin operators.) The maximum
single-site quadrupole moment is |〈Qv〉| � √

4/3 [78]; the
maximum is achieved by the basis state |z〉, which has 〈Qv〉 =
(0,−√

4/3, 0, 0, 0).
Let us now consider the interaction (S · S)2. We can write

this as [79]

(S · S)2 = 1 + 3|S〉〈S|, |S〉 = |zz〉 + |xx〉 + |yy〉√
3

. (5)

The projector P = |S〉〈S| is positive semidefinite, so when
K > 0 the ground state will be in the space projected out by
P on every pair of sites. Thus any product state where each
site is in the state |x〉, |y〉, or |z〉, and where no two nearest
neighbors are in the same state, will be a ground state. We
produce such a state on the triangular lattice by identifying
three sublattices and placing |x〉 on each site of one sublattice,
and likewise for |y〉 and |z〉 on the other two sublattices, as
shown in Fig. 3(b). The ordering of this state is referred
to as antiferroquadrupolar (AFQ). In momentum space, it is
characterized by the quadrupolar structure factor,

Q(q) = 1

N

∑
i j

eiq·ri j 〈Tr[QiQ j]〉, (6)

which has peaks at the K points.
However, the ground state space also contains ferro-

magnetic (FM) states. For example, the state |1〉z ≡ (|y〉 −
i|x〉)/

√
2, with Sz = 1, has P(|1〉z ⊗ |1〉z ) = 0, so the fully

magnetized state with |1〉z on every site is also a ground
state. Thus the pure K > 0 model has an exact degeneracy
between FM and AFQ order. Infinitesimal nearest-neighbor
bilinear interactions break the degeneracy: J > 0 gives AFQ
order, while J < 0 gives FM order, and the transition is first
order. We consider only J > 0, so we expect AFQ order in the
large-K limit.

When K < 0, a classical or large-S ground state would be
any in which each spin points either parallel or antiparallel to
its neighbors, behavior which we call ferronematic or ferro-
quadrupolar (FQ). In the case of spin-1, a product state will no
longer be a ground state, but sign-free quantum Monte Carlo
(QMC) calculations provide clear evidence that the ground
state remains FQ [79]. The prototypical FQ state for spin-1 is

115103-3



AARON SZASZ, CHONG WANG, AND YIN-CHEN HE PHYSICAL REVIEW B 106, 115103 (2022)

the product state with |z〉 on every site, which has a quadrupole
structure factor with a peak at the � point, k = 0; this state is
shown in Fig. 3(b). From the QMC results, the FQ ground
state in the pure K < 0 model is in the same phase as this
product state, but with magnitude of the quadupolar structure
factor reduced by about 50%.

There is one more important parameter point to consider,
namely J2 = 0, J = K . To demonstrate the significance of this
parameter point, we rewrite the biquadratic interaction as

(Si · S j )
2 = Qvi · Qv j

2
− Si · S j

2
+ 4

3
, (7)

in which case the Hamiltonian becomes, for J2 = 0,

H =
∑
〈i j〉

(
J − K

2

)
Si · S j + K

2
Qvi · Qv j + 4

3
. (8)

Following Ref. [49], when J = K we can further combine the
spin and quadrupole operators to get

Si · S j + Qvi · Qv j = 2Wi j − (2/3)Id, (9)

where Wi j is the operator that swaps the states of spins i
and j, Wi j = ∑

αβ |α〉i|β〉 j〈β|i〈α| j where α and β index basis
states for the two spins. The swap operator is invariant under
conjugation by U ⊗ U for any U ∈ SU(3):

. (10)

Thus when J2 = 0 and J = K , the Hamiltonian has an emer-
gent SU(3) symmetry group [80].

For another perspective on the SU(3)-symmetric point,
we follow Ref. [51], noting that, when written in the basis
{|x〉, |y〉, |z〉}, the three components of S and five compo-
nents of Qv are given by the eight Gell-Mann matrices [81],
generators of SU(3). Thus at the point J2 = 0, J = K , the
Hamiltonian is given by (J/2)

∑
〈i j〉 λi · λ j , up to a con-

stant. This Hamiltonian is an SU(3) analog of the spin-1/2
Heisenberg model: we simply replace the vector σ of SU(2)
generators by vector λ of SU(3) generators.

From this formulation of H , it follows that at the SU(3)
point, spin-dipole and spin-quadrupole operators must have
equal correlation length. As a result, nematic order cannot ex-
tend to K < J , while magnetic order cannot extend to K > J .
Two possibilities remain: either there is a direct transition be-
tween the two orders at precisely the SU(3)-symmetric point
or there is an intermediate phase.

B. Past work

The spin-1 Hamiltonian on the triangular lattice with
nearest-neighbor bilinear and biquadratic interactions, but no
longer-ranged interactions, has been studied extensively, and
there is a broad consensus on the ground state phase diagram.
Including both positive and negative J and K , there are four
phases: FM, 120◦ antiferromagnet (AFM), FQ, and AFQ; of
these, the FM order exists only for J < 0, a case we do not
consider in the present study. We now briefly summarize the
papers in which these results are presented.

Following the discovery of a nonmagnetic ground state
in NiGa2S4 [34], Tsunetsugu and Arikawa considered the

biquadratic interactions and showed using mean-field theory
(MFT) that the K > J > 0 model has an AFQ ground state
[48,54]. Likewise, Bhattacharjee et al. showed that K < 0,
|K| � 1.14J > 0 gives rise to a FQ ground state in MFT
[53]; they found a first-order transition to 120◦ magnetic
order at K ≈ −1.14J . These works also considered the low-
energy excitation spectrum, finding T 2 specific heat in both
quadrupolar phases, in agreement with the experiments on
NiGa2S4. The low-lying excitations were also addressed using
similar mean-field methods by Li et al. [82] and using a con-
tinuum field-theory approach by Smerald and Shannon [83].

A number of works have considered the full J − K phase
diagram, using a variety of methods. Läuchli et al. showed
that both MFT and exact diagonalization (ED) on clusters
up to 21 sites give the four phases listed above; however,
in the ED calculation the FQ order is stabilized relative to
AFM order, so the transition occurs at K ≈ −0.4J [49]. They
also used flavor-wave theory [76] to study excitations, and
they considered the effects of applied external magnetic fields.
Similar results to the ED were obtained by Moreno-Cardoner
et al. using cluster MFT with clusters of at least nine sites [50].
More recently, Niesen and Corboz studied the model using
infinite projected entangled pair state (iPEPS) simulations
[51,52]. They again observe the same four phases, finding the
FQ to AFM phase transition at K ≈ −0.42J .

Some numerical studies have also targeted particularly
important parameter points. At the J = 0, K < 0 point, with
pure biquadratic interactions, Kaul showed using sign-free
QMC simulations that the ground state has FQ order [79].
At the SU(3)-symmetric point, J = K , Bauer et al. found
long-ranged quadrupolar order using a combination of
flavor-wave theory, DMRG on finite clusters, and iPEPS
simulations with four- and nine-site unit cells [84]. Zhang
et al. likewise found indications of long-ranged nematic order
at the SU(3) point using DMRG on finite-length cylinders of
circumference 6 and 9 [85]. (In contrast, these two studies
disagree on the ground state of the SU(3)-symmetric model on
the square lattice: Ref. [84] finds long-ranged order, whereas
Ref. [85] and other recent works by the same authors [86,87]
do not.)

A number of studies have added single-ion anisotropy to
the model, a term of the form D

∑
(Sz

i )2, employing methods
including MFT [53], fermionic parton MFT [88,89], cluster
MFT [50], Schwinger bosons and DMRG [90], and flavor-
wave theory [63,91]. These works, as well as a quaternion
gauge theory calculation on the pure J − K model [92], sug-
gest a spin liquid ground state is possible, though it may
require the addition of ring exchange [88] or anisotropy in the
spin interactions [90,91].

Finally, some works have studied the effects of longer-
ranged interactions. The J − K − J3 model has been studied
using a semiclassical approximation [93], and with fermionic
parton MFT [94], suggesting spin-glass-like behavior and
a possible spin liquid ground state, respectively. The pure
J − J2 model has been studied using a Green’s function ap-
proach, giving the following phases, in order of increasing J2:
120◦ AFM, disordered, stripe magnetic order, incommensu-
rate magnetic order, and three intercollated 120◦ orders [95];
the first three of these are predicted in the range of J2 we
consider in the present work. The only work we are aware of
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FIG. 4. Top row: Spin structure factor S(q) on allowed momentum cuts at one representative point in each phase: respectively,
(J2/J, K/J ) = (0, 0.2), (0.3, −0.1), (0.3, 0.2), (0.1, −1.0), and (0.1,1.0). Structure factors are computed using correlations up to 50 unit
cells along the cylinder. Bottom row: Corresponding quadrupole structure factors, Q(q). Note that the scale indicated in the colorbar is
consistent between the two structure factors for each phase, clearly indicating whether dipolar or quadrupolar order is dominant, but is different
between phases. All structure factors are computed at bond dimension χ = 2000, for which the lowest-energy MPS can spontaneously break
spin-rotation symmetry, as discussed in the Appendix; this symmetry-breaking leads to the very large peaks in the structure factors.

that studies the full J − K − J2 triangular-lattice model does
so using a large-S expansion [64], and does not consider S = 1
in particular. The predicted large-S phases are the 120◦ AFM
when J dominates, stripe order for sufficiently large K < 0
and J2 > J/8 − 9|K|/16, and tetrahedral order for K > 0 and
J2 > J/8 − 5K/48. The authors suggest possible quantum-
disordered phases for small S for both signs of K , near the
boundaries of the AFM phase.

III. PHASE DIAGRAM AND DATA

The phase diagram we find is summarized in Fig. 1. In
short, we find the expected ordered phases: 120◦ AFM, stripe,
and tetrahedral magnetic orders from the classical limit, as
well as the expected nematic FQ and AFQ phases. Our data
are plausibly consistent with a disordered phase, but more
likely no such phase is present. Our data suggest the transition
between AFM and AFQ orders may be continuous, which
is contrary to the conclusions of some past works discussed
above.

Here we present key numerical data on which our summary
phase diagram is based and explain how we identify each
phase. Figure 4 shows the spin and quadrupolar structure fac-
tors, as defined in Eqs. (2) and (6) above, at one representative
parameter point in each phase. The structure factors are com-
puted using correlation functions up to a distance of 50 rings
along the cylinder. Figure 5 provides a different perspective
on the structure factors; we plot the values of S(q) and Q(q)
at high-symmetry points in the Brillouin zone across the full
parameter space, allowing us to map out the locations of the
phases and the transitions between them. Figure 5 also shows
the scalar chiral order parameter 〈S · (S × S)〉.

The data in both figures are from simulations with a
single MPS bond dimension, χ = 2000. The main effect
of finite bond dimension is that spin-rotation symmetry is
spontaneously broken throughout much of the parameter
space we study; this symmetry-breaking seems to violate
the Mermin-Wagner theorem, which says that a continuous

symmetry cannot be spontaneously broken in the ground
state of a one-dimensional quantum system such as a
finite-circumference cylinder. However, as we explain in
the Appendix, breaking symmetry lowers entanglement
and thus can also reduce the energy of variational tensor
network states; if this energy benefit exceeds the gap between
symmetric and symmetry-broken states, then the symmetry
will indeed be spontaneously broken.

Apart from the spontaneous symmetry breaking (SSB), the
phase diagram at χ = 2000 is qualitatively correct. Compared
with χ = 1000, for which we show the equivalent of Figs. 4
and 5 in the Supplementary Material [96], the only changes
are small shifts in phase boundaries and a slightly larger
region where spin-rotation symmetry is preserved. Higher-χ
data along J2/J = 0 and J2/J = 0.1 cuts through parameter
space show that there is likewise no qualitative change as we
further increase χ to 4000. Specifically, we observe consistent
behavior in both the structure factors (Figs. 6 and 7) and
correlation lengths (Fig. 8).

We provide further data in the Supplementary Material
[96], including real-space spin correlations, spin-resolved cor-
relation lengths, transfer matrix spectra, and entanglement
spectra [97] in each phase; while these are not necessary in
order to identify the phases, they provide useful additional
confirmation of our conclusions.

In the remainder of this section, we proceed phase by
phase, using the data in the figures to identify each one. We
also separately discuss the nature of the AFM-AFQ transition;
some data in the region around the transition are suggestive of
a disordered spin liquid phase, and we explain why we believe
this interpretation is not correct.

A. Identification of each phase

1. 120◦ AFM

The spin structure factor in Fig. 4 has clear peaks at the
corners of the Brillouin zone, consistent with three-sublattice
magnetic order. The extent of the phase is clearly identifiable
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FIG. 5. Data from DMRG simulations with bond dimension χ = 2000. (a) Height of spin and quadrupole structure factors at specific
high-symmetry points in the Brillouin zone (see Fig. 2), as a function of J2/J and K/J . The five ordered phases can be visually identified by
these data, as explained in the main text. (b) Scalar chiral order parameter, which is nonzero for tetrahedral magnetic order.

in Fig. 5(a) from S(q) at the K points. We note that the
phase includes part of the region 0.04 � J2/J � 0.25, where
the ground state for K = 0 was predicted in Ref. [95] to be
disordered; while we cannot entirely rule out a disordered
ground state in the full two-dimensional model, we find no
indication of such behavior.

2. Stripe order

Stripe magnetic order has spins parallel along one lattice
vector, and antiparallel along the other; see the Supplementary
Material [96] for a real-space picture. In momentum space, the
stripe order has a peak at one of the three M points, as shown
in Fig. 4. In Fig. 5(a), we identify the phase as the region
where the minimum over the three M points is small but the
maximum is large. (Note that when we run our simulations
independently at each parameter point, the M point at which
ordering occurs is chosen spontaneously and is different at
different parameter points, but the magnitude of the order
parameter is consistent regardless of the choice.)

3. Tetrahedral order

The tetrahedral order is a four-sublattice non-co-planar
order, featuring spin ordering at all three M points and a
nonzero scalar chirality, as measured by the order parameter
〈S · (S × S)〉. We thus identify the extent of this phase from
the region with nonzero scalar chirality in Fig. 5(b), which
also corresponds to the region with significant ordering at all
three M points as indicated by the minimum of the structure
factor height over the three points, Fig. 5(a).

4. FQ

The ferroquadrupolar phase has no spin ordering, so the
spin structure factor should be small. However, there is
quadrupolar nematic order with the director parallel on all
sites, so that the quadrupolar order parameter should have a
peak at k = 0. Precisely this behavior is shown in the structure
factors at (J2/J, K/J ) = (0.1,−1) in Fig. 4, and we can see
the extent of the phase from Q(q) at the � point in Fig. 5(a).
As we explain in the Supplementary Material [96], at each
parameter point in this phase we actually find two nearly
degenerate ground states. These correspond to two different
ways of spontaneously breaking symmetry due to competition
between energy and entanglement (see Appendix), and the
true infinite bond dimension ground state is symmetric and
unique.

5. AFQ

This phase will again have a small spin structure factor
but a large quadrupolar structure factor, now with peaks at
the K points. We show the structure factors at (J2/J, K/J ) =
(0.1, 1.0) in Fig. 4, exhibiting precisely this expected behav-
ior. The extent of the phase can be seen from Q(q) at the
K points in Fig. 5(a). However, these data do not indicate
the full phase; rather, the visually distinct region in the fig-
ure corresponds only to the portion of the phase where the
symmetry is spontaneously broken. The full phase extends to
smaller K , and we identify the full extent of the phase as the
region where the quadrupolar structure factor is largest at
the K points and the spin-2 correlation length is larger than
the spin-1 correlation length (see Fig. 8).
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FIG. 6. Height of spin- and quadrupole-structure factors at the
K points, as a function of K/J with (a) J2 = 0 and (b) J2/J = 0.1.
Simulations were carried out with a three-ring unit cell, allowing for
explicit symmetry-breaking realizing the three-sublattice AFM and
AFQ orders. We observe such symmetry breaking at smaller bond
dimension, and the symmetry is restored as χ increases.

B. AFM-AFQ phase transition vs spin liquid

Finally, we focus on the phase transition between the two
three-sublattice orders, AFQ and 120◦ AFM. In two dimen-
sions, spin-rotation is spontaneously broken in the true ground
state, so one can simply find where the local spin moment goes
to 0 to identify the boundary of the AFM phase as in Ref. [52];
the quadrupolar order will be nonzero even in the AFM phase
[93], but a sharp decrease would still make the phase boundary
clear.

In contrast, on the cylinder the true χ = ∞ ground state
preserves all symmetries on both sides of the transition. If
the transition is first order, then there could be significant
ordering even infinitesimally away from the transition and
thus a very small energy cost to break the symmetry, so that
the energy benefit of reduced entanglement can lead to SSB at
even sizable bond dimensions (see Appendix). However, if the
transition is continuous or weakly first order, then breaking
symmetry in favor of the order on one side (say, AFQ) will
impose a significant energy cost due to the resulting lack
of short-range correlations corresponding to the other order
(correspondingly, AFM). Thus we would expect symmetry to
be preserved starting from relatively modest bond dimensions.

As a result, the same numerical data, namely a small region
of symmetry-preserving ground states with no long-range or-
der, even at modest bond dimension, is consistent with two
possibilities: a disordered region or a direct continuous (or
weakly first-order) transition. On a single finite-circumference
cylinder, there is no rigorous way to distinguish these two pos-
sibilities. This is precisely the phenomenology we observe, as
shown for the spin-structure factor with a three-ring unit cell
in Fig. 6. At each sufficiently large bond dimension, there is a
region at both J2/J = 0 and J2/J = 0.1 for which symmetry is
preserved and there is no long-range order. In this region, the
ground state exactly matches the results of simulations with a
one-ring unit cell, shown in Fig. 7, for which three-sublattice
symmetry-breaking is disallowed.

However, there are several reasons to believe that there is
not in fact a disordered phase between the AFM and AFQ
orders:
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0.95 1.00 1.05
K/J

26

28

Q
(q

),
K

p
oi

nt
s

10

12

S
(q

),
K

p
oi

nt
s

J2/J = 0

0.6 0.8 1.0
K/J

20

25

30

35

Q
( q

),
K

p
oi

nt
s

χ = 1000

χ = 2000

χ = 4000

10

15

S
(q

),
K

p
oi

nt
s

J2/J = 0.1

FIG. 7. Height of spin- and quadrupole-structure factors at the
K points, as a function of K/J with (a) J2 = 0 and (b) J2/J = 0.1.
Simulations were carried out with a one-ring unit cell, so that explicit
symmetry-breaking realizing a three-sublattice order is disallowed.
The lowest-energy MPS exactly matches the result for the three-ring
unit cell once the bond dimension is large enough in the latter case
to restore the symmetry. In this case the presence of long-range order
is not at all clear; however, especially at J2/J = 0.1, it appears that
each of spin and quadrupole order is converged with bond dimension
on one side of K/J ≈ 0.7 and not on the other.

(1) Considering the J2/J = 0.1 data, the onset of long-
range order shifts significantly when going from bond
dimension 1000 to 2000 to 4000. While this is consistent in
principle with an intermediate disordered phase, the apparent
phase boundary would likely shift less if there were an un-
derlying phase boundary than if it were simply an artifact of
the fact that higher bond dimension decreases the energetic
benefit of reducing entanglement by breaking symmetry and
hence allows symmetry to be preserved even when further
from the phase transition, where the energy cost of breaking
symmetry is lower.

(2) We observe similar behavior for the two cuts, J2/J = 0
and J2/J = 0.1. As reviewed in Sec. II above, that there is
a direct transition at J2 = 0 is well established via a variety
of numerical methods, most significantly iPEPS calculations
that work directly in the thermodynamic limit [52]. The
symmetry is preserved starting at a lower bond dimension
for J2/J = 0.1, which does leave open the possibility of
a disordered phase, but it could just as well be the case
that J2 simply increases the energy cost of breaking the
symmetry.

(3) If a disordered phase were indeed a spin liquid or
Stiefel liquid, there would be some positive signatures beyond
the mere absence of order. We have checked for topological
order by performing flux insertion, which turns out to be 2π -
periodic, thus ruling out spin fractionalization. We also added
a scalar chirality term, Jχ

∑
S · (S × S), to the Hamiltonian,

which would cause a Dirac spin liquid and some Stiefel liq-
uids to transition to a chiral spin liquid (CSL), possibly an
SU(3)1 CSL [98]. Instead, we observe no phase transition
with small Jχ , and then a first-order transition to tetrahedral
order with larger Jχ ; see the Supplementary Material for more
[96]. In short, signatures of likely spin liquid phases are not
present.
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FIG. 8. Inverse correlation length for operators carrying total spin 1 and 2, with momentum corresponding to the � point (k = 0) or the K
points, for (a) J2 = 0, and (b) J2/J = 0.1. With J2 = 0, for each (S, k), the spin-1 and spin-2 correlation lengths are exactly equal when K = J
due to the emergent SU(3) symmetry. With J2/J = 0.1, this is no longer true, and we identify the AFM-AFQ phase transition as the point
where the largest spin-1 and largest spin-2 correlation lengths cross.

In summary, we cannot rigorously rule out the possibility
of an intermediate disordered phase, which could be a spin
liquid or a Stiefel liquid. However, in the absence of truly
compelling evidence, we conclude that there is most likely a
direct transition between the AFM and AFQ phases.

As part of this argument, we also suggested that the transi-
tion is not strongly first order, since if it were we could expect
SSB to persist to higher bond dimensions near the transition,
especially at J2/J = 0.1. In fact, we can state unequivocally
that there is no first-order transition between AFM and AFQ
on the YC6 cylinder; we observe numerically that the MPS
ground state evolves continuously from one phase to the other,
with the overlap between the ground states at adjacent param-
eter points close to 1. This behavior on the cylinder does not
rule out a weakly first-order transition in the two-dimensional
model.

The continuous transition on the cylinder can be under-
stood in part through correlation lengths for operators with
different momentum and spin. In Fig. 8, we show the corre-
lation lengths, for operators carrying S = 1 and S = 2 and
corresponding to fluctuations with wave vectors at the K
and � points, across the phase transition both at J2/J = 0 and
at J2/J = 0.1; we briefly explain how to compute spin- and
momentum-resolved correlation lengths in the Supplementary
Material [96] using methods from Refs. [99–101]. The SU(3)
symmetry when J2 = 0, K = J manifests in the exact equality
of spin-1 and spin-2 correlation lengths, and this point is the
phase transition between the magnetic and nematic orders.
When J2/J = 0.1, we likewise identify the parameter point
where the longest correlation lengths for spin-1 and spin-2
cross as the phase transition, at K ≈ 0.7J .

IV. DISCUSSION

We have numerically studied a highly frustrated model
of interacting spin-1 degrees of freedom on the triangular
lattice, with antiferromagnetic nearest- and next-nearest-
neighbor interactions, and with nearest-neighbor biquadratic
interactions. The biquadratic interactions can be reframed
in terms of spin-quadrupole interactions, so that the Hamil-

tonian leads to competing spin-dipole and spin-quadrupole
orders.

We find five ordered phases: 120◦ antiferromagnetic, stripe,
and tetrahedral magnetic orders, and ferroquadrupolar and
antiferroquadrupolar nematic orders. While the high de-
gree of frustration in the model, due to competition both
between nearest- and next-nearest-neighbor interaction and
between magnetic and nematic order, could plausibly lead
to spin liquid or Stiefel liquid ground states, our numeri-
cal results suggest that no such disordered state is in fact
realized.

A natural follow-up question is how the model could be
further modified to produce a spin liquid phase. The addition
of single-ion anisotropy has been suggested as a possible
route to spin-liquid behavior, especially with the additional
inclusion of ring exchange [88] or anisotropy in the spin inter-
actions [90,91]. Another interesting possibility is to explicitly
target a nematic spin liquid by studying a model of purely
quadrupole interactions, Qv · Qv , including contributions be-
yond nearest-neighbor.

We also suggest that it would be useful to study the model
including the next-nearest-neighbor interactions using inher-
ently two-dimensional tensor network simulations, such as
with iPEPS. In particular, since a continuous symmetry can
be spontaneously broken in two dimensions even in the true
ground state, such simulations would provide further confir-
mation that there is indeed no disordered state arising between
the AFM and AFQ orders.

Finally, our result suggests that the AFM-AFQ transition
may be continuous. If this is indeed true on a two-dimensional
lattice, then the transition is guaranteed to be exotic (non-
Landau) for two reasons: (1) The symmetry breaking patterns
of the two phases are very different. In particular, the un-
broken symmetry of either phase is not the subgroup of the
other, so a Landau theory will not describe a direct contin-
uous transition. (2) At the SU(3) symmetric point (J2 = 0),
the system has a Lieb-Schultz-Mattis (LSM) constraint be-
cause of the projective representation of PSU(3) per unit
cell. The LSM constraint in turn requires any putative field
theory of the phase transition to possess certain nontrivial ’t
Hooft anomaly, a feature clearly absent in any Landau theory.
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Formulating such a putative theory of continuous AFM-AFQ
transition is an interesting problem for future study.
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APPENDIX: SPONTANEOUS SYMMETRY BREAKING
AND BOND DIMENSION

Here we briefly address the question of how to interpret the
presence or absence of spontaneous symmetry breaking in the
MPS ground state at a given bond dimension. Our goal is to
understand the case of a continuous symmetry on an infinite
cylinder, but we first illustrate the key idea using a discrete
symmetry on a finite one-dimensional system.

Consider, for concreteness, the transverse-field Ising model
in one dimension:

H =
∑

i

Jσ z
i σ z

i+1 + hσ x
i , (A1)

which has a Z2 symmetry: (
⊗

σ x )H (
⊗

σ x ) = H . On a finite
chain of length N , in the limit J � h, the two lowest-lying
states are nearly degenerate, with splitting proportional to
(h/J )N . Both are eigenstates of the symmetry; in other words,
in both the ground state and first excited state, symmetry is
not spontaneously broken.

However, with a finite-bond-dimension MPS, it is possible
for the lowest energy variational state to spontaneously break
the symmetry. The bond dimension is the number of Schmidt
values allowed to be nonzero on each bipartition of the state,
and as the bond dimension increases, the variational space
becomes larger and thus the lowest accessible energy becomes
lower. A symmetry-preserving state will have Schmidt values
in pairs, and the energy will be determined by the number
of pairs kept. On the other hand, a corresponding symmetry-
broken state will achieve the same energy with only half
as many Schmidt values, or in other words will have lower
energy when the Schmidt rank is the same. Consequently, at
finite bond dimension there is an energy cost to preserving the

symmetry, which we will call the “symmetry-entanglement
gap.”

Symmetry will be spontaneously broken if this gap is larger
than the exponential splitting (h/J )N . Infinite DMRG will
thus spontaneously break discrete symmetry in one dimension
(1D) for any bond dimension, since the true splitting is exactly
zero and the symmetry-entanglement gap is merely tiny. Finite
DMRG will break the symmetry up to some cutoff bond
dimension, beyond which it will be restored.

We now turn to the more complicated case of a 2D model
with a continuous symmetry, which is then restricted to a
finite-circumference cylinder. The Mermin-Wagner theorem
says that on this quasi-1D system, the true ground state can-
not spontaneously break the symmetry. However, in DMRG
simulations such SSB is possible, as we can understand by
analogy with the 1D Ising model. The cylinder circumference
plays the role of the 1D chain’s length: when it becomes
infinite, exact ground state degeneracy allows SSB to occur
even in a true ground state, but when it is finite, the true
ground state must be symmetry-preserving due to an energy
splitting exponentially small in cylinder circumference. This
splitting can be compared with the symmetry-entanglement
gap due to finite bond dimension, with the result that even
on a finite-circumference cylinder where the true ground state
must respect the symmetry, the lowest-energy MPS will break
the symmetry for sufficiently small bond dimension. Further-
more, the requisite bond dimension to preserve the symmetry
will increase with cylinder circumference.

Suppose, on the other hand, that in the true two-
dimensional ground state the continuous symmetry cannot
be spontaneously broken, such as for a topological spin liq-
uid. This implies an energy gap, �, above the symmetric
ground state. If we view the main effect of finite cylinder
circumference as restricting to certain momentum cuts in the
Brillouin zone (which is a reasonable perspective when the
circumference is large, less so when small), the corresponding
gap on the cylinder will be comparable or larger. Hence for
the lowest-energy MPS to spontaneously break the symmetry,
we require the symmetry-entanglement gap to be larger than
�. For any reasonable circumference, � will be substantially
larger than the finite-circumference gap of a state with SSB,
so that a continuous symmetry will only be broken when the
bond dimension is quite small.

To summarize, with sufficiently small bond dimension the
lowest-energy MPS on a finite-circumference, infinite-length
cylinder will be expected to spontaneously break symmetry,
regardless of what happens in the 2D model or the true
ground state. However, if there is long-ranged order in 2D, the
threshold bond dimension required to restore the symmetry
on the cylinder will be larger than if the 2D ground state
is disordered. Thus as a practical conclusion, we can guess
that if a very large bond dimension is required in order to
restore the symmetry, long-range order is likely present in
2D. Conversely, if the simulation setup allows the symmetry
to be spontaneously broken but the symmetry is nonetheless
respected even with very small bond dimension, then the 2D
ground state likely has no long-ranged order.
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