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Probing Nieh-Yan anomaly through phonon dynamics in the Kramers-Weyl
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Nieh-Yan anomaly describes the nonconservation of chiral charges induced by the coupling between Dirac
fermions and torsion fields. Since the torsion field is beyond general relativity, this effect remains hypothetical
and its relevance to our universe is unclear in the context of high-energy physics. In this work, we propose
that the phonons can induce a torsion field for the Kramers-Weyl fermions through electron-phonon interaction
in a nonmagnetic chiral crystal, thus leading to the occurrence of the Nieh-Yan anomaly. As a consequence,
the Nieh-Yan term can strongly influence the phonon dynamics and lead to the helicity of acoustic phonons,
namely, two transverse phonon modes mix with each other to form a circular polarization with a nonzero angular
momentum and the phonon angular momentum forms a hedgehog texture in the momentum space. The phonon
helicity can be probed through measuring the total phonon angular momentum driven by a temperature gradient.
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I. INTRODUCTION

Weyl fermion is a two-component relativistic fermion
with a definite chirality and serves as the building block
for fermions in quantum field theory [1]. The chirality of
Weyl fermions can give rise to a variety of physical effects,
including chiral anomaly [2,3], chiral magnetic effect [4],
mixed axial-gravitational anomaly [5,6], chiral torsion effect
[7–9], and Nieh-Yan (NY) anomaly [10–13]. Weyl fermions
can also emerge as low-energy quasiparticles in condensed
matter systems. These systems are dubbed “Weyl semimet-
als” [14–18], which have been demonstrated in a number of
materials through observing the surface Fermi arc [19–23], a
negative magnetoresistance [24,25], a negative magnetother-
moelectric resistance [14–18,26].

In Weyl semimetals, position-dependent and time-
dependent perturbations, such as magnetic fluctuations [27],
strain [28–31], and structure inhomogeneity [32,33], can shift
the position of Weyl nodes and thus act as an emergent
gauge field, dubbed the “pseudogauge field” [34,35].
The chiral zero Landau levels induced by pseudogauge
fields have been observed experimentally in photonic and
acoustic Weyl metamaterials [32,33]. Furthermore, these
perturbations can also give corrections to the Fermi velocity
of Weyl fermions and thus play the role of the frame
fields (also called tetrad or vierbein) [36,37], allowing to
mimic Weyl fermions in the curved spacetime [26,38–42].
An exciting theoretical proposal is to realize the NY
anomaly [10–13] due to the torsion field in Weyl semimetals
[43–51], which may be probed through Hall viscosity
[43], topological magnetotorsional effect [52], anomalous
thermal Hall conductance [45], or the sound-wave-induced
current oscillations in tilted Weyl semimetal interfaces under
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magnetic fields [53]. However, all these physical phenomena
require the time reversal (TR) breaking, and thus cannot
appear in Weyl semimetals with TR symmetry. However, the
NY anomaly itself does not require to break TR. Therefore,
one may wonder what anomalous response that reflects the
NY anomaly can appear in TR-invariant Weyl semimetals
and how it is different from TR-breaking Weyl semimetals.

Here we turn to the so-called “Kramers-Weyl” (KW)
fermions in chiral crystals with TR symmetry and will show
that this system provides an appealing platform to explore
physics of Weyl fermions in the curved space. Chiral crys-
tals are the crystal structures with a well-defined handedness
and nonmagnetic chiral crystals can generally host the KW
fermions when taking into account spin-orbit coupling (SOC)
[54–58]. In this work, we consider acoustic phonons in the
KW semimetal phase of chiral crystals and demonstrate that
the phonons will induce a torsion field for the KW fermions.
By integrating out the KW fermions, we prove that the phonon
self-energy contains an off-diagonal term that originates from
the NY anomaly. While this self-energy correction has no
influence on the longitudinal phonon mode, it will mix two
transverse modes and give rise to the phonon angular momen-
tum (PAM) at a finite momentum. In particular, the induced
PAM reverse its sign for opposite phonon momentum, as
shown in Fig. 1(a), and form a hedgehog texture in the mo-
mentum space for one phonon branch [Fig. 1(b)], analogous
to the helical spin texture in spin-orbit coupled electronic band
structures. Thus, we term it as “phonon helicity” [59]. The
phonon helicity can be probed through measuring the total
PAM induced by a temperature gradient [60].

II. ELECTRON-PHONON COUPLING
IN CHIRAL CRYSTALS

In nonmagnetic chiral crystals, all the energy bands are at
least doubly degenerate at high symmetry momenta, labeled
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FIG. 1. (a) The PAM l is parallel with the phonon momentum q
and its sign reverses for opposite q for one branch of phonon modes.
This feature of transverse phonon modes is referred as “phonon
helicity.” Here u labels the displacement vector. (b) The hedgehog
texture of the PAM l is formed in the q-space. (c) Energy dispersion
between two time-reversal invariant momenta �1 and �2 for the
KW semimetal phase of chiral crystals. The red and blue curves are
for two Kramers’ partner. The green dashed line depicts the Fermi
energy, near which the linear term dominates. Here μ+ and μ− label
the energy difference between the Fermi energy and the Weyl nodes
at �1 and �2, respectively.

as �i (i = 1, 2 . . . , 8), due to TR and SOC can lift this spin
degeneracy for the momentum away from �i, thus giving
rise to the KW fermions. As shown in the Secs. I and II in
Appendices, the low-energy physics can be described by an
isotropic Hamiltonian,

H0 = h̄2k2

2m∗
0

+ h̄v f k · σ − μ, (1)

expanded around �i up to the k2 terms, where σ labels the
Pauli matrix for spin, m∗

0 is the effective mass, v f is the Fermi
velocity, and μ is the chemical potential. As discussed in
Ref. [61], this isotropic Hamiltonian remains valid for the
chiral point groups T and O, while for other chiral point
groups, the Fermi velocity v f becomes anisotropic and should
be replaced by a tensor. We only focus on the isotropic Hamil-
tonian in this work. In chiral crystals, there are normally
multiple Fermi surfaces, and here we only focus on the “KW
semimetal phase” regime μ � h̄2�2

2m∗
0

with the momentum cut-

off � = 2m∗
0v f

h̄ , where the linear-k terms dominate over the k2

terms at the Fermi surfaces around different �i, as depicted in
Fig. 1(c).

The electron-phonon coupling in this system can be de-
rived from the standard k · p theory up to the second-order
perturbation terms with the help of Schrieffer-Wolf trans-
formation (Sec. I C of Appendices). The TR symmetry T̂ =
iσyK, where K is the complex conjugate, gives a strong con-
straint on the form of the resulting effective Hamiltonian. In
this work, we focus on the acoustic phonons, which couple to
electrons through an internal strain, described by the strain
tensor ui j = 1

2 (∂iu j + ∂ jui ) with the displacement vector ui

(i, j = x, y, z). Since the strain tensor is even under T̂ , it
cannot directly couple to either electron momentum k or spin
σ , both of which are odd under T̂ . This implies that the strain
tensor cannot play the role of the vector potential of pseudo-
gauge field. The symmetry-allowed strain-electron coupling
Hamiltonian is written as (Sec. II of Appendices)

Hep = (C1 + g0k jσ j )uii + g1ui jkiσ j, (2)

up to the order of kiσ j , since both ui j and Ti j = kiσ j are rank-2
tensors. We have assumed the summation over the duplicated
indices. C1, g0, and g1 are three independent parameters. The
C1 term provides a correction to the chemical potential, while
both g0 and g1 terms give the corrections to the Fermi ve-
locity tensor. Microscopically, both g0 and g1 terms can be
obtained from the second-order perturbations that combine
the k · p term with the bare electron-phonon coupling term
(Sec. I C of Appendices).

We notice that the strain tensor only couples to spin
Pauli matrix σ through linear-k term, and the absence of
k-independent term means that strain cannot play the role of
the vector potential of pseudogauge field for KW fermions
(but scalar potential is still possible). Consequently, the Weyl
nodes are always pinned at TR invariant momenta for the
KW semimetals. This is in sharp contrast to TR-breaking
Weyl semimetals and other generic TR-preserving inversion-
breaking Weyl semimetals, in which Weyl nodes exist at
arbitrary momenta and strain can serve as the vector pseu-
dogauge potential (see more discussions on this difference in
Sec. II of Appendices).

With H0 and Hep, the effective action is then given by Seff =∫
dτd3rLeff with (Sec. III of Appendices)

Leff = ψ̂
†
�i

(
∂

∂τ
− μ − A0(r) + χ

2

{
e j

a, (−i∂ j )
}
σ a

)
ψ̂�i , (3)

where ψ̂�i is the fermion field operator, {, } labels the anti-
commutation operation, τ is the imaginary time, A0 = C1uii,
χ = sign(h̄v f ) and e j

a = δ
j
a + 	

j
a with the �-field given by

	
j
a = g0uiiδ ja + g1u ja (i, j, a = x, y, z). The Fermi velocity

h̄v f is absorbed by rescaling the spatial coordinate, while we
still keep track of the chirality χ (the sign of Fermi velocity).
The e j

a can be interpreted as the frame field [36,37] and it
only involves nontrivial spatial part due to TR symmetry. The
effective Lagrangian (3) describes the Weyl fermions in a
space with nontrivial frame field but zero spin connection,
which is known as the “Weitzenböck spacetime” studied in
“teleparallel gravity theory” [62]. Zero spin connection means
vanishing Riemann curvature while nontrivial frame field
implies nonzero torsion field, defined as T a

i j = ∂iēa
j − ∂ j ēa

i ,

where ēa
i is the coframe field ēa

i e j
a = δ

j
i (Sec. IV of Appen-

dices). Thus, strain or acoustic phonon can induce a torsion
field for the KW fermions in chiral crystals. We emphasize
that interpreting e j

a as a frame field is only for making the con-
nection to the notation of torsion field and Nieh-Yan anomaly
in high energy physics, and there is some subtle difference
between the “effective” frame field defined here and that in
the continuum field description of dislocations in elasticity
theory [63]. The derivations below about stress-stress corre-
lation functions and physical consequence of helical phonon
modes are independent of such connection.

III. STRESS-STRESS CORRELATION FUNCTION
AND NIEH-YAN ANOMALY

We next separate the effective Lagrangian into two parts,
Leff = L0 + L1, where L0 = ψ̂

†
�i

( ∂
∂τ

− μ�i + χ ((−i∇) ·
σ ))ψ̂�i and L1 = ψ̂

†
�i

(−A0 + χ�i
2 {	 j

a, (−i∂ j )}σ a)ψ̂�i . Here
both the A0 and � fields in L1 are related to the strain
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field induced by acoustic phonons and thus treated as
perturbations. By integrating out the KW fermions in Leff,
we find the effective action W [A0,	] for the A0 and �

fields (Eq. (70) in Sec. III of Appendices), which provide the
corrections to the phonon effective action. Here we focus on
the term WNY for the � field

WNY[�] = 1

2

∑
q̃

	i
a(q̃)	 j

b(−q̃)
ab
i j (q̃), (4)

where q̃ = (q, iνm) and
∑

q̃ = 1
βV

∑
q,iνm

. The stress-

stress correlation function 
ab
i j is defined as 
ab

i j (q̃) =∑
k̃ Trσ [T a

i (k̃, k̃ − q̃)G0(k̃ − q̃)T b
j (k̃ − q̃, k̃)G0(k̃)], where

k̃ = (k, iωn), G0 = [iωn + μ − χ (k · σ )]−1 and the stress
tensor T a

i (k, k′) = χ

2 (ki + k′
i )σ

a with i, a = x, y, z. Here we
have dropped the �i index and only consider the contribution
from one KW fermion. It should be emphasized that the
chemical potential μ here is always measured from the
energy of the Weyl node.

Our next task is to show that 
ab
i j includes the contribution

from the NY anomaly. To see that, we consider iνm = 0 and
treat both the momentum q and the chemical potential μ

as perturbation. In this limit, we can first expand 
ab
i j (q) ≈


ab
i j (0) + (∂ql 


ab
i j )q=0ql up to the linear order in q. Since �

is directly proportional to the strain tensor, the zero-order
term 
ab

i j (0) just provides the corrections to the elastic moduli
(Sec. VII of Appendices). The coefficient of linear-q term,
denoted as 
ab

i j,l = (∂ql 

ab
i j )q=0, can be further expanded as


ab
i j,l (μ) ≈ 
ab

i j,l (μ = 0) + (∂μ
ab
i j,l )μ=0μ up to the linear or-

der in μ. Direct calculations in Sec. V of Appendices show
that 
ab

i j,l (μ = 0) = 0 and (∂μ
ab
i j,l )μ=0 = iεalbδi jχF0 with

εalb the Levi-Civita symbol, F0 = 1
3π2β

∑
iωn

∫ �

0 k4dk 1
D4 (1 −

4(iωn )2

D2 ) with the momentum cutoff � and D2 = (iωn)2 − k2.
The effective action reads

WNY[�] = −εalbδi jχμF0

2

∫
d3rdτ	i

a

(
∂l	

j
b

)
(5)

after the Fourier transform into the real space.
Now we will show that WNY is a manifestation of the NY

anomaly. In literature [44,45,52], the effective action for the
NY anomaly in a Weyl semimetal with minimal two Weyl
nodes has been derived as SNY = F

∫
d4xηabε

μνλρbμēa
ν∂λēb

ρ ,
where bμ (μ = 0, x, y, z) is the separation between two
Weyl nodes in the energy-momentum space. Now let us
consider two KW fermions with opposite chiralities at
two TR-invariant momenta, together forming one massless
Dirac fermion. The effective action (5) can be applied to
both KW fermions and the full action will be given by
WNY[�] = −F0

∫
d3rdτεalbδi j〈μ〉χ	i

a(∂l	
j
b), where 〈μ〉χ =

1
2 (μ+ − μ−) is the chiral chemical potential with ± labels
KW fermion chirality. Since μ± is measured from the energy
of each Weyl node, 〈μ〉χ just corresponds to the separation
b0 between two Weyl nodes in energy [Fig. 1(c)]. Therefore,
WNY is exactly the b0 term in SNY. We notice that the b0

term is TR-even while the bx,y,z terms are TR-odd. Thus,
WNY does not include the bx,y,z terms that response for Hall
viscosity [43], anomalous thermal Hall conductance [45], etc.

FIG. 2. (a) Im(
xy
xx ) as a function of q for ω = 0, kBT = 0.05,

and μ = −0.5, 0, 0.5, 0.7; (b) Im(
xy
xx ) as a function of μ for ω = 0,

kBT = 0.05, and q = 0.1, 0.5, 0.98; (c) Im(
xy
xx ) as a function of μ

for kBT = 0.06, 0.1, 0.2, 0.4, ω = 0, and q = 0.1; (d) Im(
xy
xx ) as a

function of kBT for ω = 0, q = 0.1, and μ = −0.2, 0.05, 0.2, 0.4.
Here the lines are from the analytical expression (6). The length is in
unit of characteristic length a0 = 1/�. The momentum and energy
is in unit of 1/a0 and h̄v f /a0, and 
xy

xx is in unit of h̄v f /a4
0.

This is the main difference in the effective action between
TR-breaking and TR-preserving Weyl semimetals.

Next let us discuss the coefficient F0 in WNY, which is
found to take form of F0 = F0 + F1(kBT )2 for the finite
temperature (Sec. V of Appendices). Dimension counting
suggests the dimension of 1

L2 for F0 where L is the length
dimension. Thus, F0 is not universal and generally depends
on the form of ultraviolet momentum cutoff, and our calcu-
lation gives F0 = 0 due to the effective Lorentz invariance
with an isotropic momentum cutoff [49] (see more discussions
in Sec. IV of Appendices). However, for the temperature-
dependent term, (kBT )2 exactly carries the dimension of 1

L2 .
Consequently, the parameter F1 is dimensionless and univer-
sal [45]. Our calculations give F1 = − 1

12 , consistent with the
previous results from different approaches [45,46,48], and this
T 2-dependent term is called “thermal NY anomaly.”

The above discussion applies to the case of a single KW
fermion or a single Dirac fermion in the limit μ → 0. For mul-
tiple KW fermions, one can introduce a single chiral chemical
potential 〈μ〉χ = 1

2

∑
�i

χ�iμ�i for different �i into Eq. (5),
where χ�i and μ�i the chirality and chemical potential of the
KW fermion at �i. We next consider numerically evaluate the
expression of the correlation function 
ab

i j (q, iωn). Here we
consider the momentum q along the z-direction (q = qêz) and
numerically compute the component 


xy
xx (Sec. VI of Appen-

dices), which is shown in Fig. 2. 

xy
xx is found to be purely

imaginary and Im(
xy
xx ) as a function of q is shown in Fig. 2(a)

for different μ. Im(
xy
xx ) is linearly proportional to q for

q � 1. Furthermore, Im(
xy
xx ) vanishes at μ = 0 and its sign

reverses for opposite μ. Figure 2(b) shows the dependence
of Im(
xy

xx ) on μ for different q at a low temperature. Im(
xy
xx )

depends on μ asymmetrically, and for μ close to zero, one can
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see that Im(
xy
xx ) is flat and almost zero. This suggests that the

linear μ term in Im(
xy
xx ) should almost vanish, consistent with

our analytical result F0 = 0. Figure 2(c) shows Im(
xy
xx ) as a

function of μ for different temperatures kBT . With increasing
temperature, the linear-μ term in Im(
xy

xx ) gradually appears.
Finally, we plot Im(
xy

xx ) as a function of kBT for different μ

in Fig. 2(d), which shows a T 2-dependence, consistent with
the thermal NY anomaly. At small μ and q, this temperature
dependence can be well captured by the expression

Im(
xy
xx ) ≈ −q

[
μ3

12π2
+ μ(kBT )2

12

]
, (6)

as shown by the blue curve in Fig. 2(d) for μ = 0.05 Here
the T 2 term (μ linear) reproduces our early derivation of
Eq. (5) and we further expand it up to μ3 terms (Sec. VI
of Appendices). The derivation of Eq. (6) from numerics
increases with μ (the red, black and green curves in Fig. 2(d)
for μ = −0.2, 0.2, 0.4, respectively). We also notice that our
expression of Im(
xy

xx ) match those of the chiral vortical con-
ductivity for energy flux [64,65].

IV. HELICITY OF ACOUSTIC PHONONS

Since the �-field is related to the strain field u, it is natural
to expect the NY anomaly term will influence the acoustic
phonon dynamics (elastic wave). As derived in Sec. VII of
Appendices, a new NY-related term can be induced in the
equation of motion for phonons,

d2

dt2
u = c2

t ∇2u + (c2
l − c2

t

)∇(∇ · u) + ξ0

2ρ0
∇ × (∇2u), (7)

where u is the displacement field, ρ0 is the den-
sity, ct (l ) is the velocity of transverse (longitudinal)

modes, and ξ0 = − g2
1

(h̄v f )4 [ 〈μ3〉χ
12π2 + 〈μ〉χ

12 (kBT )2], with 〈μ3〉χ =
1
2

∑
�i

χ�iμ
3
�i

. The ξ0 term does not affect longitudinal modes
but will change the dispersion of transverse modes to ωt

s =√
c2

t q2 + s |ξ0|
2ρ0

q3 for the s-mode (s = ±). Here we always as-

sume ξ0 is small enough, so that we do not have any imaginary
frequency within the momentum cutoff. Importantly, these
two transverse modes carry angular momentum ls(q), defined
as ls,i(q) = h̄u†

0,s(q)Miu0,s(q) [60,66–69], where u0,s(q) is
the polarization vector for the mode s = ± and the M matrix is
given by (Mi ) jk = (−i)εi jk with i, j, k = x, y, z. Direct calcu-
lation gives (Sec. VII of Appendices) ls(q) = sh̄ ξ0

|ξ0|
q
q , which

satisfies the relation ls(q) = −ls(−q) due to the TR symmetry
(phonon helicity) [70] and forms a hedgehog texture in the
momentum space, as shown in Fig. 1(b).

The total PAM is defined as Iph =∑s,q ls(q)[ f (ωt
s) + 1

2 ]
[60,66–69], where f (ωt

s) describes the distribution function
for phonons. At the equilibrium state, the total PAM vanishes
due to the TR symmetry. The phonon helicity ls(q) can give
rise to a total phonon angular momentum Iph by driving a
thermal current with a temperature gradient [60], as shown
in Fig. 3(a). This is in analog to the Edelstein effect of elec-
trons due to spin-orbit coupling [71]. In the linear response
regime, the response tensor αi j , defined as I ph

i = αi j
∂T
∂x j

, can be

evaluated from the formula [60] αi j = − τ̃
V

∑
q,s ls,iv

ph
s, j

∂ f0(ωt
s )

∂T ,

(a) (b)

FIG. 3. (a) When there is a temperature gradient in the sample,
T1 > T2, a total PAM Iph is generated. (b) αzz as a function of
kBT . Here the red circles are for the full numerical calculations of
Eq. (135) in Sec. VI of Appendices and the blue lines are from
the analytical expression Eq. (8). Inset: αzz/(kBT )3 as a function of
(kBT )2.

where τ̃ is the phonon relaxation time, vph
s = ∂ωt

s/∂q is the
group velocity of s-phonon mode and f0(ωt

s) is the Bose-
Einstein distribution function. Since our model is isotropic,
only the diagonal components αxx = αyy = αzz are nonzero
and we derive the approximated expression

αzz ≈ 2π2

45

τ̃kB

a2
0

(
kBTa0

h̄ct

)3(
ξ0

c2
t ρ0a0

)
(8)

in the low temperature limit, where a0 is lattice constant.
Equation (8) fits well with the numerical calculations, as
shown in Fig. 3(b). It is instructive to plot αzz/T 3 as a
function of T 2, which reveals a linear line dependence at
the low temperature, as shown in the inset of Fig. 3(b),
from which the intercept and the slope of the curve de-
termine the contribution of the normal and thermal NY
anomaly, respectively. For the estimate of the magnitude of
αzz, we choose T ∼ 300K, ct ∼ 1500 m/s, μ ∼ 0.1 eV, v f ∼
105 m/s, g1 ∼ 0.1 eV Å and ρ0 ∼ 103 kg/m3 and find the
response coefficient αzz ∼ 5.5 × 10−7( τ

1s ) Js
Km2 , which is com-

parable to the α value for GaN, Te, and Se calculated from the
first principles calculations in Ref. [60].

V. DISCUSSION AND CONCLUSION

To summarize, we have demonstrated that acoustic
phonons can induce a torsion field for the KW fermions
that gives rise to the NY anomaly. Strikingly, we find the
phonon helicity can be induced by NY anomaly term and
probed through measuring PAM driven by a temperature
gradient. Phonon dynamics in Weyl/Dirac semimetals was
previously studied in the context of chiral anomaly [72–78]
and Kohn anomaly [79,80]. The concept of PAM has also
been explored both theoretically [66,67,69,81–87] and exper-
imentally [68,88]. The PAM due to temperature gradient can
be measured through the rigid-body rotation or the phonon
orbital magnetic moments, and the theoretical estimate of the
magnitude of the induced PAM suggests these phenomena
are detectable in experiments [60]. The Coulomb interaction
is considered in Sec. VIII of Appendices and will not con-
tribute to the screening of the electron-phonon interaction
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for the relevant phonon modes due to nonzero PAM. Similar
physics can also occur in optical phonon dynamics (Sec. I.B
of Appendices), and thus may allow for an optical detection
of the NY anomaly. We also notice a similar phenomenon of
helical electrodynamics which is induced by the anomalies in
Weyl/Dirac semimetals [89,90], which implies more helical
quasiparticles may exist and be related to the anomalies.
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APPENDIX A: k · p HAMILTONIAN AND
ELECTRON-PHONON INTERACTION
OF THE KRAMERS-WEYL FERMIONS

In this Appendix, we will describe the k · p theory for the
KW fermions in chiral crystals. To be general, we start from
the Schrödinger equation[

p̂2

2m0
+ V̂ (r)

]
�(r) = E�(r), (A1)

where m0 is the electron mass, p̂ = −ih̄∇ and the periodic
potential V̂ (r + Rn) = V̂ (r) including both the lattice po-
tential and spin-orbit coupling. The Bloch theorem requires
�(r) = eiK·ru(r), where u(r + Rn) = u(r) and K is the crys-
tal momentum.

Let us consider the perturbation expansion around a
time-reversal (TR) invariant momentum �i (i = 1, 2, ... la-
bels different TR invariant momenta) and assume that the
Schrödinger Eq. (A1) has been solved at �i with the eigen-
energy E�i,n and eigen-wave function ψ�i,n(r) = ei�i·ru�i,n(r).
We are interested in the momentum K = �i + k where
k is considered as a perturbation, and expand the wave
function uK(r) =∑n Cnu�i (r). Thus, ψK(r) = eiK·ruK(r) =
ei(�i+k)·r∑

n Cnu�i (r) = eik·r∑
n Cnψ�i,n(r). The Schrödinger

equation at K = �i + k can be expanded as(
E�i,m + h̄2k2

2m0

)
δnmCm +

∑
n

Pmn · kCn = ECm (A2)

and Pmn = h̄
m0

〈ψ�i,m|p̂|ψ�i,n〉, and the corresponding Hamil-
tonian can be written as

H = H0 + Hk·p, (A3)

where

(H0)mn =
(

E�i,m + h̄2k2

2m0

)
δnm (A4)

and

(Hk·p)mn = Pmn · k. (A5)

Since we focus on TR symmetry, we denote the quantum
number m = (α, s), where s labels different spin states, and

α labels other band indices. With the TR operator T̂ , we
define the bands of a Kramers’ pair as T̂ ψ�i,α,s = sψ�i,α,s̄ and
E�i,α,s = E�i,α,s̄, where s̄ = −s. We may assume around �i,
only one Kramers’ pair of bands, denoted as ψ�i,0,s (α = 0),
contribute to the low-energy physics and thus the low-energy
effective Hamiltonian can be written as

(Heff )ss′ =
(

E�i,0 + h̄2k2

2m∗
0

)
δss′ + P0,ss′ · k, (A6)

with s, s′ = ±. Here we only keep the correction to the elec-
tron mass (m0 → m∗

0) for the terms of the second order in
k. In general, the effective mass m∗

0 should be a tensor, but
we only consider the quadratic term to provide a cutoff for
the valid regime of the KW fermion physics and thus sim-
ply treat m∗

0 as a scalar. We can decompose the parameter
matrix P0 as P j

0,ss′ =∑a P
j

0,a(σ a)ss′ where σ a=x,y,z are three
Pauli matrices. Here TR symmetry requires that the linear k
term cannot couples to identity matrix. With Tr(σ aσb) = 2δa

b ,
we have P j

0,a = 1
2 Tr(P j

0σa). Correspondingly, the effective
Hamiltonian can be written as

Heff = E�i,0 + h̄2k2

2m∗
0

+
∑
a, j

P j
0,aσ

ak j . (A7)

The parameters P j
0,a will be constrained by the crystal

symmetry of the system. Since the chiral crystals only involve
rotation symmetry, we consider the full rotation symmetry
here. As discussed in Appendix B, one can show that up to
a unitary transformation, the effective Hamiltonian can be
written as

Heff,0(k) = E�i,0 + h̄2k2

2m∗
0

+ h̄v f k · σ , (A8)

where the Fermi velocity is given by h̄v f = h̄
2m0

Tr(Px
0σx ) =

h̄
2m0

Tr(Py
0σy) = h̄

2m0
Tr(P z

0σz ) (with full rotation symmetry)
and its sign determines the chirality of the KW fermions. It
should be mentioned that the above Hamiltonian is also valid
for the crystals with the O and T chiral point groups [61]. In
the second quantization language, we can write down Heff,0 =
1
V

∑
k ĉ†

0,kHeff,0(k)ĉ0,k. In the real space, the Hamiltonian is
written as

Heff,0=
∫

d3rψ̂†
�i

(r)

[
E�i,0−

h̄2∇2

2m∗
0

+ h̄v f (−i∇) · σ

]
ψ̂�i (r).

(A9)

The Fourier transform is given by

ψ̂ (r) = 1
V

∑
k eik·rĉk, (A10)

ĉk = ∫ d3re−ik·rψ̂ (r), (A11)

with V the volume of the system, where we have suppressed
the lower indices.

1. Deformation potential for electron-acoustic
phonon interaction

The electron-phonon coupling for acoustic phonons should
vanish in the long-wave length limit with the phonon mo-
mentum q → 0, while there is no such constraint for optical
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phonons. Thus, our starting deformation Hamiltonians for
acoustic phonons and optical phonons are slightly different.
For the acoustic phonons, we will start from the continuous
model with the electron field described by ψ̂�i (r) while the
acoustic phonon modes can be described by the displacement
field u(r). In the case of more than one atoms in one unit
cell, the acoustic phonon modes correspond to the polarization
vector with the same amount of shift in the same direction
for all the atoms in one unit cell and thus we can still use
one vector field. The displacement field u can give rise to the
polarization P which couples to electron density through its
divergence ∇ · P. Let us assume this coupling is local as the
lowest-order perturbation. Thus, our starting point will be the
volume deformation Hamiltonian

Hep = ga

∫
d3rψ̂†

�i
(r)(r)(∇ · u)ψ̂�i (r), (A12)

with the coupling constant ga. Here the spin index s does
not appear because volume deformation potential does not
involve spin. ∇ · u =∑i uii is the trace part of the strain
tensor (volume dilation), which is defined as ū below. In the
momentum space, we have

Hep = ga

V 2

∑
k,q

ĉ†
0,kūqĉ0,k−q, (A13)

where ūq = ∫ d3rū(u)e−iq·r. Here we only consider the
lowest-order bands, and thus only the volume dilation enters
into the effective Hamiltonian. If we consider all the other
bands, then other components of the strain tensor can also
appear to couple different bands and the most general form
of the electron-acoustic phonon coupling is given by

Hep =
∑
αβ,i j

gλ
αβ

V 2

∑
k,q

ĉ†
α,kuλ(q)ĉβ,k−q, (A14)

where we use a single parameter λ to label different com-
ponents of strain tensor (uλ = ui j for different i, j = x, y, z).
The form of the coupling parameter gλ

αβ can be con-
strained by the crystal symmetry, which will be discussed in
Appendix B. The electron-optical phonon interaction is de-
rived in Appendix I.

2. Second-order perturbation terms
from Schrieffer-Wolf transformation

We next consider the second-order perturbation con-
tribution to the electron-phonon interaction through the
Schrieffer-Wolf transformation. We consider the full k · p
Hamiltonian including the electron-phonon interaction around
�i with the form H�i = H0 + H1 with the perturbation Hamil-
tonian H1 = Hk·p + Hep, where Hk·p is given by Eq. (A5) with
m = (α, s), n = (β, t ) and Hep is given by the Eq. (A14) for
acoustic phonons and the Eq. (I3) for optical phonons, in
which K should be replaced by k since all the momenta are
expanded around �i.

To get the second-order perturbation terms, we consider the
Schrieffer-Wolf transformation

Heff = e−SH�i e
S ≈ H0 + H1 − [S, H0] − [S, H1]

+ 1
2 [S, [S, H0]] + · · · , (A15)

and we require the first-order term to vanish, H1 − [S, H0] = 0.
The corresponding second-order term is given by

Heff ≈ H0 − 1
2 [S, H1]. (A16)

Since H1 = Hk·p + Hep, we can also decompose S = S1 +
S2 with [S1, H0] = Hk·p and [S2, H0] = Hep. One can show
that

S1 =
∑

k,α �=β,st

1

	βα

ĉ†
αs,k(Pαs,βt · k)ĉβt,k (A17)

and

S2 = 1

V

∑
k,q,α �=β,st,λ

1

	βα

gλ
αs,βt uλ(q)ĉ†

αs,kĉβt,k−q, (A18)

where 	βα = Eβ − Eα . Here we choose optical phonons as
the example and keep the lowest-order terms, so we can drop
the index K, q for the coupling constant gλ

αs,βt . With the de-
composition of S, the effective Hamiltonian includes

Heff ≈ H0 − 1
2 ([S1, Hk·p] + [S2, Hk·p] + [S1, Hep] + [S2, Hep]).

(A19)
The first perturbation term is given by

− 1
2 [S1, Hk·p] = 1

2V

∑
k,μν,αβγ

(
1

	αγ

+ 1

	βγ

)(
Pμ

αγ · k
)

× (Pν
γ β · k

)
ĉ†
α,kσμσν ĉβ,k, (A20)

which provides a correction to the effective mass. The second
and the third term together give

− 1
2 ([S2, Hk·p] + [S1, Hep])

= 1

2V 2

∑
k,q,μν,αβγ ,λ

(
1

	αγ

+ 1

	βγ

)(
gλ,μ

αγ

[
Pν

γ β · (k − q)
]

+ (Pμ
αγ · k

)
gλ,ν

γ β

)
uλ(q)ĉ†

α,kσμσν ĉβ,k−q, (A21)

where gλ
αs,βt =∑μ gλ,μ

αβ (σμ)st . The last term − 1
2 [S2, Hep] is of

order g2 and we neglect this term.
Now we apply the above second-order perturbation for-

malism to the Kramers-Weyl fermions to project into the
lowest-energy subspace with α = β = 0, and obtain the ef-
fective Hamiltonian

Heff,�i = Heff,0 + Heff,ep, (A22)

where

Heff,0 = 1

V

∑
k

ĉ†
0,k

(
E�i,0 + h̄2k2

2m∗
0

+ h̄v f (k · σ )

)
ĉ0,k (A23)

and

Heff,ep = H (0)
eff,ep + H (2)

eff,ep = 1

V 2

∑
k,q,λ

gλ
ouλ(q)ĉ†

0,kĉ0,k−q

(A24)

+ 1

V 2

∑
k,q,μν,γ ,λ

1

	 0γ

(
gλ,μ

0γ

[
Pν

γ 0 · (k − q)
]+ (Pμ

0γ · k
)
gλ,ν

γ 0

)

× uλ(q)ĉ†
0,kσμσν ĉ0,k−q. (A25)
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Here we have made the approximation of isotropic effective
mass

h̄2

2m∗
0

= h̄2

2m0
+
∑

μ,γ �=0

1

	0γ

〈(
Pμ

0γ · k
)(
Pμ

γ 0 · k
)〉

k̂
, (A26)

where 〈...〉k̂ means the average over all different directions of
the momentum k.

Since (σμ)2 = 1, σ0σa = σaσ0 = σa, σaσb = δab + iεabcσc

with a, b, c = x, y, z, we may define

Cλ, j
0 =

∑
μ,γ �=0

1

	0γ

gλμ
0γP

μ, j
γ 0 (A27)

and

Cλ, j
a =

∑
γ �=0

1

	0γ

(
gλ0

0γP
a, j
γ 0 + gλa

0γP
0, j
γ 0 + i

∑
bc

εabcgλb
0γP

c, j
γ 0

)
,

(A28)
and H (2)

eff,ep can be rewritten as

H (2)
eff,ep = 1

V 2

∑
k,q,μ,λ

(
Cλ, j

μ uλ(q)ĉ†
0,kσ

μ(k j − q j )ĉ0,k−q + H.c.
)
.

(A29)
Transforming back to the real space, we find that Heff,0 is given
by Eq. (A9), H (0)

eff,ep is given by Eq. (I9) and

H (2)
eff,ep =

∑
μ,λ, j

∫
d3ruλ(r)

(
Cλ, j

μ ψ̂
†
�i

(r)σμ[−i∂ jψ̂�i (r)]

+ (Cλ, j
μ

)∗[
i∂ jψ̂

†
�i

(r)
]
σμψ̂�i (r)

)
.

(A30)

Now let us impose the TR symmetry on the above ex-
pression and we find Cλ, j

0 = −(Cλ, j
0 )∗ so that Cλ, j

0 should
be pure imaginary while Cλ, j

a = (Cλ, j
a )∗ (a = x, y, z) so that

Cλ, j
a should be real. This means that for the Cλ, j

0 term, the
Hamiltonian will only depend on ∂ juλ(r), while the Cλ, j

a terms
(a = x, y, z) depend on uλ(r). In the long wavelength limit, the
Cλ, j

0 term will be much smaller than the Cλ, j
a terms. Thus, we

only consider the Cλ, j
a terms below.

The Hamiltonians (A9), (I9), and (A30) together form the
starting point for our study on the electron-phonon coupling
in the Kramers-Weyl semimetals, and we can rewrite them in
a more compact form

Heff =
∫

d3r

[
ψ̂

†
�i

(r)

(
− h̄2

2m∗
0

∇2 − μ − A0(r)

)
ψ̂�i (r)

+ h̄v f

2

∑
a, j

(
ψ̂

†
�i

(r)e j
aσ

a[−i∂ jψ̂�i (r)]

+ [i∂ jψ̂
†
�i

(r)
]
e j

aσ
aψ̂�i (r)

)]
, (A31)

where the chemical potential μ has included the energy E�i,0,
A0 = gλ

ouλ(r) is from the zero-order term of electron-phonon
coupling and behaves as a chemical potential fluctuation (or
scalar potential), and the frame field e j

a = δ
j
a + 	

j
a(r) with

	
j
a(r) = 2

h̄v f

∑
λ C

λ, j
a uλ(r) comes from the second-order per-

turbation involving electron-phonon coupling. In deriving the

above Hamiltonian, we only used the TR symmetry and the
spatial rotation symmetry will give additional constraints on
the parameters Cλ, j

a and reduce the number of independent
parameters, as discussed in the Appendix B. From the above
form of the Hamiltonian, it is clear that the phonon provides
a background frame field of the curved space for the KW
fermions.

We emphasize that here we consider the strain-induced
background field felt by the KW fermions through electron-
phonon interaction, and this background field is not necessary
to be the same as that in the continuum field description of
dislocations in elasticity theory [63]. The major difference is
related to the difference between distortion tensor and strain
tensor. In the continuum field description of dislocations,
the coframe field ēa

μ is directly given by the unsymmetrized
distortion tensor, defined as wμa = ∂μua, which is a gradi-
ent term. Thus, as a curl of ēa

μ, one can immediately show
that the torsion T a

μν = ∂μēa
ν − ∂ν ēa

μ = ∂μ∂νua − ∂ν∂μua = 0.
Thus, in the continuum field description of dislocations [63],
the nonzero torsion can only be related to dislocation which
breaks the integrability condition. However, in this work,
we consider the nontrivial spacetime geometry that the KW
fermions see through the electron-phonon interaction, which
is induced by the strain field uμa, instead of the distortion field
wμa. From the above derivation in this Appendix and also
Eq. (2) in the main text, the “effective” frame/coframe fields
that the KW fermions see in this case should be proportional
to the symmetrized strain field uμa = ∂μua + ∂auμ, and its
curl will no longer vanish T a

μν = ∂μēa
ν − ∂ν ēa

μ ∝ ∂μ(∂νua +
∂auν ) − ∂ν (∂μua + ∂auμ) = ∂μ∂auν − ∂ν∂auμ �= 0. We em-
phasize again that the “effective spacetime geometry” that the
Weyl fermions see is not necessary to be the same as the
spacetime geometry from the continuum field description of
elasticity since it originates from the microscopic electron-
phonon interaction. In other words, one can start from the
electron-phonon interaction Hamiltonian [Eq. (2) in the main
text] and perform the whole calculation of integrating out the
electrons without introducing the whole notation of frame or
coframe fields, and the whole results remain valid. The nota-
tion of frame/coframe fields is only useful to make the analog
with the torsion and the Nieh-Yan anomaly in high-energy
physics. One may ask if the strain tensor or distortion tensor
should enter into the form of electron-phonon interactions (or
electron-elastic wave interaction) in the effective theory for
Weyl fermions. As we know, the distortion tensor can be de-
composed into a symmetric strain tensor and an antisymmetric
rotation tensor, wμa = uμa + ωμa, where ωμa = ∂μua − ∂auμ.
Normally, we expect only the strain tensor part uμa should
be responsible for the electron-phonon interaction, while the
electron energy should not be influenced by the rotation part
ωμa. Indeed, there are a large number of papers in literature
to consider the the coupling between deformation potential
from lattice distortion and electrons from the microscopic
models, such as tight-binding model, and only the strain ten-
sor enters the coupling form in these papers [30,42,74,91].
However, we also notice that people consider distortion ten-
sor coupled to electron momentum in some papers [43,92],
but these works are more motivated by the analog to the
high-energy physics. In Ref. [93], they use distortion ten-
sor for the continuous model and the strain tensor for the
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tight-binding model, and make the comparison between these
two cases. In our work, we developed a k · p theory to describe
the effective theory of Weyl fermions from the microscopic
electron-phonon interaction (deformation potential theory).
Reference [42] considered a tight-binding model for Weyl
semimetals and derived both the effective spacetime geom-
etry and pseudogauge field for low-energy Weyl fermions.
Their effective model with the frame/coframe fields of Weyl
fermions from the tight-binding model is complementary to
our results from the k · p theory and one can see that the
“effective torsion” for the Weyl fermions can be induced by a
strain field. Based on our above argument, we next consider
the relation between transverse elastic waves (or acoustic
phonons) and the torsion spacetime. For example, we can
consider a transverse elastic wave ux(z) = ux0 cos(ωt − qz)
propagating along the z axis, which can induce a shear strain
uxz(z) ∝ ∂xuz + ∂zux = qux0 sin(ωt − qz). With the definition
of the effect coframe field êz

x(z) ∝ uxz(z), a nonzero dy-
namical torsion field T z

zx (z) = ∂zêz
x(z) − ∂xêz

z(z) ∝ ∂zuxz(z) =
−q2ux0 cos(ωt − qz) can be induced. This gives a simple ex-
ample of how elastic wave can induce dynamical torsion field
in Weyl semimetals.

APPENDIX B: SYMMETRY CONSTRUCTION
OF THE ELECTRON-STRAIN INTERACTION

HAMILTONIAN FOR THE KW FERMIONS

In this Appendix, we will consider the construction of the
effective Hamiltonian for the KW fermions from the sym-
metry principle [94,95]. Here we will focus on the acoustic
phonons, which couple to electrons through the strain tensor
ui j .

The chiral crystals only involve rotation symmetries and to
simplify the problem, let us first consider the isotropic systems
with the full rotation symmetry [SO(3)] and TR symmetry. In
this case, we can classify all the physical operators in terms of
their angular momentum. The Hamiltonian should be invari-
ant under the full rotation and thus should carry the angular
momentum 0. Both the momentum k and the spin σ carry the
angular momentum 1, and thus allow to construct two terms
k2 and k · σ . As discussed above, the acoustic phonons couple
to electrons through the strain tensor ui j , which is a rank-2
tensor and symmetric with respect to i and j (ui j = u ji). For
the momentum k and spin σ , one can define another rank-2
tensor Ti j = kiσ j , which is actually the stress tensor of Weyl
fermions. Now we need to construct the invariant terms based
on two rank-2 tensors ui j and Ti j and there are two ways:
(1)
∑

i j uiiTj j and
∑

i j ui jTi j . Thus, we can write down the
Hamiltonian as

Heff = C0 + C1ū + C3k2 + (C2 + g0ū)(k · σ ) + g1

∑
i j

ui jTi j,

(B1)
up to the order of k2 and ui jkl , where ū =∑i uii is
the trace of strain tensor. For TR symmetry T̂ , k and
σ are TR-odd while ui j and Ti j is TR-even. There-
fore, all the terms above are allowed for a TR-invariant
Hamiltonian. We may further consider the strain as a
field with spatial and temporal variations and thus re-
quire to change ui jTi j = ui jkiσ j to 1

2 {ui j, (−i∂i )}σ j and

ū(k · σ ) to 1
2 {ū, (−i∇ · σ )}. The corresponding Hamiltonian

can be written as

Heff =
∫

d3rψ̂†(r)

(
C0 + C1ū − C3∇2 + C2(−i∇ · σ )

+ g0

2
{ū, (−i∇ · σ )} + g1

2
{ui j, (−i∂i )}σ j

)
ψ̂ (r).

(B2)

As compared with Eq. (A31), one finds μ = −C0, A0 =
C1ū, C3 = h̄2

2m∗
0
, C2 = h̄v f , and 	

j
a = 1

h̄v f
(g0ūδ ja + g1u ja).

Since we only focus on the spatial component, the upper
and lower indices do not have specific meaning as in general
relativity.

Here we notice that there are two independent parameters
that characterize the coupling between strain tensor ui j and
the stress tensor Ti j . This conclusion can also be obtained
by classifying the rank-2 tensors according to their angular
momentum. The strain tensor can be decomposed into two
parts, uJ=0;M=0 =∑i uii = ū with the angular momentum 0
and uJ=2;M=±2,±1,0 with the angular momentum 2. The ex-
plicit form of uJ=2;M is given by

u2,2 = 1
2 [uxx − uyy + i(uxy + uyx )], (B3)

u2,1 = (− 1
2

)
[uxz + uzx + i(uyz + uzy)], (B4)

u2,0 =
√

1

6
(2uzz − uxx − uyy), (B5)

u2,−1 = 1
2 [uxz + uzx − i(uyz + uzy)], (B6)

u2,−2 = 1
2 [uxx − uyy − i(uxy + uyx )]. (B7)

Similarly, the stress tensor component with the angular mo-
mentum 2 can also be written as

T2,2 = 1
2 [Txx − Tyy + i(Txy + Tyx )] (B8)

T2,1 = (− 1
2

)
[Txz + Tzx + i(Tyz + Tzy)] (B9)

T2,0 =
√

1

6
(2Tzz − Txx − Tyy) (B10)

T2,−1 = 1
2 [Txz + Tzx − i(Tyz + Tzy)] (B11)

T2,−2 = 1
2 [Txx − Tyy − i(Txy + Tyx )]. (B12)

The term
∑

m u2,mT2,−m is invariant under the rotation. Col-
lecting all the invariant terms, we obtain the form of the
Hamiltonian

Heff = C1u0,0 + C3k2 + (C2 + g̃0u0,0)(k · σ )

+ g̃1

∑
m=±2,±1,0

u2,mT2,−m. (B13)

One can easily check that this Hamiltonian is the same as
Eq. (B1).

When reducing the symmetry group from SO(3) to
chiral point group symmetry, the number of independent
parameters will increase. Here we take the O group
as an example and other chiral symmetry groups can
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FIG. 4. (a) The Weyl point is pinned at k = 0 (or other
TR-invariant momenta) by TR symmetry for the Kramers-Weyl
semimetals and the strain can only shift Weyl nodes in energy but not
its momentum (k = 0). (b) The Weyl points for a generic inversion-
breaking TR-preserving Weyl semimetals, in which strain can also
induce the momentum shift of Weyl nodes. Here the dashed lines
show the dispersion after adding the strain and the purple spots depict
the location of Weyl nodes.

be worked out in a similar manner. According to the
character table of O group [95], there are five irreducible
representations (IRRs), labeled by A1, A2, E , T1, and T2.
The Hamiltonian should be invariant and thus belongs
to the A1 IRR. Both k and σ belong to the T1 and since
T1 ⊗ T1 = A1 + E + T1 + T2, we have one term k · σ can be
constructed to be invariant. For the strain tensor, u0,0 =∑i uii

belongs to the A1 IRR, (uxx − uyy, 2uzz − uxx − uyy)
belongs to the E IRR, and (uxy, uyz, uzx ) belongs to
the T2 IRR. This allows us to construct the following
invariant terms: (1) u0,0k · σ and u0,0k2; (2) (2uzz − uxx −
uyy)kzσz + (2uxx − uyy − uzz )kxσx + (2uyy − uxx − uzz )kyσy;
(3) uxy(kxσy + kyσx ) + uyz(kyσz + kzσy) + uzx(kzσx + kxσz ).
Therefore, the first four terms in the Hamiltonian (B1) remain
the same while the last term is changed to

g1[(2uzz − uxx − uyy)kzσz + (2uxx − uyy − uzz )kxσx

+ (2uyy − uxx − uzz )kyσy]+ (B14)

g2[uxy(kxσy + kyσx ) + uyz(kyσz + kzσy)

+ uzx (kzσx + kxσz )], (B15)

which possesses two independent parameters g1 and g2.
Based on the above derived effective Hamiltonian, we

below discuss the major difference between the Kramers-
Weyl semimetals and conventional TR-preserving inversion-
breaking Weyl semimetals. Figure 4(a) schematically shows
the Weyl nodes location for the Kramers-Weyl semimetals
without and with the strain (shown by the solid and dashed
lines, separately). Due to TR symmetry, the Kramers-Weyl
nodes are always pinned at k = 0, and this general property
remains in the presence of strain that respects TR. This fact
can also be understood from the effective model [Eqs. (1) and
(2) in the main text]. For the Weyl nodes k · σ , TR T̂ = iσyK
directly acts on spin Pauli matrix σ and the strain cannot
induce any constant (k-independent) coupling to σ since σ is
TR-odd while any function of strain tensor must be TR-even.
Therefore, the strain tensor cannot contributes to the vector
potential part �A of the pseudogauge field while it can only

contribute to the scalar potential A0. Without the vector poten-
tial �A, the scalar part A0 of strain-induced pseudogauge field
itself cannot give rise to the axial anomaly. This situation is
changed for generic TR-preserving inversion-breaking Weyl
semimetals, as shown in Fig. 4(b). The TR symmetry now
relates one Weyl point at the momentum k to another Weyl
point at the momentum −k, so the strain can play the role
of both vector potential �A (shift in the momentum space) and
the scalar potential A0 (shift in energy) for the pseudogauge
field, as shown in Fig. 4(b). In this situation, the pseudogauge
field due to strain itself can in principle give rise to the con-
tribution to the axial anomaly equation through the form of
εμνρλ∂μAν∂ρAλ, where Aν and Aλ both can come from pseu-
dogauge fields. Therefore, there is a substantial difference for
the strain effect between the Kramers-Weyl semimetals and
generic inversion-breaking Weyl semimetals: for Kramers-
Weyl semimetals, the strain can only induce A0 and the torsion
field (higher-order-k correction), and as discussed below, this
fact means that only the NY anomaly is possible, while for
generic inversion-breaking Weyl semimetals, the strain can
both �A and A0, as well as the more general gravitational field,
and thus can lead to all different types of anomaly, including
axial anomaly, mixed axial-gravitational anomaly and NY
anomaly. It should be noted that the axial anomaly due to the
strain-induced pseudogauge field can also affect the thermal
transport in Weyl semimetals. For example, it is shown that
axial anomaly induced by pseudogauge fields in strained Weyl
semimetals can give rise to a directional asymmetry of the
heat transfer and thus strongly modify thermal conductivity in
this system [96]. The pseudomagnetic magnetic fields due to
torsional mechanical strain can also influence thermoelectric
transport in Weyl semimetals under additional magnetic fields
[97].

APPENDIX C: EFFECTIVE ACTION
AND CORRELATION FUNCTION

In this Appendix, we will show the derivation of the for-
malism for the effective action for the phonon dynamics and
the corresponding correlation functions.

From the Hamiltonian (A31), the effective action can be
written as

Seff =
∫ β

0
dτ

∫
d3r

[
ψ̂

†
�i

∂

∂τ
ψ̂�i + Heff

]

=
∫ β

0
dτ

∫
d3r

[
ψ̂

†
�i

(
∂

∂τ
− μ − A0(r) − h̄2

2m∗
0

∇2

)
ψ̂�i

+ h̄v f

2

∑
a, j

(
ψ̂

†
�i

e j
aσ

a(−i∂ jψ̂�i ) + (i∂ jψ̂
†
�i

)
e j

aσ
aψ̂�i

)]
,

(C1)

where we have used the imaginary time τ = it and e j
a = δ

j
a +

	
j
a.
To implement the perturbation calculations, we may sepa-

rate the full action into two parts Seff = S0 + S1, where

S0 =
∫ β

0
dτ

∫
d3rψ̂†

�i

(
∂

∂τ
− μ + h̄v f (−i∇ · σ )

)
ψ̂�i (C2)
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and

S1 =
∫ β

0
dτ

∫
d3r

[
−ψ̂

†
�i

A0(r)ψ̂�i + h̄v f

2

∑
a, j

(
ψ̂

†
�i

	 j
aσ

a(−i∂ jψ̂�i ) + (i∂ jψ̂
†
�i

)
	 j

aσ
aψ̂�i

)]
. (C3)

Now let us define the Fourier transform as

ψ̂�i (r, τ ) = 1

βV

∑
iωn,k

eik·r−iωnτ ψ̂�i (k, iωn), (C4)

A0(r, τ ) = 1

βV

∑
iνm,q

eiq·r−iνmτ A0(q, iνm), (C5)

	 j
a(r, τ ) = 1

βV

∑
iνm,q

eiq·r−iνmτ	 j
a(q, iνm). (C6)

Then, we have

S0 = 1

βV

∑
iωn,k

ψ̂†(k, iωn)[−iωn − μ + h̄v f (k · σ )]ψ̂ (k, iωn) (C7)

and

S1 = 1

(βV )2

∑
iωn,iνm,k,q

[
−ψ̂

†
�i

(k, iωn)A0(q, iνm)ψ̂�i (k − q, iωn − iνm)

+ h̄v f

2

∑
a, j

ψ̂
†
�i

(k, iωn)	 j
a(q, iνm)σ a(2k j − q j )ψ̂�i (k − q, iωn − iνm)

]
. (C8)

Here iωn = i (2n+1)π
β

and iνm = i 2mπ
β

. We have dropped the

quadratic term h̄2k2

2m∗
0

in S0 and instead, we limit the momen-

tum summation within the range set by the cutoff � = 2m∗
0v f

h̄ ,

where the quadratic term h̄2�2

2m∗
0

is at the same order as the linear
term h̄v f �.

Below, we introduce the notation k̃ = (iωn, k) for short so
that the summation over both the frequency and the momen-
tum can be simplified as

∑
k̃ = 1

βV

∑
iωn,k. One should keep

in mind the value of iωn is for boson or for fermion operators.
The full action can be written as

S = S0 + S1 =
∑

k̃

ψ̂
†
k̃

(− G−1
0

)
ψ̂k̃ +

∑
k̃,k̃′

ψ̂
†
k̃
X(k̃, k̃′)ψ̂k̃′ ,

(C9)
where

G0 = [iωn + μ − h̄v f (k · σ )]−1 (C10)

and

X(k̃, k̃′) = −A0(q̃ = k̃ − k̃′) +
∑
a,i

T a
i (k̃, k̃′)	i

a(q̃ = k̃ − k̃′),

(C11)
with the stress tensor operator T a

i (k̃, k̃′) = h̄v f

2 (ki + k′
i )σ

a for
Weyl fermions.

Since the full action is quadratic in fermion operators,
one can directly integrate out the Weyl fermions to get the
effective action for the A0 and 	 fields. Let us consider the

partition function

Z =
∫

D(ψ̂†ψ̂ )exp(−S) = Det(−G−1
0 + X) (C12)

and the zero-order partition function

Z0 =
∫

D(ψ̂†ψ̂ )exp(−S0) = Det
(−G−1

0

)
, (C13)

where Det is the determinant. The effective action W [A0,	]
is defined as Z = Z0e−W and thus

W [A0,	] = −ln[Det(−G−1
0 + X)] + ln

[
Det
(−G−1

0

)]
= −Tr

[
ln
(− G−1

0 + X
)− ln

(−G−1
0

)]
= −Tr[ln(1 − XG0)] =

∑
n

1

n
Tr[(XG0)n], (C14)

which gives us the perturbation expansion. The first-order
term is given by Tr(XG0) =∑k̃ X(k̃, k̃)G0(k̃). This involve
only the terms A0(q̃ = 0) and 	i

a(q̃ = 0) in X. Since we only
consider the fluctuation for X and thus can choose A0(q̃ =
0) = 0 and 	i

a(q̃ = 0) = 0 when defining S1. Thus, the first-
order term will be zero.
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Next we consider the second-order term, given by

W [A0,	] = 1

2
Tr(XG0XG0) = 1

2

∑
k̃1,k̃2

Trσ [X(k̃1, k̃2)G0(k̃2)X(k̃2, k̃1)G0(k̃1)]

= 1

2

∑
q̃

⎡
⎣A0(q̃)A0(−q̃)�0(q̃) +

∑
i j,ab

	i
a(q̃)	 j

b(−q̃)
ab
i j (q̃) −

∑
i,a

A0(q̃)	i
a(−q̃)�a

i (q̃) −
∑
i,a

	i
a(q̃)A0(−q̃)�a

i (−q̃)

⎤
⎦,

(C15)

where three types of correlation functions are defined as

�0(q̃) =
∑

k̃

Trσ [G0(k̃ − q̃)G0(k̃)], (C16)


ab
i j (q̃)

=
∑

k̃

Trσ
[
T a

i (k̃, k̃ − q̃)G0(k̃ − q̃)T b
j (k̃ − q̃, k̃)G0(k̃)

]
,

(C17)

�a
i (q̃) =

∑
k̃

Trσ [G0(k̃ − q̃)T a
i (k̃ − q̃, k̃)G0(k̃)]. (C18)

Here �0 is the density-density correlation function, 
ab
i j is

the stress-stress correlation function, while �a
i is the stress-

density correlation function.

APPENDIX D: A BRIEF REVIEW
OF NIEH-YAN ANOMALY

In this Appendix, we will first review the Weyl/Dirac
fermions in the curved space and the Nieh-Yan anomaly. Then
we will discuss the connection of the stress-stress correlation
function 
ab

i j and Nieh-Yan anomaly in our formalism. In a
curved space, the action for Dirac fermions can be written as
[36,37]

SD =
∫

d4xψ̄

(
i

2
γ a
{
eμ

a ,∇μ

}− m

)
ψ, (D1)

where γ as are the standard γ -matrices with {γ a, γ b} = 2ηab

and ηab is the metric in the Minkowski space, and eμ
a is

the frame field. Here the Einstein summation rule has been
assumed. The frame fields satisfy ηabeμ

a eν
b = gμν with the

metric gμν in the curved space, so that {γ μ, γ ν} = 2gμν where
γ μ = γ aeμ

a . ∇μ = ∂μ + �μ is the covariant derivative with
the spin connection �μ = i

2ηac�
c
bμJab and the generator Jab =

− i
4 [γ a, γ b] of the Lorentz group.
It is convenient to introduce the so-called spin connec-

tion 1-form �c
b = �c

bμdxμ and the coframe field 1-form ea =
ēa
μdxμ, where the coframe field is the inverse of the frame

field, eν
aēa

μ = δν
μ. The Cartan’s structure equations of the

Riemann-Cartan spacetime [98] define the curvature 2-form
Ra

b = d�a
b + �a

c ∧ �c
b and the torsion 2-form Ta = dea +

�a
c ∧ ec. In the standard general relativity, the torsion is as-

sumed to be zero (zero torsion constraint), leading to the
relation between the coframe field and the spin connection
(dea + �a

c ∧ ec = 0). However, in the Einstein-Cartan theory
[98,99], the torsion can be nonzero and consequently, the

frame field (or coframe field) and the spin connection should
be treated as two independent fields.

By comparing the effective action (A31) for our system
with the action of Dirac field in the curved space, it is clear that
the electron-phonon coupling can create a nontrivial coframe
field ea but the spin connection �c

b is still zero. Consequently,
the Weyl fermions in our system will feel nonzero torsion,
given by Ta = dea, but zero curvature Ra

b = 0. This is in
sharp contrast to the standard general relativity with nonzero
curvature but zero torsion, and is known as the “Weitzenböck
spacetime,” which was studied in the “teleparallel gravity
theory” [62].

When the Dirac fermion is coupled to an electromagnetic
field, quantum correction can give rise to the anomalous
nonconservation of the chiral charge, known as the “chiral
anomaly” [1], given by

∂μ〈 j5μ〉 = 1

16π2
εμνλρFμνFλρ, (D2)

where Fμν = ∂μAν − ∂νAμ is the strength of the gauge field.
The chiral anomaly effect plays an essential role in predicting
and understanding a number of physical phenomena in Weyl
semimetals. In our system, the phonon will induce the torsion
field for the KW fermions, instead of the pseudogauge field.
It turns out that the torsion field can also contribute to the
nonconservation of the chiral charge, which is known as the
Nieh-Yan anomaly [10–13] and given by

∂μ〈 j5μ〉 = F
4

ηabε
μνλρT a

μνT b
λρ, (D3)

where F is some nonuniversal coefficient. Since the spin
connection vanishes, the torsion field Ta = dea gives the field
strength of the coframe field ea and its components are given
by T a

μν = ∂μēa
ν − ∂ν ēa

μ and the Nieh-Yan anomaly equation is
also written as

∂μ〈 j5μ〉 = Fηabε
μνλρ∂μēa

ν∂λēb
ρ. (D4)

Unlike the chiral anomaly with the universal dimensionless
coefficient 1

16π2 (Here we follow the convention of high energy
physics and set e = h̄ = 1), the coefficient F in the Nieh-
Yan anomaly has the dimension [1/L]2, where [L] labels the
dimension of length. This can be easily obtained from the di-
mension counting as follows. In the Dirac action, the fermion
field has the dimension [1/L]3/2 and the chiral current 〈 j5μ〉 =
〈ψ̄γ 5ψ〉 has the dimension [1/L]3. Thus, the left-hand side
of the anomaly equation (∂μ〈 j5μ〉) has the dimension [1/L]4.
However, the coframe field ēa

ν is dimensionless and thus
∂μēa

ν∂λēb
ρ has the dimension [1/L]2. This means that the

coefficient F has the dimension [1/L]2. It was shown in
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literature that F is proportional to the ultraviolet (UV) mo-
mentum cutoff �2 [12,12,45]. Due to the nonuniversal nature
of this coefficient, the relevance of Nieh-Yan (NY) term to the
anomaly for relativistic fermions has been debated for long in
high energy physics. Chandia and Zanelli first proposed that
NY term can appear in anomaly equation [12]. Later, Kreimer
and Mielke suggested that NY term should be cancelled by
the counter term in the renormalization group argument [100].
A series of subsequent papers were devoted to clarifying
this issue [101–106]. While the status of the NY anomaly in
relativistic systems remains controversial, the nonrelativistic
condensed matter systems have an explicit UV cutoff and thus
its appearance in condensed matter physics is plausible. A
number of recent papers in the field of Weyl/Dirac semimetals
and topological insulators discuss this possibility [43–51]. It
was suggested by Nissinen that the presence or absence of NY
anomaly in condensed matter systems relies on how the UV
cutoff is chosen [47,49]. Particularly, it was shown that the
momentum separation between two Weyl nodes can give rise
to an anisotropic cutoff along different momentum directions,
which determines the magnitude of the anomaly. However,
for relativistic Weyl fermions with Lorentz invariance up
to arbitrary scales, the anomaly will be cancelled. Besides
the temperature independent term, it was recently proposed
[45,46,48] that at a finite temperature, the coefficient takes
the form F = F0 + F1(kBT )2 with F0 = a0�

2 and F1 = − 1
12 .

The temperature-dependent term is proportional to (kBT )2,
which absorbs the dimension [1/L]2, and thus, the coeffi-
cient F1 becomes dimensionless and universal in the sense
that it is only proportional to the central charge of (1 + 1)-
dimensional Dirac fermion, which was proposed in Ref. [45].
Thus, the anomaly induced by this temperature-dependent
term is dubbed “thermal Nieh-Yan anomaly.”

To compare with our results, it is convenient to derive the
effective action that corresponds to the Nieh-Yan anomaly.
Since the right-hand side of Eq. (D4) is actually a to-
tal derivative, the chiral current can be given by 〈 j5μ〉 =
Fηabε

μνλρ ēa
ν∂λēb

ρ . With 〈 j5μ〉 = δSeff
δA5μ

, we have

SNY = F
∫

d4xηabε
μνλρA5μēa

ν∂λēb
ρ, (D5)

where A5μ is the chiral gauge potential. Since the phonon can
only induce chiral chemical potential in our case, we only
keep the A50 term in the above action and thus obtain

SNY = F
∫

d4xηabε
νλρA50ēa

ν∂λēb
ρ, (D6)

where ν, λ, ρ = x, y, z.
In our effective action [Eq. (3)] of the main text, the frame

field is given by e j
a = δ

j
a + 	

j
a and the corresponding coframe

field is ēa
j = δa

j − 	
j
a with a, j = x, y, z. Since we only

concern the spatial coordinate here, the upper and lower
indices do not have much meaning. Furthermore, 	

j
a is

proportional to the strain tensor u ja which is symmetric
with respect to j and a. We next focus on the stress-stress
correlation function term (C17) in the effective action
(C15). We may expand 
ab

i j (q̃) as a function of q̃,

ab

i j (q̃) = 
ab
i j (0) + (∂q


ab
i j )q̃=0 · q + (∂ωn


ab
i j )q̃=0ωn + · · · .

Here we only focus on the term that is linearly proportional

FIG. 5. (a) Feynman Diagram for the expansion of the Green’s
function G0 up to the linear order in μ. (b) Feynman diagram for
the expansion of the stress-stress correlation function 
ab

i j . Here the
blue lines are for the Green’s function G0, the black lines are for the
Green’s function G̃0 at μ = 0, the green wiggly line is for the vertex
coupled to μ and the red dashed lines are for the stress tensor T a

i .

to q and denote 
ab
i j,l = (∂ql 


ab
i j )q̃=0. Then, the corresponding

term in the action is given by

WNY[	] = 1

2

∑
q̃,i jl,ab


ab
i j,l

[
	i

a(q̃)	 j
b(−q̃)ql

]
,

= 1

2

∑
i jl,ab

∫
d3rdτ
ab

i j,l	
i
a(r, τ )

[
i∂l	

j
b(r, τ )

]
.

(D7)

As demonstrated in Appendix E, the coefficient 
ab
i j,l is purely

imaginary and proportional to δi jε
abl , where ε is the Levi-

civita symbol. Moreover, this term is linearly proportional
to the chemical potential μ for a small μ. Therefore, by
replacing ēa

ν with 	i
a, WNY takes the exact form as SNY for

the Nieh-Yan anomaly, and we call this term as the Nieh-Yan
term below. Actually, the symmetry analysis of the possible
terms for the strain tensors, given in the Appendix G, suggests
that the Nieh-Yan term is the only term that is allowed by
symmetry at this order of q in a uniform isotropic system.

It is well-known that the quantum anomaly normally comes
from the triangle diagram in the perturbation expansion.
Below we will show that by expanding the stress-stress cor-
relation function 
ab

i j up to the linear order in μ, we actually
evaluate the triangle diagram and thus, our method here is
equivalent to the evaluation of the triangle diagram. Since
the μ-dependence of the stress-stress correlation function 
ab

i j
in Eq. (C17) comes from the Green’s function G0, we first
expand G0 in Eq. (C10) as

G0 = G̃0 + ∂G0

∂μ

∣∣∣∣
μ=0

μ + ..., (D8)

where

G̃0 = G0(μ = 0) = [iωn − h̄v f (k · σ )]−1 (D9)

and

∂G0

∂μ

∣∣∣∣
μ=0

= −G̃2
0 . (D10)
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This expansion of the Green’s function is shown in Fig. 5(a). Next we consider 
ab
i j , which can be expanded as


ab
i j (q̃) =

∑
k̃

Trσ
(
T a

i (k̃, k̃ − q̃)G0(k̃ − q̃)T b
j (k̃ − q̃, k̃)G0(k̃)

)

≈
∑

k̃

Trσ
(
T a

i (k̃, k̃ − q̃)(G̃0(k̃ − q̃) − μG̃2
0 (k̃ − q̃))T b

j (k̃ − q̃, k̃)(G̃0(k̃) − μG̃2
0 (k̃))

)

≈ 
̃ab
i j (q̃)−μ

∑
k̃

[
Trσ
(
T a

i (k̃, k̃ − q̃)G̃0(k̃ − q̃)T b
j (k̃ − q̃, k̃)G̃2

0 (k̃)
)+ Trσ

(
T a

i (k̃, k̃ − q̃)G̃2
0 (k̃ − q̃)T b

j (k̃ − q̃, k̃)G̃0(k̃)
)]

.

(D11)

Here 
̃ab
i j (q̃) =∑k̃ Trσ (T a

i (k̃, k̃ − q̃)G̃0(k̃ − q̃)T b
j (k̃ − q̃, k̃)G̃0(k̃)) is the stress-stress correlation function at μ = 0 and the next

two terms in the last step is linear in μ. From the diagram in Fig. 5(b), it is clear that these two terms are for the triangle diagrams
that response for the quantum anomaly.

APPENDIX E: ANALYTICAL EVALUATION OF THE NIEH-YAN TERM

In this Appendix, we will evaluate the coefficient 
ab
i j,l analytically. With Eq. (C17), we have


ab
i j,l =

(
∂
ab

i j

∂ql

)
q̃=0

=
∑

k̃

Trσ
((

∂qlT a
i (k̃, k̃ − q̃)

)
q̃=0G0(k̃)T b

j (k̃, k̃)G0(k̃) + T a
i (k̃, k̃)(∂qlG0(k̃ − q̃))q̃=0T b

j (k̃, k̃)G0(k̃)

+T a
i (k̃, k̃)G0(k̃)

(
∂qlT b

j (k̃ − q̃, k̃)
)

q̃=0G0(k̃)
)

=
∑

k̃

Trσ

((
− h̄v f

2

)
(δilσ

aG0(k̃)T b
j (k̃, k̃)G0(k̃) + T a

i (k̃, k̃)G0(k̃)δ jlσ
bG0(k̃))

+ T a
i (k̃, k̃)(∂klG0(k̃))T b

j (k̃, k̃)G0(k̃)

)
. (E1)

The Green’s function G0 is given in Eq. (C10) and here we focus on the situation with a small chemical potential μ, so we expand
G0 up to the linear order in μ as G0(μ) = G0(μ = 0) + (∂μG0)μ=0μ with

G0(μ = 0) = (iωn − h̄v f (k · σ ))−1 = iωn + h̄v f (k · σ )

(iωn)2 − (h̄v f k)2
(E2)

and

(∂μG0)μ=0 = −[iωn − h̄v f (k · σ )]−2 = −[G0(μ = 0)]2. (E3)

Below we absorb h̄v f into the definition of the momentum k, but keep track on the chirality of the Weyl fermions. Thus, we
define the chirality as χ = sign(h̄v f ), and obtain

G0(μ = 0) = iωn + χ (k · σ )

D2
, (E4)

where D2 = (iωn)2 − k2 and

(∂μG0)μ=0 = −[G0(μ = 0)]2 = − [iωn + χ (k · σ )]2

D4
= − (iωn)2 + k2 + 2iωnχk · σ

D4
. (E5)

Thus, the Green’s function is given by

G0(k, iωn) = iωn + χ (k · σ )

D2
− [(iωn)2 + k2 + 2iωnχk · σ ]μ

D4
. (E6)

Let us first look at the first term in Eq. (E1) and the direct calculation gives∑
k̃

Trσ (δilσ
aG0(k̃)T b

j (k̃, k̃)G0(k̃)) =
∑

k̃

δil k j

D4

(
iωn + μ − 2(iωn)2μ

D2

)(
1 − 2iωnμ

D2

)
(σ aσ bχ (k · σ ) + σ aχ (k · σ )σ b)

=
∑

k̃

χδil k2
j

D4

(
iωn + μ − 2(iωn)2μ

D2

)(
1 − 2iωnμ

D2

)
Trσ (σ aσ bσ j + σ aσ jσ b)

=
∑

k̃

χδil k2
j

D4

(
iωn + μ − 2(iωn)2μ

D2

)(
1 − 2iωnμ

D2

)
Trσ (σ a2δb j ) = 0. (E7)
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In the second step of the above derivation, we collect all the terms that have even order in the momentum k since these are
the nonzero term under the integral of the momentum angle. Similar calculation also shows the second term in Eq. (E1) is
also zero. Thus, only the last term is left nonzero. To evaluate this term, we first need to calculate ∂klG0(k̃), which is given
by

∂klG0(k̃) = χσ l

D2
+ (iωn + χ (k · σ ))

∂ (1/D2)

∂kl
− μ

2kl + 2iωnχσ l

D4
− μ((iωn)2 + k2 + 2iωnχk · σ )

∂ (1/D4)

∂kl

= χσ l

D2
+ (iωn + χ (k · σ ))

2kl

D4
− μ

2kl + 2iωnχσ l

D4
− μ((iωn)2 + k2 + 2iωnχk · σ )

4kl

D6

= χσ l

D2
+ (iωn + χ (k · σ ))

2kl

D4
− μ

D6
((2kl + 2iωnχσ l )((iωn)2 − k2) + 4kl ((iωn)2 + k2 + 2iωnχk · σ ))

= χσ l

D2
+ (iωn + χ (k · σ ))

2kl

D4
− 2μiωnχσ l

D4
− μ

D6
(6kl (iωn)2 + 2k2kl + 8kl (iωn)χk · σ ). (E8)

By substituting these terms into the last term in Eq. (E1), we find


ab
i j,l =

∑
k̃

Trσ
(
T a

i (k̃, k̃)(∂klG0(k̃))T b
j (k̃, k̃)G0(k̃)

)

=
∑

k̃

Trσ

(
σ aki

(
χσ l

D2
+ (iωn + χ (k · σ ))

2kl

D4
− 2μiωnχσ l

D4
− μ

D6
(6kl (iωn)2 + 2k2kl + 8kl (iωn)χk · σ )

)

× σ bk j

(
iωn + χ (k · σ )

D2
− μ

D4
((iωn)2 + k2 + 2iωnχk · σ )

))

=
∑

k̃

Trσ

(
σ aki

(
χσ l

D2
+ χ (k · σ )

2kl

D4
− 2μiωnχσ l

D4
− μ

D6
8kl (iωn)χk · σ

)
σ bk j

(
iωn

D2
− ((iωn)2 + k2)μ

D4

)

+ σ aki

(
iωn

2kl

D4
− μ

D6

(
6kl (iωn)2 + 2k2kl

))
σ bk j

(
χ (k · σ )

D2
− (2iωnχk · σ )μ

D4

))
. (E9)

In the above, since only the terms with even number of the momentum k can be nonzero, we thus obtain two terms, and let us
calculate them separately. For the first term, we have

∑
k̃

Trσ

(
σ aki

(
χσ l

D2

(
1 − 2iωnμ

D2

)
+ χ (k · σ )

2kl

D4

(
1 − 4iωnμ

D2

))
σ bk j

(
iωn

D2
− ((iωn)2 + k2)μ

D4

))

=
∑

k̃

χkik j

(
iωn

D2
− ((iωn)2 + k2)μ

D4

)(
1

D2

(
1 − 2iωnμ

D2

)
Trσ
(
σ aσ lσ b

)+ 2kl

D4

(
1 − 4iωnμ

D2

)
Trσ
(
σ a(k · σ )σ b

))

=
∑

k̃

χkik j

(
iωn

D2
− ((iωn)2 + k2)μ

D4

)(
1

D2

(
1 − 2iωnμ

D2

)
2iεalb + 2kl km

D4

(
1 − 4iωnμ

D2

)
2iεamb

)

= −
∑

k̃

2χμkik j

D6

(
2(iωn)2

(
iεalb + 4iεamb klkm

D2

)
+ ((iωn)2 + k2)

(
iεalb + 2iεamb klkm

D2

))
. (E10)

In the last step above, we have dropped all the terms with odd number of iωn since the frequency summation will make them
vanishing. For the second term, we have

∑
k̃

Trσ

(
σ aki

(
iωn

2kl

D4
− μ

D6
(6kl (iωn)2 + 2k2kl )

)
σ bk j

(
χ (k · σ )

D2
− (2iωnχk · σ )μ

D4

))

=
∑

k̃

χkik j

(
iωn

2kl

D4
− μ

D6
(6kl (iωn)2 + 2k2kl )

)(
1

D2
− 2iωnμ

D4

)
Trσ (σ aσ b(k · σ ))

=
∑

k̃

2χkik jkl

D6

(
iωn − μ

D2

(
3(iωn)2 + k2

))(
1 − 2iωnμ

D2

)
Trσ (σ aσ b(k · σ ))

= −
∑

k̃

2χμkik jkl

D8
(2(iωn)2 + (3(iωn)2 + k2))Trσ (σ aσ b(k · σ )) = −

∑
k̃

4χμkik jklkm

D8
(5(iωn)2 + k2)iεabm. (E11)
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Again here we only pick up the terms with even order of iωn. Finally, we can add these two terms together and obtain(
∂
ab

i j

∂ql

)
q̃=0

= −
∑

k̃

2χμkik j

D6

(
(3(iωn)2 + k2)iεalb + (5(iωn)2 + k2)2iεamb klkm

D2

)
−
∑

k̃

4χμkik jklkm

D8
(5(iωn)2 + k2)iεabm

= −
∑

k̃

2χμkik j

D6

(
(3(iωn)2 + k2)iεalb + (10(iωn)2 + 2k2)iεamb klkm

D2
+ (10(iωn)2 + 2k2)iεabm klkm

D2

)

= −
∑

k̃

2χμkik j

D6
(3(iωn)2 + k2)iεalb = 2iεalbχμ

∑
k̃

kik j

D4

(
1 − 4(iωn)2

D2

)
. (E12)

In the above expression, the integral over the momentum k can only be nonzero when i = j. Furthermore, the integral over the
polar and azimuthal angles of the momentum gives rise to∫

d (cosθ )dϕk2
x =

∫
d (cosθ )dϕk2

y =
∫

d (cosθ )dϕk2
z = 4π

3
k2 (E13)

with k = (k, θ, ϕ) in the spherical coordinate. Thus, let us define the function

F0 = 2

βV

∑
k,iωn

k2
x

D4

(
1 − 4(iωn)2

D2

)
= 1

3π2β

∑
iωn

∫ �

0
k4dk

1

D4

(
1 − 4(iωn)2

D2

)
, (E14)

where a cutoff � in the momentum space has been assumed, and


ab
i j,l =

(
∂
ab

i j

∂ql

)
q̃=0

= iεalbδi jχμF0, (E15)

from which one can see that 
ab
i j,l is indeed pure imaginary (F0 is real, as shown below), and proportional to εalbδi j . Thus, we

demonstrate the effective action (H9) together with Eq. (E15) indeed takes the form of Nieh-Yan term.
Next we will evaluate the coefficient F0 in Eq. (E14) analytically. Let us separate F0 into F01 and F02 with

F01 = 1

3π2β

∑
iωn

∫ �

0
dk

k4

((iωn)2 − k2)2
(E16)

and

F02 = 4

3π2β

∑
iωn

∫ �

0
dk

k4(iωn)2

((iωn)2 − k2)3
, (E17)

so that

F0 = F01 − F02. (E18)

Here we have substitute the expression for D2.
We perform the frequency summation in F01 and consider the contour integral

I =
∮

R

dz

2π i
f (z)nF (z) (E19)

with

f (z) = 1

(z2 − k2)2
(E20)

in the complex-z plane with the radius R of z. In the limit R → ∞, since the integrand f (z)nF (z) decays to zero fast enough, this
integral should be zero. However, this integral can re-expressed as the integral around the poles of the integrand in the complex-z
plane, and thus is determined by the residuals of these poles according to the residual theorem. We next need to figure out all the
poles and the corresponding residuals for the integrand f (z)nF (z).

For the Fermi function nF (z) = 1
eβz+1 , the poles are zn = iωn = i (2n+1)π

β
and the corresponding residuals for f (z)nF (z) are

Res[ f (z)nF (z), z = zn] = − 1
β

f (iωn).
There are another two poles z± = ±k from the function f (z). Since they are not simple poles, we need a bit more work to

extract the residuals. For z = z+ = k, let us denote f (z)nF (z) = g(z)
(z−k)2 with g(z) = nF (z)

(z+k)2 . We need to expand g(z) around z+ = k

and pick up the first-order term ( ∂g(z)
∂z )z=k (z − k) since the coefficient in this term will give the residual of f (z)nF (z). Direct
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calculations give rise to

∂g(z)

∂z
= − 2

(z + k)3
nF (z) + 1

(z + k)2
∂znF (z)∂znF (z) = − βeβz

(eβz + 1)2
= − β

4(cosh(βz/2))2
, (E21)

and thus the corresponding residual is

Res[ f (z)nF (z), z = z+] =
(

∂g(z)

∂z

)
z=k

= − 2

(2k)3
nF (k) − 1

(2k)2

β

4(cosh(βk/2))2
= − 1

4k3
nF (k) − 1

16k2

β

(cosh(βk/2))2
.

(E22)

For z = z− = −k, we denote f (z)nF (z) = g(z)
(z+k)2 with g(z) = nF (z)

(z−k)2 . With

∂g(z)

∂z
= − 2

(z − k)3
nF (z) + 1

(z − k)2
∂znF (z), (E23)

we obtain

Res[ f (z)nF (z), z = z−] =
(

∂g(z)

∂z

)
z=−k

= − 2
(−2k)3 nF (−k) − 1

(−2k)2

β

4[cosh(βk/2)]2

= 1
4k3 nF (−k) − 1

16k2

β

[cosh(βk/2)]2
. (E24)

Putting all the results together, we have

I = − 1

β

∑
iωn

f (iωn) + Res[ f (z)nF (z), z = z+] + Res[ f (z)nF (z), z = z−] = 0

→ 1

β

∑
iωn

f (iωn) = Res[ f (z)nF (z), z = z+] + Res[ f (z)nF (z), z = z−]

= 1

4k3
(nF (−k) − nF (k)) − 1

8k2

β

[cosh(βk/2)]2
= 1

4k3
tanh(βk/2) − 1

8k2

β

[cosh(βk/2)]2
, (E25)

and

F01 = 1

3π2β

∑
iωn

∫ �

0
dk

k4

[(iωn)2 − k2]2
= 1

3π2

∫ �

0
dkk4

(
1

4k3
tanh(βk/2) − 1

8k2

β

[cosh(βk/2)]2

)

= 1

3π2

∫ �

0
dk

(
k

4
tanh(βk/2) − k2

8

β

[cosh(βk/2)]2

)
. (E26)

We may consider the coefficient F01 at the zero temperature and its correction from the finite temperature, F01 = F01(T = 0) +
δF01(T ). At zero temperature (β → ∞), the first term in the above integral diverges as �2 since tanh(β�/2) → 1 while the
second term converges (actually vanishes). Thus, we have

F01(T = 0) = 1

3π2

∫ �

0
dk

k

4
= �2

24π2
(E27)

and the finite temperature correction is given by

δF01(T ) = 1

3π2

∫ �

0
dk

(
k

4
[tanh(βk/2) − 1] − k2

8

β

[cosh(βk/2)]2

)

= 1

3π2

∫ ∞

0
d (2x/β )

(
2x

4β
[tanh(x) − 1] − (2x)2

8β2

β

[cosh(x)]2

)

= 1

3π2β2

∫ ∞

0
dx

(
x[tanh(x) − 1] − x2

[cosh(x)]2

)
,= − 1

24β2
= − (kBT )2

24
(E28)

where we have used x = βk/2 and � → ∞.
For F02, we should choose

f (z) = z2

(z2 − k2)3
(E29)

in Eq. (E19). The poles and residuals for nF (z) remain the same. For f (z), the poles are still at z± = ±k, but the residuals are
changed. For z = z+ = k, we denote f (z)nF (z) = g(z)

(z−k)3 with g(z) = z2

(z+k)3 nF (z). Since this is a pole of third order, we need to
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evaluate ( 1
2

∂2g(z)
∂z2 )z=k . Direct calculations give rise to

∂g(z)

∂z
=
(

2z

(z + k)3
− 3z2

(z + k)4

)
nF (z) + z2

(z + k)3
∂znF (z),

∂2g(z)

∂z2
=
(

2

(z + k)3
− 12z

(z + k)4
+ 12z2

(z + k)5

)
nF (z) + 2

(
2z

(z + k)3
− 3z2

(z + k)4

)
∂znF (z) + z2

(z + k)3
∂2

z nF (z),

∂znF (z) = − βeβz

(eβz + 1)2
= − β

4[cosh(βz/2)]2
,

∂2
z nF (z) = − β2eβz

(eβz + 1)2
+ 2β2e2βz

(eβz + 1)3
= β2 e2βz − eβz

(eβz + 1)3
= β2 eβz

(eβz + 1)2

eβz − 1

eβz + 1
= β2

4[cosh(βz/2)]2
tanh(βz/2) (E30)

and the residual is

Res[ f (z)nF (z), z = z+] = 1

2

(
∂2g(z)

∂z2

)
z=k

=
(

1

8k3
− 3

8k3
+ 3

16k3

)
nF (k) +

(
2

8k2
− 3

16k2

)
∂znF (k) + 1

16k
∂2

z nF (k),

= − 1

16k3
nF (k) − 1

16k2

β

4[cosh(βk/2)]2
+ 1

16k

β2

4[cosh(βk/2)]2
tanh(βk/2). (E31)

Similarly for For z = z− = −k, we denote f (z)nF (z) = g(z)
(z+k)3 with g(z) = z2

(z−k)3 nF (z). Direct calculations give

∂g(z)

∂z
=
(

2z

(z − k)3
− 3z2

(z − k)4

)
nF (z) + z2

(z − k)3
∂znF (z),

∂2g(z)

∂z2
=
(

2

(z − k)3
− 12z

(z − k)4
+ 12z2

(z − k)5

)
nF (z) + 2

(
2z

(z − k)3
− 3z2

(z − k)4

)
∂znF (z) + z2

(z − k)3
∂2

z nF (z), (E32)

and the residual is

Res[ f (z)nF (z), z = z−] = 1

2

(
∂2g(z)

∂z2

)
z=−k

=
(

− 1

8k3
+ 3

8k3
− 3

16k3

)
nF (−k) +

(
2

8k2
− 3

16k2

)
∂znF (−k) − 1

16k
∂2

z nF (−k),

= 1

16k3
nF (−k) − 1

16k2

β

4[cosh(βk/2)]2
+ 1

16k

β2

4[cosh(βk/2)]2
tanh(βk/2). (E33)

Putting all the results together, we have

1

β

∑
iωn

f (iωn) = Res[ f (z)nF (z), z = z+] + Res[ f (z)nF (z), z = z−]

= 1

16k3
(nF (−k) − nF (k)) − 1

8k2

β

4[cosh(βk/2)]2
+ 1

8k

β2

4[cosh(βk/2)]2
tanh(βk/2)

= 1

16k3
tanh(βk/2) − 1

8k2

β

4[cosh(βk/2)]2
+ 1

8k

β2

4[cosh(βk/2)]2
tanh(βk/2), (E34)

and

F02 = 4

3π2

∫ �

0
dkk4 1

β

∑
iωn

(iωn)2

[(iωn)2 − k2]3

= 4

3π2

∫ �

0
dkk4

(
1

16k3
tanh(βk/2) − 1

8k2

β

4[cosh(βk/2)]2
+ 1

8k

β2

4[cosh(βk/2)]2
tanh(βk/2)

)

= 1

24π2

∫ �

0
dk

(
2k tanh(βk/2) − βk2

[cosh(βk/2)]2
+ β2k3

[cosh(βk/2)]2
tanh(βk/2)

)
. (E35)

We can decompose F02 into F02 = F02(T = 0) + δF02(T ) and find

F02(T = 0) = 1

12π2

∫ �

0
dkk = �2

24π2
(E36)
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and

δF02(T ) = 1

24π2

∫ �

0
dk

(
2k[tanh(βk/2) − 1] − βk2

[cosh(βk/2)]2
+ β2k3

[cosh(βk/2)]2
tanh(βk/2)

)

= 1

24π2β2

∫ ∞

0
d (2x)

(
4x[tanh(x) − 1] − (2x)2

[cosh(x)]2
+ (2x)3

[cosh(x)]2
tanh(x)

)

= 1

3π2β2

∫ ∞

0
dx

(
x[tanh(x) − 1] − x2

[cosh(x)]2
+ 2x3

[cosh(x)]2
tanh(x)

)
= 1

24β2
= (kBT )2

24
. (E37)

where we have used x = βk/2 and � → ∞.
Now we can see that from F0 = F01 − F02, we have

F0(T = 0) = F01(T = 0) − F02(T = 0) = 0, (E38)

and

δF0(T ) = δF01(T ) − δF02(T ) = − (kBT )2

24
− (kBT )2

24
= − (kBT )2

12
, (E39)

It is interesting to notice that the cutoff-dependent term cancels between F01 and F02, while the temperature-dependent term
remains. Thus, F0 = F0 + F1(kBT )2 with F0 = 0 and F1 = − 1

12 . It should be emphasized that F0 depends on the form of UV
momentum cutoff, and our model here has the effective Lorentz invariance with an isotropic momentum cutoff, and thus F = 0
is expected [49]. In contrast, our result F1 = − 1

12 recovers the value derived in literature [45,46,48], implying the universal
property of the thermal Nieh-Yan term.

APPENDIX F: NUMERICAL METHODS FOR EVALUATING STRESS-STRESS CORRELATION FUNCTION

In this Appendix, we will describe our numerical methods to evaluate the stress-stress correlation functions. Here we only
focus on the stress-stress correlation function 
ab

i j (q, iνm) in Eq. (C17). One can rewrite the Green’s function in Eq. (C10) as

G0 =
∑
s=±

Ps(k)

iωn − ξk
, (F1)

where ξs,k = sh̄v f k − μ and the projection operator Ps(k) = 1
2 (1 + s k·σ

k ). Then after the Matsubara frequency summation,
Eq. (C17) can be simplified as


ab
i j (q, iνm) = 1

V

∑
k,ss′

nF (ξs′,k−q) − nF (ξs,k )

iνm + ξs′,k−q − ξs,k
Gab

i j (sk, s′k − q), (F2)

with

Gab
i j (sk, s′k − q) = Trσ

[
T a

i (k, k − q)Ps′ (k − q)T b
j (k − q, k)Ps(k)

]
. (F3)

Direct evaluation of Gab
i j gives

Gab
i j (sk, s′k − q) = (h̄v f )2

8
(2ki − qi )(2k j − q j )

(
δab + iεabl s

kl

k
+ iεalbs′ kl − ql

|k − q|

+ ss′

k|k − q|
[
kb(ka − qa) + ka(kb − qb) − δabk · (k − q)

])
. (F4)

Up to now, the whole formalism is general and can be calculated numerically in principles. As our purpose here is to extract the
term that is related to the Nieh-Yan anomaly, we want to look for the terms 
ab

i j (q, iνm) ∝ δi j . Furthermore, let us choose the
momentum along the z-direction, q = (0, 0, qz ), and then we should expect that the relevant component should be 


xy
ii (qz, iνm).

Thus, our numerical simulations focus on the component 

xy
xx(qz, iνm) below (
xy

xx(qz, iνm) = 

xy
yy(qz, iνm)). For this component,

we have

Gxy
xx(sk, s′k − q) = (h̄v f )2

2
k2

x

(
is

kz

k
− is′ kz − qz

|k − q| + ss′

k|k − q|2kxky

)
. (F5)

Now let us consider the momentum integral in Eq. (F2), and choose the spherical coordinate for the momentum,
k = (k sin θk cos ϕk, k sin θk sin ϕk, k cos θk ). Furthermore, we denote k′ = k − q = (k′ sin θ ′

k cos ϕ′
k, k′ sin θ ′

k sin ϕ′
k, k′ cos θ ′

k ) =
(k sin θk cos ϕk, k sin θk sin ϕk, k cos θk − qz ). Thus, we have ϕ′

k = ϕk , k′ sin θ ′
k = k sin θk and k′ cos θ ′

k = k cos θk − qz. The latter
two equalities give rise to k′ = √k2 + q2

z − 2kqz cos θk and cos θ ′
k = k cos θk−qz

k′ .
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By choosing q along the z direction, ξs,k−q only involves k and θk and does not depend on ϕk . Thus, we can define

Ḡxy
xx(ss′; k, cos θk, qz ) =

∫
dϕk

2π
Gxy

xx(sk, s′k − q)

= (h̄v f )2

4π

∫ 2π

0
dϕkk2 sin2 θk cos2 ϕk

(
is cos θk − is′ cos θ ′

k + ss′

kk′ 2k2 sin2 θk cos ϕk sin ϕk

)

= (h̄v f )2

4
k2 sin2 θk (is cos θk − is′ cos θ ′

k ), (F6)

and then


xy
xx(qz, iνm) =

∑
ss′

∫
k2dkd cos θk

(2π )2

nF (ξs′,k−q) − nF (ξs,k )

iνm + ξs′,k−q − ξs,k
Ḡxy

xx(ss′; k, cos θk, qz ). (F7)

We may decompose 

xy
xx(qz, iνm) into several different components 


xy
xx(qz, iνm) = 


xy,−
xx (qz, iνm) + 


xy,+
xx (qz, iνm), where ±

labels the contribution from different s bands. We further decompose 

xy,±
xx (qz, iνm) = 


xy,±
xx,1 (qz, iνm) + 


xy,±
xx,2 (qz, iνm), where 1

and 2 here are for the intraband and interband contribution. Explicitly,



xy,+
xx,1 (qz, iνm) =

∫
k2dkd cos θk

(2π )2

nF (ξ+,k−q) − nF (ξ+,k )

iνm + ξ+,k−q − ξ+,k
Ḡxy

xx(++; k, cos θk, qz )



xy,+
xx,2 (qz, iνm) =

∫
k2dkd cos θk

(2π )2

(
nF (ξ+,k−q)

iνm + ξ+,k−q − ξ−,k
Ḡxy

xx(−+; k, cos θk, qz ) − nF (ξ+,k )

iνm + ξ−,k−q − ξ+,k
Ḡxy

xx(+−; k, cos θk, qz )

)



xy,−
xx,1 (qz, iνm) =

∫
k2dkd cos θk

(2π )2

nF (ξ−,k−q) − nF (ξ−,k )

iνm + ξ−,k−q − ξ−,k
Ḡxy

xx(−−; k, cos θk, qz )



xy,−
xx,2 (qz, iνm) =

∫
k2dkd cos θk

(2π )2

(
nF (ξ−,k−q)

iνm + ξ−,k−q − ξ+,k
Ḡxy

xx(+−; k, cos θk, qz ) − nF (ξ−,k )

iνm + ξ+,k−q − ξ−,k
Ḡxy

xx(−+; k, cos θk, qz )

)
.

(F8)

Since the above integral involves the singular points, we need to treat it as the Cauchy principal value integral. To numerically
evaluate the integral, we need some more simplification. First, the integral over θk can be replaced by the integral over k′. All the
above integrals takes the form of

J1 =
∫

k2dkd cos θk

(2π )2
G(k, cos θk, qz ). (F9)

With
∫

d3k′δ(k′ − k + q) = ∫ d3k′δ(k′ −√k2 + q2
z − 2kqz cos θk ) = 1, we have [107]

J1 =
∫

k2dkd cos θk

(2π )2

∫
d3k′δ

(
k′ −

√
k2 + q2

z − 2kqz cos θk

)
G(k, cos θk, qz )

= 1

(2π )2

∫ �

0
dk
∫ k+q

|k−q|
dk′ kk′

qz
G
(

k, cos θk = k2 + q2
z − k′2

2kqz
, qz

)
. (F10)

Here the integral range of k′ is determined by requiring | cos θk| � 1. Next one may absorb the velocity h̄v f into the def-
inition of the momentum, k̃ = h̄v f k, k̃′ = h̄v f k′, q = h̄v f qz. Thus, one can see that G does not give any additional factors
while the integral J1 should contain an additional prefactor 1

(h̄v f )3 . Now G should be a function of k̃, k̃′, q, denoted as

G(k̃, k̃′, q). Finally, one can take the transformation k̃ = 1
2 (x + y) and k̃′ = 1

2 (x − y) and the integral can be transformed
into

J1 = 1

(2π )2(h̄v f )3

∫ �

q
dx
∫ q

−q
dy

x2 − y2

8q
G
(
k̃ = 1

2 (x + y), k̃′ = 1
2 (x − y), q

)
. (F11)

Using the equation, we can rewrite the integrals as



xy,+
xx,1 (q, ω + iη) = 1

(2π )2(h̄v f )3

∫ �

q
dx
∫ q

−q
dy

x2 − y2

8q

nF
( x−y

2 − μ
)− nF

( x+y
2 − μ

)
ω + iη − y

Ḡxy
xx(++; x, y, q)



xy,+
xx,2 (q, ω + iη) = 1

(2π )2(h̄v f )3

∫ �

q
dx
∫ q

−q
dy

x2 − y2

8q

(
nF
( x−y

2 − μ
)

ω + iηm + x
Ḡxy

xx(−+; x, y, q) − nF
( x+y

2 − μ
)

ω + iη − x
Ḡxy

xx(+−; x, y, q)

)
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xy,−
xx,1 (q, ω + iη) = 1

(2π )2(h̄v f )3

∫ �

q
dx
∫ q

−q
dy

x2 − y2

8q

nF
(− x−y

2 − μ
)− nF

(− x+y
2 − μ

)
ω + iη + y

Ḡxy
xx(−−; x, y, q)



xy,−
xx,2 (q, ω + iη) = 1

(2π )2(h̄v f )3

∫ �

q
dx
∫ q

−q
dy

x2 − y2

8q

×
(

nF
(− x−y

2 − μ
)

ω + iη − x
Ḡxy

xx(+−; x, y, q) − nF
(− x+y

2 − μ
)

ω + iη + x
Ḡxy

xx(−+; x, y, q)

)
, (F12)

where

Ḡxy
xx(ss′; x, y, q) = (x + y)2

16
(1 − cos2 θk )(is cos θk − is′ cos θ ′

k ), (F13)

cos θk = k2 + q2
z − k′2

2kqz
= xy + q2

(x + y)q
, (F14)

cos θ ′
k = k cos θk − qz

k′ = xy − q2

(x − y)q
, (F15)

and we have replaced iνm by ω + iη. Now one can see that the poles of the integral are determined by x = ±ω or y = ±ω,
and the corresponding Cauchy integral is easy to deal with numerically. These expressions form the basis for our numerical
calculations.

To recover the unit, one notices that q, x, y in the above expression are in the unit of energy. h̄v f is in the unit of [E · L], and
thus we need to further choose certain length unit of our system, which is denoted as a0. A natural choice will be the inverse of
the momentum cutoff a0 = 1/�. Then, the unit of energy can be chosen as h̄v f /a0. From the expression of 


xy
xx, one can easily

find that 

xy
xx is in the unit of energy density or equivalently h̄v f /a4

0. For the numerical calculations, we simply choose h̄v f = 1
and a0 = 1, and this is also convenient to compare with analytical results in Appendix E. The main results of our numerical
calculations are summarized in Fig. 2 in the main text.

Below we provide some more understanding on the analytical aspects of the formalism. We consider the small q expansion
of Eq. (F7) at iνm = 0, and perform the perturbation expansion. The calculation here is equivalent to the calculations in
Appendix E, except that we below keep the chemical potential up to μ3. For a small q = qzêz, we have the perturbation
expansion

ξs′,k−q ≈ s′h̄v f k − μ − s′h̄v f q cos θk = ξs′,k − s′h̄v f qz cos θk, (F16)

nF (ξs′,k−q) ≈ nF (ξs′,k ) − ∂nF

∂ξs′,k
s′h̄v f qz cos θk, (F17)

cos θk′ ≈ cos θk − qz

k
sin2 θk, (F18)

up to the first order in qz. Now let us denote 

xy
xx =∑s,s′ 


xy
xx,ss′ and evaluate 


xy
xx,ss′ separately. First, let us consider s = s′ and

we have

Ḡxy
xx(ss; k, cos θk, qz ) ≈ is

4
(h̄v f )2 sin4 θkkqz, (F19)

which only possesses the linear-qz term. Thus,


xy
xx,ss =

∫
k2dkd cos θk

(2π )2

∂nF

∂ξs,k
Ḡxy

xx(ss; k, cos θk, qz ) = is

4
(h̄v f )2qz

∫ 1

−1
d cos θk sin4 θk

∫ �

0
k3dk

∂nF

∂ξs,k
. (F20)

With ∂nF
∂ξs,k

= − βeβξs,k

(1+eβξs,k )2 and x = βξs,k, we find


xy
xx,ss = −i

4qz

15(2π )2

(kBT )3

(h̄v f )2

(∫ ∞

−βμ

dx(x + βμ)3 ex

(1 + ex )2
+
∫ ∞

βμ

dx(−x + βμ)3 ex

(1 + ex )2

)
. (F21)

With ∫ ∞

βμ

dxx2 ex

(1 + ex )2
≈ π2

6
− (βμ)3

12
, (F22)∫ ∞

βμ

dx
ex

(1 + ex )2
≈ 1

2
− βμ

4
+ (βμ)3

48
, (F23)∫ βμ

−βμ

dx(x + βμ)3 ex

(1 + ex )2
≈ (βμ)4, (F24)
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we have ∑
s


xy
xx,ss = −i

qz

15π2(h̄v f )2
[μ3 + μπ2(kBT )2]. (F25)

For s′ = −s,

Ḡxy
xx(s,−s; k, cos θk, qz ) ≈ is

4
(h̄v f )2 sin2 θk (2k2 cos θk − kqz sin2 θk ), (F26)

which contains both qz-independent and linear-qz terms. In addition,

nF (ξ−s,k−q) − nF (ξs,k )

ξ−s,k−q − ξs,k
≈

nF (ξ−s,k ) − nF (ξs,k ) + ∂nF
∂ξ−s,k

sh̄v f q cos θk

−2sh̄v f k + sh̄v f q cos θk

= − 1

2sh̄v f k

(
nF (ξ−s,k ) − nF (ξs,k ) + qz cos θk

(
∂nF

∂ξ−s,k
sh̄v f + 1

2k
(nF (ξ−s,k ) − nF (ξs,k ))

))
(F27)

up to the linear order in qz. Putting all these results together, we have



xy
xx,s,−s =

∫
k2dkd cos θk

(2π )2

(−ih̄v f qz )

8

(
−(nF (ξ−s,k ) − nF (ξs,k )) sin4 θk + 2k cos2 θk sin2 θk

×
(

∂nF

∂ξ−s,k
sh̄v f + 1

2k
(nF (ξ−s,k ) − nF (ξs,k ))

))

=
∫

k2dk

(2π )2

(−ih̄v f qz )

15

(
−3

2
(nF (ξ−s,k ) − nF (ξs,k )) + ∂nF

∂ξ−s,k
sh̄v f k

)
, (F28)

where we have used

∫ 1

−1
d cos θk sin4 θk = 16

15
, (F29)∫ 1

−1
d cos θk sin2 θk cos2 θk = 4

15
. (F30)

In the above expression, since
∑

s(nF (ξ−s,k ) − nF (ξs,k )) = 0, the first term will vanish after the summation over s. Thus,

∑
s



xy
xx,s,−s =

∑
s

(−is(h̄v f )2qz )

15

∫
dk

(2π )2
k3 ∂nF

∂ξ−s,k
=
∑

s

is(h̄v f )2qz

15

∫
dk

(2π )2
k3 βeβξ−s,k

(eβξ−s,k + 1)2
. (F31)

Now let us define x = βξ−s,k and find

∑
s



xy
xx,s,−s = −iqz

15β3(2π h̄v f )2

(∫ ∞

βμ

dx(−x + βμ)3 ex

(1 + ex )2
+
∫ ∞

−βμ

dx(x + βμ)3 ex

(1 + ex )2

)

≈ (−i)qz

15(2π h̄v f )2
(μ3 + μπ2(kBT )2). (F32)

Putting all the results together, we have


xy
xx =

∑
ss′



xy
xx,ss′ = −i

qz

12π2(h̄v f )2
(μ3 + μπ2(kBT )2) = −i

qzμ
3

12π2(h̄v f )2
− i

qzμ

12(h̄v f )2
(kBT )2

= iqz

(h̄v f )2
μ

(
− μ2

12π2
− (kBT )2

12

)
. (F33)

The second term reproduces the result of Eqs. (E15) and (E39) for the thermal Nieh-Yan anomaly (choosing h̄v f = 1), while
the first term is of order μ3 and thus not included in the calculations of Appendix E, which only keep the terms up to linear μ.
Therefore, this analytical result is consistent with the results given in Appendix E. Equation (F33) can fit well with our numerical
results at small μ, as shown in Fig. 2(d) in the main text.
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APPENDIX G: ACOUSTIC PHONON DYNAMICS IN THE KRAMERS-WEYL SEMIMETALS

In this Appendix, we will analyze the influence on the effective action (D7) on the phonon dynamics. We focus on the
acoustic phonons here, and as discussed in Appendix B, the A0 and 	 fields are related to the strain tensor as A0(q̃) = C1ū(q̃)
and 	

j
a(q̃) = 1

h̄v f
[g0ū(q̃)δ ja + g1u ja(q̃)], where the strain tensor ui j is treated as a fluctuating field for acoustic phonons and

ū =∑i uii. By substituting the forms of A0 and 	 fields, we find

W = 1

2

∑
q̃

⎛
⎝ū(q̃)�0(q̃)ū(−q̃) +

∑
i,a

ū(q̃)�a
2,i(q̃)uia(−q̃) +

∑
i j,ab

uia(q̃)�ab
3,i j (q̃)u jb(−q̃)

⎞
⎠, (G1)

where

�0(q̃) = C2
1 �0(q̃) +

∑
i, j

g2
0

(h̄v f )2



i j
i j (q̃) −

∑
i

C1g0

h̄v f

[
�i

i(q̃) + �i
i(−q̃)

]
, (G2)

�a
2,i(q̃) =

∑
j

g0g1

(h̄v f )2

[



ja
ji (q̃) + 


a j
i j (−q̃)

]− 2C1g1

h̄v f
�a

i (q̃), (G3)

�ab
3,i j (q̃) = g2

1

(h̄v f )2

ab

i j (q̃). (G4)

We can expand �0(q̃),�a
2,i(q̃), and �ab

3,i j (q̃) as a function of q̃, �(q̃) = �(0) + (∂q�)q̃=0 · q + (∂ωn�)q̃=0ωn + .... At the zero-
order term, we have

W (0) = 1

2

∑
q̃

⎛
⎝ū(q̃)�0(0)ū(−q̃) +

∑
i,a

ū(q̃)�a
2,i(0)uia(−q̃) +

∑
i j,ab

uia(q̃)�ab
3,i j (0)u jb(−q̃)

⎞
⎠

= 1

2

∫ β

0
dτ

∫
d3r

⎛
⎝ū(r, τ )�0(0)ū(r, τ ) +

∑
i,a

ū(r, τ )�a
2,i(0)uia(r, τ ) +

∑
i j,ab

uia(r, τ )�ab
3,i j (0)u jb(r, τ )

⎞
⎠. (G5)

Here all the terms are quadratic in the strain tensor ui j and let us consider the general form of the effective action for acoustic
phonons (elastic wave), which is defined as [108,109]

Sph,0 = 1

2

∫
dtd3r

⎛
⎝ρ
∑

j

∂t u j∂t u j −
∑
i jkl

λi jkl∂iu j∂kul

⎞
⎠, (G6)

where the rank-4 tensor λi jkl is the elastic modulus. It is clear that W (0) just provides the correction of the elastic modulus λi jkl .
Next we focus on the first-order term with the linear q dependence, which takes the form

W (1) = 1

2

∑
q̃

⎛
⎝∑

i

(∂i�0)ū(q̃)qiū(−q̃) +
∑
i j,a

(∂ j�
a
2,i )ū(q̃)q juia(−q̃) +

∑
i jl,ab

(∂l�
ab
3,i j )uia(q̃)qlu jb(−q̃)

⎞
⎠

= 1

2

∫ β

0
dτ

∫
d3r

(∑
j

(∂ j�0)ū(r, τ )

(
i

∂

∂r j
ū(r, τ )

)
+
∑
i j,a

(∂ j�
a
2,i )ū(r, τ )

(
i

∂

∂r j
uia(r, τ )

)

+
∑

i jk,ab

(∂k�
ab
3,i j )uia(r, τ )

(
i

∂

∂rk
u jb(r, τ )

)⎞⎠, (G7)

where (∂ j�) = ( ∂�
∂q j

)q̃=0 is just a number. From Eq. (G4), one
can see that the last term is just the Nieh-Yan term. Although
the above expression seems quite complex, the symmetry
gives a strong constraint on the form of the allowed effective
action. It is clear that the above action contributes to the
following general form of the effective action of acoustic

phonons

Sph,1 =
∫

dtd3r
∑
i jklm

ξi jklm(∂iu jk )ulm, (G8)

where ∂i = ∂
∂ri

. Now the question is what is the most general
form of the coefficient ξi jklm, a rank-5 tensor, for a uniform
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isotropic system. Since the strain tensor ui j is symmetric with
respect to the indices i and j, the coefficient ξi jklm should sat-
isfy the relations ξi jklm = ξik jlm = ξi jkml . Furthermore, it also
satisfies the anti-symmetric relation ξi jklm = −ξilm jk . These
relations together with the full rotation symmetry will fix the
form of ξi jklm.

It is also equivalent to ask how to construct an invariant
term with the form of (∂iu jk )ulm. We analyze this problem
based on the irreducible representation of the angular mo-
mentum. As discussed in Appendix B, the symmetric rank-2
tensor ui j can be decomposed to two parts, ū with the angular
momentum 0 and uJ=2,M with the angular momentum 2. Since
the expression involves two strain tensors, the corresponding
angular momentum decomposition can be given by

2 ⊗ 2 = 4 ⊕ 3 ⊕ 2 ⊕ 1 ⊕ 0, (G9)

2 ⊗ 0 = 2, (G10)

0 ⊗ 0 = 0, (G11)

where the bold number represents the total angular momen-
tum. Furthermore, the expression (∂iu jk )ulm involves one ∂i

in addition to two strain tensors, and ∂i possesses the an-
gular momentum 1. To make the term (∂iu jk )ulm invariant
(with the angular momentum 0), only the irreducible repre-
sentation with the angular momentum 1 in 2 ⊗ 2 can lead
to 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0. From such angular momentum com-
bination, only a single term is allowed for ξi jklm in a uniform
isotropic system. This term can be explicitly constructed as

Sph,1 = ξ0

∫
dtd3r

∑
i jklm

δ jlεikm(∂iu jk )ulm, (G12)

so that the parameter ξi jklm is given by

ξi jklm = ξ0

4
(δ jlεikm + δklεi jm + δ jmεikl + δkmεi jl ). (G13)

We can apply the above analysis to the action W (1), and
it is clear that it is impossible to construct an invariant term
from the first two terms in Eq. (G7), and thus the coefficient
∂ j�0 and ∂ j�

a
2,i must vanish. The effective action then takes

the form

W (1) = 1

2

∫ β

0
dτ

∫
d3r

⎛
⎝∑

i jk,ab

(i∂k�
ab
3,i j )uia(r, τ )

×
(

∂

∂rk
u jb(r, τ )

))
, (G14)

with the coefficient

(i∂k�
ab
3,i j ) = i

g2
1

(h̄v f )2

(
∂k


ab
i j (q̃)

)
q̃=0

= i
g2

1

(h̄v f )2

ab

i j,k

= g2
1

(h̄v f )4
εabkδi jχμF0. (G15)

Here we have used Eq. (E15) and restored the coefficient
(h̄v f )2 in 
ab

i j,k . Substituting the coefficient and also changing
from imaginary time to real time, we have

W (1) = −g2
1χμF0

2(h̄v f )4

∑
i jk,ab

∫
dtd3rεabkδi juia(r, τ )

×
(

∂

∂rk
u jb(r, τ )

)

= g2
1χμF0

2(h̄v f )4

∑
i jk,ab

∫
dtd3rεkabδi j

×
(

∂

∂rk
uia(r, τ )

)
u jb(r, τ ). (G16)

Comparing with Sph,1 in Eq. (G12), one can see that the Nieh-
Yan term can contribute to a new term in the phonon effective
action and the corresponding coefficient is given by

ξ0 = g2
1χμF0

2(h̄v f )4
. (G17)

We may further use the derivation of Eq. (F33) to get a more
complete result, up to the order of μ3. We also include multi-
ple KW fermions and obtain

ξ0 = − g2
1

(h̄v f )4

( 〈μ3〉χ
12π2

+ 〈μ〉χ
12

(kBT )2

)
, (G18)

where 〈μ〉χ = 1
2

∑
�i

χ�iμ�i and 〈μ3〉χ = 1
2

∑
�i

χ�iμ
3
�i

rep-
resent the average of μ and μ3 terms over all the �i momenta,
respectively. Here χ�i is the chirality and μ�i is the chemical
potential with respect to the Weyl node for the KW fermion at
�i.

In the above discussion, there is another term with the form
of ui jωnukl at the same order and in the time-domain, this
term should have the form of ui j (∂τ ukl ). In the elastic theory,
this term is nothing but the viscosity, generally defined as
[108–110]

Sph,2 =
∫

dtd3r
∑
i jkl

ηi jkl (∂t u jk )ulm. (G19)

However, the existence of the viscosity requires the breaking
of TR symmetry, while TR symmetry exists in our system.
Thus, the viscosity coefficient ηi jkl extracted from our model
must vanish.

Now we hope to solve the acoustic phonon dispersion
(or elastic wave) in our system based on the actions (G6)
and (G12). For the uniform isotropic system, there are two
independent parameters for the elastic moduli λi jkl and the
corresponding equation of motion for the displacement field
u is given by

d2

dt2
u = c2

t ∇2u + (c2
l − c2

t

)∇(∇ · u), (G20)

where cl and ct are the velocities of longitudinal and trans-
verse waves. The Nieh-Yan term Sph,1 can add an additional
term into the above elastic wave equation, as given by
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δSph,1

δun
= ξ0

2
εikm(δkn∂i∂ ju jm + δ jn∂i∂ku jm − δmn∂i∂ ju jk − δ jn∂i∂mujk )

= ξ0

2
(εinm∂i∂ ju jm + εikm∂i∂kunm − εikn∂i∂ ju jk − εikm∂i∂munk )

= ξ0

2
(εinm∂i∂ ju jm − εikn∂i∂ ju jk ) = ξ0

2
εinm∂i∂ j (∂ jum + ∂muj ) = ξ0

2
εinm∂i(∇2um) = −ξ0

2
(∇ × (∇2u))n. (G21)

By including the Nieh-Yan term, the equation of motion for
the displacement field is now written as

d2

dt2
u = c2

t ∇2u + (c2
l − c2

t )∇(∇ · u) + ξ0

2ρ0
∇ × (∇2u),

(G22)
where ρ0 is the mass density of the elastic media. We can
decompose the displacement field into the longitudinal and
transverse components, u = ul + ut. One can show that the
longitudinal and transverse components are still decoupled
from each other. The longitudinal part does not have any
correction from the Nieh-Yan term, while the equation of
motion for the transverse part is revised as

d2

dt2
ut = c2

t ∇2ut + ξ0

2ρ0
∇ × (∇2ut ). (G23)

Let us take ut = u0eiq·r−iωt and the equation of motion is
changed to

ω2u0 = c2
t q2u0 + ξ0q2

2ρ0
iq × u0. (G24)

Now let us choose q = qêz and u0 = (u0x, u0y, 0)T (the super-
script T here represents transpose) and then the equation of
motion (G24) can be written as

ω2

(
u0x

u0y

)
=
(

c2
t q2 −i ξ0

2ρ0
q3

i ξ0

2ρ0
q3 c2

t q2

)(
u0x

u0y

)
. (G25)

This eigen equation can be easily solved. Two branches of
dispersion relations for the transverse modes are given by

ωt
s =

√
c2

t q2 + s
|ξ0|
2ρ0

q3 = q

√
c2

t + s
|ξ0|
2ρ0

q, (G26)

from which one can see that the Nieh-Yan term mainly
corrects the phonon velocity and gives rise to the different ve-
locities for two transverse phonon modes. The corresponding
normalized eigen vectors are given by

u0,s = 1√
2

⎛
⎝ 1

is ξ0

|ξ0|
0

⎞
⎠, (G27)

so that u†
0,s(k)u0,s(k) = 1. The angular momentum of the

phonon modes is defined as [60,66–69]

ls,i(q) = h̄u†
0,s(q)Miu0,s(q), (G28)

where s = ±, i = x, y, z, and (Mi ) jk = (−i)εi jk . One can eas-
ily show that only ls,z is nonzero and l±,z = ±h̄ for the
momentum q = qêz. Due to the full rotation symmetry of our

model, the general form of angular momentum for the s-mode
is given by

ls = sh̄q̂
ξ0

|ξ0| , (G29)

with q̂ = q
q .

Next let us consider the phonon total angular momentum
induced by a temperature gradient. The total phonon angular
momentum per volume can be related to the temperature gra-
dient by

I ph
i = αi j

∂T

∂r j
, (G30)

where i, j = x, y, z and r is the spatial coordinate. From
Ref. [60], the response coefficient αi j is derived as

αi j = − τ

V

∑
q,s

ls,iv
ph
s, j

∂ f0(ωt
s)

∂T
(G31)

in the linear response regime, where τ is the phonon relaxation
time, vph

s is the group velocity of s-phonon mode and f0(ωt
s) is

the Bose distribution function for phonons. The group velocity
of the transverse mode should be given by

vph
s = ∂ωt

s

∂q
= ∂ωt

s

∂q

∂q

∂q
=

c2
t + 3s

4ρ0
|ξ0|q√

c2
t + s

2ρ0
|ξ0|q

q̂. (G32)

For our isotropic system, there is only a single nonzero in-
dependent component αxx = αyy = αzz, so let us evaluate αzz,
which is given by

αzz = −τ h̄
∫

d3q

(2π )3

∑
s

sq2
z

q2

ξ0

|ξ0|
c2

t + 3s
4ρ0

|ξ0|q√
c2

t + s
2ρ0

|ξ0|q
∂ f0

∂T

= − τ h̄

6π2

∫
dq
∑

s

sq2 ξ0

|ξ0|
c2

t + 3s
4ρ0

|ξ0|q√
c2

t + s
2ρ0

|ξ0|q
∂ f0

∂T
, (G33)

where

∂ f0(ω)

∂T
= kBβ2 h̄ω

eβ h̄ω

(eβ h̄ω − 1)2
. (G34)

Here we have recovered h̄ to get the correct unit and ne-
glected the temperature dependence in ξ0. This expression
can be evaluated numerically. The angular part of the phonon
momentum in the above expression can be integrated out
since ∂ f0(ω)

∂T only depends on the magnitude of q. To get
some analytical understanding, we can make the further ap-
proximations. According to the Bose distribution f0(ω), we
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know that the phonons are mainly excited in the energy range
determined by the temperature T , h̄ω � kBT . This means the
contribution in the above expression mainly comes from the
momentum range q < kBT

h̄ct
. Now let us consider the momen-

tum range, in which the Nieh-Yan term contribution to the
velocity |ξ0|q/ρ0 is much smaller than c2

t . This is naturally

satisfied when the temperature kBT � h̄c3
t ρ0

|ξ0| and in this tem-
perature range, we can treat |ξ0|q as a perturbation and expand
the integrand in Eq. (G33). First, we have

c2
t + 3s

4ρ0
|ξ0|q√

c2
t + s

2ρ0
|ξ0|q

≈ ct

(
1 + 3s

4ρ0c2
t
|ξ0|q

)(
1 − s

4ρ0c2
t
|ξ0|q

)

≈ ct

(
1 + s

2ρ0c2
t
|ξ0|q

)
(G35)

and

∂ f0

∂T
= ∂ f0(ω0)

∂T
+ ∂2 f0

∂T ∂ω
δωs, (G36)

where ω0 = ct q and δωs = s|ξ0|
4ρ0ct

q2. Let us define x = β h̄ω0 =
h̄ct q
kBT and then we obtain

∂ f0(ω0)

∂T
= kBβ2 h̄ω0

eβ h̄ω0

(eβ h̄ω0 − 1)2
= x

T

ex

(ex − 1)2
, (G37)

and

∂2 f0(ω0)

∂T ∂ω
= kBβ2 h̄

eβ h̄ω0

(eβ h̄ω0 − 1)3

× [eβ h̄ω0 (1 − β h̄ω0) − β h̄ω0 − 1]

= h̄

kBT 2

ex

(ex − 1)3
[ex(1 − x) − x − 1]. (G38)

Thus, we have

αzz ≈ − τ h̄

6π2

∫
q2dq

∑
s

sct
ξ0

|ξ0|
(

1 + s

2ρ0c2
t
|ξ0|q

)(
∂ f0(ω0)

∂T
+ ∂2 f0

∂T ∂ω

s|ξ0|
4ρ0ct

q2

)

= − τ h̄

6π2

∫
q2dqct

(
∂ f0(ω0)

∂T

ξ0

ρ0c2
t

q + ∂2 f0

∂T ∂ω

ξ0

2ρ0ct
q2

)

= − τ h̄

6π2

(
kBT

ct

)3
ξ0

ρ0c2
t h̄3

∫
x2dx

(
∂ f0(ω0)

∂T

xkBT

h̄
+ ∂2 f0

∂T ∂ω

x2

2h̄2 (kBT )2

)

= − τξ0kB

6π2ρ0c5
t h̄3 (kBT )3

∫
x4dx

(
ex

(ex − 1)2
+ 1

2

ex

(ex − 1)3
[ex(1 − x) − x − 1]

)
(G39)

In the above expression, the integral of x is convergent, and
thus just gives a number. Therefore, all the temperature de-
pendence is given by the coefficient before the x-integral. With
the expression (G18) for ξ0, we expect αzz has T 3 dependence
for the standard Nieh-Yan term and T 5 dependence for the
thermal Nieh-Yan term. Let us denote c0 = ∫ x4dx( ex

(ex−1)2 +
1
2

ex

(ex−1)3 [ex(1 − x) − x − 1]) = −4π4/15, and then we have

αzz ≈ − τc0ξ0kB

6π2ρ0c5
t h̄3 (kBT )3

= τc0kBg2
1

6π2ρ0(h̄v f )4c5
t h̄3

( 〈μ3〉χ
12π2

(kBT )3 + 〈μ〉χ
12

(kBT )5

)
.

(G40)

To give a reasonable estimate of the magnitude of the
effect, we rewrite the above equation as

αzz = − c0

6π2

h̄

Ta2
0

(
τkBT

h̄

)(
kBTa0

h̄ct

)3(
ξ0

c2
t ρ0a0

)
, (G41)

where a0 is some characteristic length scale and we can
choose it as the lattice constant. The overall unit of αzz is
given by h̄

Ta2
0

and the remaining parts in the above expression
are dimensionless, making it convenient for us to estimate the
magnitude. Let us next estimate each term separately. We con-
sider the temperature T ∼ 300 K (around room temperature).

h̄ct/a0 is the acoustic phonon energy at the Brillouin zone
boundary, which is estimated as h̄ct/a0 ∼ 10 meV. This cor-
responds to the speed of sound wave around ct ∼ 1500 m/s for
a lattice constant a0 ∼ 1Å, which is typical in a metal. With
these assumptions, the dimensionless factor ( kBTa0

h̄ct
)3 ∼ 17.3.

h̄
√

ξ0

ρ0a3
0

is the splitting of two transverse phonon modes at

the Brillouin zone boundary induced by Nieh-Yan term. We
first give an estimate of ξ0 based on the expression (G18). We
choose μ ∼ 0.1 eV, v f ∼ 105 m/s (or h̄v f ∼ 0.6 eV Å) and
T ∼ 300 K. The strain-electron coupling constant g1 share
the same unit as h̄v f and we choose g1 ∼ 0.1 eVÅ. With
these choices of parameters, we have ξ0 ∼ 7.6×10−7 eV/Å2.

With ρ0 ∼ 103 kg/m3, we have h̄
√

ξ0

ρ0a3
0

∼ 0.07 meV. Thus,

the dimensionless factor ( ξ0

c2
t ρ0a0

) ∼ 5×10−5. With the above

estimates, the response coefficient αzz ∼ 5.5×10−7( τ
1s ) Js

Km2 .

APPENDIX H: ELECTRON-ELECTRON INTERACTION

Since the electron-phonon interaction may be influ-
enced by electron-electron interaction, one may wonder how
electron-electron interaction affects the proposed phenomena
here. In this Appendix, we will demonstrate that electron-
electron interaction is actually decoupled from the phonon
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modes discussed in this work and thus all the results remain
valid even taking into account electron-electron interaction.

To see that, let us start from the effective action Seff in
Eq. (C1) with an additional electron-electron Coulomb inter-
action. We consider the Stratonovich-Hubbard transformation
by introducing an additional ϕ field with the effective action

SC=
∫

dτd3r
(

1
2 [∇ϕ(r, τ )]2 + ieϕ(r, τ )ψ̂†

�i
(r, τ )ψ̂�i (r, τ )

)
.

(H1)

With the Fourier transform

ψ̂�i (r, τ ) =
∑

k̃

eik·r−iωnτ ψ̂�i (k̃), (H2)

ϕ(r, τ ) =
∑

q̃

eiq·r−iνmτ ϕ(q̃), (H3)

we have

SC =
∑

q̃

q2

2
ϕ(q̃)ϕ(−q̃) + ie

∑
k̃,q̃

ϕ(q̃)ψ̂†
�i

(k̃)ψ̂�i (k̃ − q̃),

(H4)
where

∑
k̃ = 1

βV

∑
k,iωn

. Now let us perform the transforma-
tion

ϕ̃(−q̃) = ϕ(−q̃) + i
e

q2

∑
k̃

ψ̂
†
�i

(k̃)ψ̂�i (k̃ − q̃) (H5)

ϕ̃(q̃) = ϕ(q̃) + i
e

q2

∑
k̃

ψ̂
†
�i

(k̃)ψ̂�i (k̃ + q̃) (H6)

and

∑
q̃

q2

2
ϕ̃(q̃)ϕ̃(−q̃) =

∑
q̃

q2

2

(
ϕ(q̃) + i

e

q2

∑
k̃

ψ̂
†
�i

(k̃)ψ̂�i (k̃ + q̃)

)(
ϕ(−q̃) + i

e

q2

∑
k̃

ψ̂
†
�i

(k̃)ψ̂�i (k̃ − q̃)

)

=
∑

q̃

(
q2

2
ϕ(q̃)ϕ(−q̃) + ieϕ(q̃)

∑
k̃

ψ̂
†
�i

(k̃)ψ̂�i (k̃ − q̃) − e2

2q2

∑
k̃k̃′

ψ̂
†
�i

(k̃)ψ̂�i (k̃ + q̃)ψ̂†
�i

(k̃′)ψ̂�i (k̃
′ − q̃)

)
.

(H7)

From the above quality, we have

SC =
∑

q̃

q2

2
ϕ̃(q̃)ϕ̃(−q̃) + e2

2q2

∑
q̃k̃k̃′

ψ̂
†
�i

(k̃)ψ̂�i (k̃ + q̃)ψ̂†
�i

(k̃′)ψ̂�i (k̃
′ − q̃), (H8)

the latter term of which is indeed four-fermion Coulomb interaction with the coefficient Vq = e2

q2 the Fourier transform of
Coulomb interaction in the momentum space (we have set ε0 = 1).

Now let us compare the second term in SC [Eq. (H1)] with the first term in S1 [Eq. (C3)], and one can see that the A0 field
is identical to the −ieϕ field. Similar to the derivation for the effective action W [A0,	] in Eq. (C15), we consider the effective
action for the ϕ and � fields (we drop the A0 field here) by integrating out the fermion operators, and the resulting effective
action is given by

W1[ϕ,�] = 1

2

∑
q̃

[
q2ϕ(q̃)ϕ(−q̃) − e2�0(q̃)ϕ(q̃)ϕ(−q̃) + 
ab

i j (q̃)	i
a(q̃)	 j

b(−q̃) + ie�a
i (q̃)ϕ(q̃)	i

a(−q̃)

+ ie�a
i (−q̃)	i

a(q̃)ϕ(−q̃)
]

= 1

2

∑
q̃

[
D−1(q̃)ϕ(q̃)ϕ(−q̃) + 
ab

i j (q̃)	i
a(q̃)	 j

b(−q̃) + ie�a
i (q̃)ϕ(q̃)	i

a(−q̃) + ie�a
i (−q̃)	i

a(q̃)ϕ(−q̃)
]
, (H9)

where the duplicated indices should be summed over. Here D−1(q̃) = q2 − e2�0(q̃) = D−1
0 − e2�0(q̃) defines the full Green’s

function for the ϕ field.
Next let us consider the path integral

Z1[�] =
∫

Dϕe−W1[ϕ,�] (H10)

and we can perform the transformation

ϕ̃(q̃) = ϕ(q̃) + ie�a
i (−q̃)	i

a(q̃)D(q̃) (H11)

ϕ̃(−q̃) = ϕ(−q̃) + ie�a
i (q̃)	i

a(−q̃)D(−q̃). (H12)
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Correspondingly,

1

2

∑
q̃

D−1(q̃)ϕ̃(q̃)ϕ̃(−q̃) = 1

2

∑
q̃

D−1(q̃)[ϕ(q̃) + ie�a
i (−q̃)	i

a(q̃)D(q̃)][ϕ(−q̃) + ie�b
j (q̃)	 j

b(−q̃)D(−q̃)]

= 1

2

∑
q̃

[
D−1(q̃)ϕ(q̃)ϕ(−q̃) + ieϕ(q̃)�b

j (q̃)	 j
b(−q̃) + ie�a

i (−q̃)	i
a(q̃)ϕ(−q̃)

− e2�a
i (−q̃)	i

a(q̃)D(q̃)�b
j (q̃)	 j

b(−q̃)
]

(H13)

and

W1[ϕ,�] = 1

2

∑
q̃

[
D−1(q̃)ϕ̃(q̃)ϕ̃(−q̃) + (
ab

i j (q̃) + e2�a
i (−q̃)D(q̃)�b

j (q̃)
)
	i

a(q̃)	 j
b(−q̃)

]
. (H14)

Now one can see that the ϕ̃ and � fields are decoupled from
each other. Let us write Z1[�] ∼ e−W2[�] and then

W2[�]

= 1

2

∑
q̃

[

ab

i j (q̃) + e2�a
i (−q̃)D(q̃)�b

j (q̃)
]
	i

a(q̃)	 j
b(−q̃).

(H15)

From this expression, we conclude that the full stress-stress
correlation function, denoted as 
̃ab

i j (q̃), should generally
acquire a correction from the electron-electron interaction
through


̃ab
i j (q̃) = 
ab

i j (q̃) + e2�a
i (−q̃)D(q̃)�b

j (q̃), (H16)

where the stress-density correlation function �a
i (q̃) is defined

in Eq. (C18).

One can see that the �a
i (q̃) function couples electrons to

acoustic phonons and this function involves one density vertex
and one stress tensor vertex from Eq. (C18). Next we will
show that for the phonon modes that we are interested in, the
�a

i (q̃) function is always zero if the system has full rotation
symmetry. In the above expressions, a, b, i, j = x, y, z which
is not convenient for the symmetry analysis. It is more con-
venient to relabel the strain and stress tensor with the angular
momentum, as shown in Eqs. (B3)–(B12). The rotationally
symmetric form of the Hamiltonian (B13) is useful for our
symmetry analysis below.

To make the problem more concrete, let us consider the
phonon momentum along the z direction, q = qzêz, and we
first figure out which strain tensors, as well as the stress
tensors, are involved in the Nieh-Yan term. To see that, let
us write down explicitly the terms in Eq. (G12) along the qzêz

direction, which involves

δ jlεzkm(∂zu jk )ulm = εzxy(∂zu jx )u jy + εzyx(∂zu jy)u jx

= [(∂zuxx )uxy + (∂zuyx )uyy + (∂zuzx )uzy] − [(∂zuxy)uxx + (∂zuyy)uyx + (∂zuzy)uzx]

= 2c∂z(uxx − uyy) + 2(∂zuzx )uzy, (H17)

in which all the total derivative term has been dropped since
they will not contribute to the effective action. Now we notice
that only the components uxx − uyy, uxy, uzx, and uzy of the
strain tensor are involved for the acoustic phonons along the
z direction that we are interested in. From Eqs. (B3)–(B7),
one can see that only uJ=2,M with M = ±1,±2 are involved,
which means the the z-direction angular momentum M only
takes ±1 and ±2, but not 0. However, the electron density
operator carries z-direction angular momentum 0. Since the
z-direction rotation symmetry is preserved for the momentum
q along the z direction, we expect elections cannot directly
couple to the phonon modes with higher angular momentum.

To make this argument more explicitly, let us define T J
M as

T 2
2 = 1

2

[
T x

x − T y
y + i

(
T y

x + T x
y

)]
, (H18)

T 2
1 = (− 1

2

)[
T z

x + T x
z + i

(
T z

y + T y
z

)]
, (H19)

T 2
0 =

√
1

6

(
2T z

z − T x
x − T y

y

)
, (H20)

T 2
−1 = 1

2

[
T z

x + T x
z − i

(
T z

y + T y
z

)]
, (H21)

T 2
−2 = 1

2

[
T x

x − T y
y − i

(
T y

x + T x
y

)]
, (H22)

and the stress-density correlation function can also be recon-
structed as

�J
M (q, iνm) = 1

βV

∑
k,iωn

Trσ
[
G0(k − q, iωn − iνm)

× T J
M (k − q, k)G0(k, iωn)

]
(H23)

for the angular momentum J, M of the stress operator.
Here we also add the density operator n which is an
identity. Let us consider a symmetry operator R, which
transforms the stress tensor as RT J

M (k − q, k)R−1 =∑
M ′ DJ

MM ′ (R)T J
M ′[R−1(k − q),R−1k]. The Green function

should be invariant under the symmetry operation
RG0(k, iωn)R−1 = G0(R−1k, iωn). Thus, one can insert
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symmetry operation into the definition of stress-density correlation function and find

�J
M (q, iνm) = 1

βV

∑
k,iωn

Trσ
(
RG0(k − q, iωn − iνm)R−1RT J

M (k − q, k)R−1RG0(k, iωn)R−1
)

= 1

βV

∑
k,iωn

Trσ

(
G0(R−1(k − q), iωn − iνm)

∑
M ′

DJ
MM ′ (R)T J

M ′ (R−1(k − q), k)G0(R−1k, iωn)

)

= 1

βV

∑
k′,iωn,M ′

DJ
MM ′ (R)Trσ

(
G0(k′ − R−1q), iωn − iνm)T J

M ′ (k′ − R−1q, k′)G0(k′, iωn)
)

=
∑
M ′

DJ
MM ′ (R)�J

M ′ (R−1q, iνm). (H24)

In the above derivation, we have used k′ = R−1k. The above
equation gives rise to the symmetry constraint on the form
of correlation functions. Along q = qzêz, we have R−1q = q
and

�J
M (qz, iνm) =

∑
M ′

DJ
MM ′ (R)�J

M ′ (qz, iνm). (H25)

Now let us consider the orthonormality relation for ir-
reducible representations of a symmetry group, given by∑

R D
� j

MM ′ (R)[D
�′

j

NN ′ (R)]∗ = h
l j
δ j j′δMNδM ′N ′ . We should con-

sider the symmetry group formed by the rotation along the z
directions and thus only the z-directional angular momentum
M is a good quantum number that characterizes the rotation
group, while the total angular momentum J is not. Conse-
quently, we expect the orthonormality relation is then given
by
∑

R DJ
MM ′ (R)[DJ ′

NN ′ (R)]∗ ∝ δMNδM ′N ′ . Now let us choose
DJ ′

NN ′ to be J ′ = 0 (identity representation), so N = N ′ = 0
and D0

00 = 1 for any R. Then the orthonormality relation takes
the form

∑
R DJ

MM ′ (R) ∝ δM0δM ′0, which leads to∑
R

�J
M (qz, iνm) =

∑
M ′

∑
R

DJ
MM ′ (R)�J

M ′ (qz, iνm) ∝ δM0

→ �J
M (qz, iνm) ∝ δM0. (H26)

So the correlation function �J
M can only be nonzero for the

z-directional angular momentum M = 0. However, as we have
shown above, the Nieh-Yan anomaly term only involves the
strain tensor with M = ±1,±2, and this concludes that the
electron-electron Coulomb interaction will not contribute to
the acoustic phonon modes, whose dynamics is influenced by
the Nieh-Yan anomaly.

APPENDIX I: DEFORMATION POTENTIAL FOR
ELECTRON-OPTICAL PHONON INTERACTION

The optical phonons involve the relative motions of atoms
within one unit cell and thus we cannot directly start from
the continuous model. Let us next consider the deformation
potential

Hep =
∫

d3r�̂†(r)

(∑
n,τ

unτ · ∂U (r − Rnτ )

∂Rnτ

)
�̂(r), (I1)

where Rnτ = Rn + rτ with the lattice vector Rn and
the position rτ for the atom τ in one unit cell. Here
the electron field operator can be expanded as �̂(r) =

1
V

∑
αsK eiK·ruαsK(r)ĉαsK, where s labels spin and α labels

other band index, while unτ is the displacement field, which
can be expanded as unτ = 1√

NMτ

∑
λq Qλ,qe

λ
τ eiq·Rn . Here Mτ is

the atom mass, Qλ,q labels the normal mode of the λ-phonon,
and the polarization vector eλτ satisfies the equation of motion

ω2
λe

λ
τ,i =

∑
ξ j

Dk(τ i; ξ j)eλξ, j, (I2)

where i, j = x, y, z and Dk(τ i; ξ j) is the dynamical matrix
for phonons in the momentum space. Since the displacement
unτ is real, Qλ,q = Q†

λ,−q. By substituting the expansion of

�̂(r) and unτ into Eq. (I1) and after some straightforward
simplifications, we obtain

Hep = 1

V 2

∑
K,q,αs,βt,λ

gλ
αs,βt (K, q)Qλ(q)ĉ†

αs,Kĉβt,K−q, (I3)

where

gλ
αs,βt (K, q)

=
∑

τ

√
N

Mτ

eλτ · 〈uK,αs|e−iq·r ∂U (r − rτ )

∂rτ
|uK−q,βt 〉. (I4)

We can again expand gλ
αs,βt (K, q) in terms of the 2 by 2

matrices as gλ
αs,βt (K, q) =∑μ gλ

αβ,μ(K, q)(σμ)st , where μ =
0, x, y, z. The electron-phonon coupling Hamiltonian is writ-
ten as

Hep = 1

V 2

∑
K,q,αβ,μ,λ

gλ
αβ,μ(K, q)Qλ(q)ĉ†

α,Kσμĉβ,K−q. (I5)

The hermitian property of the Hamiltonian H†
ep = Hep requires

[gλ
αβ,μ(K, q)]∗ = gλ

βα,μ(K,−q).
The time-reversal symmetry provides a constraint on

the form of gλ
αs,βt (K, q). With T̂ Qλ(q)T̂ −1 = Qλ(−q) and

T̂ ĉ†
α (K)T̂ −1 = ĉ†

α (−K)(iσyK), we have

T̂ HepT̂ −1 =
∑

K,q,αβ,μ,λ

(
gλ

αβ,μ(K, q)
)∗

Qλ(−q)ĉ†
α,−K(iσyK)σμ

× (iσyK)ĉβ,q−K (I6)

=
∑

K,q,αβ,μ,λ

(
gλ

αβ,μ(−K,−q)
)∗

Qλ(q)ĉ†
α,K(iσyK)σμ

× (−iσyK)ĉβ,K−q. (I7)
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Since (iσyK)σ 0(−iσyK) = σ 0 and (iσyK)σ a(−iσyK) = −σ a

(a = x, y, z), the time-reversal symmetry T̂ HepT̂ −1 = Hep

gives rise to [gλ
αβ,0(−K,−q)]∗ = gλ

αβ,0(−K,−q) and
[gλ

αβ,a(−K,−q)]∗ = −gλ
αβ,a(K, q).

In the spirit of the k · p theory, we consider the electron-
phonon coupling around time-reversal invariant momenta
�i = −�i and thus take the approximation K = �i for the pa-
rameter gλ

αβ,μ(K, q), so that [gλ
αβ,0(�i,−q)]∗ = gλ

αβ,0(�i,−q)
and [gλ

αβ,a(�i,−q)]∗ = −gλ
αβ,a(�i,−q). Below we will drop

the index �i in the coupling constant g. Furthermore, we
can assume the phonon momentum q is a small number
and expand g as gλ

αβ,μ(q) = gλ
αβ,μ(q = 0) + (∂qgλ

αβ,μ)q=0 ·
q + ..., and for optical phonons, we may only focus on the
lowest-order term gλ

αβ,μ = gλ
αβ,μ(q = 0). Thus, we should

have (gλ
αβ,0)∗ = gλ

αβ,0 and (gλ
αβ,a)∗ = −gλ

αβ,a (a = x, y, z) and
thus gλ

αβ,0 is real while gλ
αβ,a is pure imaginary. The hermitian

condition requires (gλ
αβ,μ)∗ = gλ

βα,μ. Therefore, if we choose

α = β, then only gλ
αα,0 does not vanish while the pure imagi-

nary gλ
αβ,a only couples different bands α �= β.

Now let us look at the effective electron-phonon coupling
for the band ψ�i,0,s. Since now we choose α = β = 0, it
is clear that only gλ

αα,0 is nonvanishing for the lowest-order
terms. Therefore, at the lowest order, the electron-phonon
coupling takes the form

Hep,�i = 1

V 2

∑
k,q,λ

gλ
oQλ(q)ĉ†

0,kĉ0,k−q (I8)

for optical phonons, where gλ
o is a real number. In the real

space, we have

Hep,�i =
∑

λ

gλ
o

∫
d3rQλ(r)ψ̂†

�i
(r)ψ̂�i (r) (I9)

for optical phonons, where we have defined Qλ(q) =∫
d3rQλ(r)e−iq·r.
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