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Possible continuous transition from fractional quantum Hall to stripe phase at νe = 7/3
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We study the phase diagram of the νe = 7/3 state in the N = 1 Landau level in the presence of band mass
anisotropy. Using the density matrix renormalization group on an infinite cylinder geometry, we find a continuous
transition from the topologically ordered Laughlin fractional quantum Hall state to a stripe phase with a period of
approximately five and a half magnetic lengths. The transition is driven by the condensation of the magnetoroton
mode which becomes gapless at the critical point. We interpret the transition within the composite-boson theory
as the onset of stripe order in a superfluid background, resulting from the roton mode going soft.

DOI: 10.1103/PhysRevB.106.115101

I. INTRODUCTION

A two-dimensional electron gas in a large perpendicular
magnetic field exhibits a rich set of phenomena dominated by
strong correlations between the electrons. If the applied mag-
netic field is strong, the electrons are essentially confined to
Landau levels (LLs), with an integer number of filled LLs plus
one fractionally filled LL at the top determined by the total
filling fraction νe. Since filled LLs give rise only to a quan-
tized Hall conductance and are inert otherwise, this makes
the interaction the sole term in the low energy Hamiltonian.
The fractional quantum Hall (FQH) effect is a spectacular
consequence of such interaction driven physics in the lowest
few LLs.

An interesting question that arises is what phase transitions
may occur between the FQH and other stable phases. In the
presence of disorder, integer and fractional quantum Hall
transitions are well known examples. Further, spontaneous
nematic order may occur in higher LLs [1–7]. In this paper,
we find numerical evidence for a continuous transition from
the Laughlin FQH to the stripe phase at νe = 7/3, when the
Hamiltonian is translationally invariant but breaks the rota-
tional symmetry.

The FQH states in N = 1 LL have smaller gaps and are
in general more susceptible to perturbations compared to the
ones in the lowest LL [8–11]. In previous numerical studies,
band anisotropy has been proposed to destabilize the FQH
state in favor of a spontaneously broken translational symme-
try state, in particular the stripe phase [9,12–17]. However,
the nature of such a transition is unclear. Motivated by this,
we study the phase diagram of νe = 7/3 state as a function
of anisotropy in the N = 1 LL in the presence of Coulomb
interactions.

We use the density matrix renormalization group on an
infinite cylinder geometry (iDMRG) projected to the N = 1
LL to study the effects of anisotropy [18,19]. By computing
observables such as the correlation length, magnetoroton gap,
and the stripe order parameter, we show that the transition
from the Laughlin FQH state to the stripe phase is continuous.

The transition is driven by the condensation of the magnetoro-
ton at a finite wave vector and it becomes gapless at criticality.
We note that a continuous transition from a Wigner crystal to
the stripe phase has been proposed to take place in the N = 2
LL Ref. [17].

In the Landau gauge, the onset of this phase is character-
ized by an n-fold increase in the periodicity of the Laughlin
state and thus corresponds to the spontaneous breaking of Zn

symmetry. It is found that n increases with the circumfer-
ence of the cylinder such that the period of the stripe phase
remains unchanged when expressed in the units of magnetic
length.

The FQH and the stripe phase appear to be unrelated at
first glance and a continuous transition between the two seems
puzzling. We propose that the critical point may be understood
from the perspective of the composite-boson (CB) theory [20].
The stripe phase can occur via the condensation of the roton
mode of the CB superfluid and the transition can be second
order.

This paper is organized as follows. In Sec. II, we ex-
plain the model and the methods used to observe the FQH
to stripe phase transition in iDMRG. We present evidence
to support our claim that the transition is second order in
Sec, III and determine the critical exponents on the infinite
cylinder geometry for the Z2, Z3, and Z4 cases. We comment
on the relation between the critical point in the quasi-one-
dimensional (quasi-1D) ‘geometry and Zn chiral clock models
in Sec. IV. The composite-boson interpretation of the transi-
tion is discussed in Sec. V. We summarize our findings and
give concluding remarks in Sec, VI.

II. MODEL AND METHODS

Let us consider electrons in two dimensions interacting via
a density-density interaction in the presence of a uniform per-
pendicular magnetic field B. In the limit when the interaction
is weak compared to the cyclotron energy, it is sufficient to
project to the highest energy LL that is partially filled. In this
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paper, we are interested in the N = 1 LL. The electrons can
be described by the following Hamiltonian:

H = 1

2

∫
d2q

(2π )2
V (q) f (q)2 : ρ̄(q)ρ̄(−q) :, (1)

ρ̄(q) =
∑

j

e−iq.R j , (2)

where �2 = 1/B is the magnetic length, V (q) is the inter-
action potential, ρ̄(q) is the guiding center density operator
and f (q) is the form factor of the N = 1 LL. Further, R j are
the guiding center coordinates of the jth particle. They are
defined as Rα = rα + �2εαβ	β and satisfy the commutation
relation [Rα, Rβ ] = −i�2εαβ . Also, the kinetic momentum is
	α ≡ pα − Aα , where pα is the canonical momentum and Aα

is the electromagnetic vector potential.
In our iDMRG simulations, we use an infinite cylinder

geometry with its axis aligned along the y direction and the
periodic circumference direction along the x axis. We consider
the Landau gauge defined by the vector potential A = −Byx̂.
As a consequence of the translational invariance along x
direction, the single-particle wave functions have the form
ψk (r) ∝ eikxg(y + k�2). Periodic boundary conditions along
the circumference lead to k = κn, where κ ≡ 2π/Lx, Lx is
the circumference of the cylinder and n ∈ Z. Therefore, the
LL orbitals in the Landau gauge form a 1D lattice with sites
spaced by 2π/Lx. The guiding center density and the Hamilto-
nian can be expressed in a second quantized form as follows:

ρ̄(qx, qy ) = δqx,κk eiκkqy/2
∑

n

eiκnqy c†
ncn+k, (3)

H = 1

2

∑
nmk

Vmk cnc†
n+kc†

n+mcn+m+k, (4)

Vmk = 1

Lx

∫
dqy

2π
V (κk, qy) f (κk, qy)2eiκmqy , (5)

where n, m, k ∈ Z and only the antisymmetric component of
Vmk (under m ↔ k) is important.

We introduce band anisotropy by considering an
anisotropic mass tensor diagonal in the basis defined by
the coordinate axes. To be precise, the kinetic energy has the
following form before projection to the N = 1 LL:

HK.E . = 	2
x

2mα
+ α	2

y

2m
, (6)

where α is a measure of the mass anisotropy. The Hamiltonian
when projected to the N = 1 LL leads to an anisotropic form
factor given by

f (q) =
(

1 − |q′|2�2

2

)
e−|q′|2�2/4, (7)

where q′ ≡ qx/
√

α + i
√

αqy.
In this paper, we assume that the electrons repel each other

via isotropic Coulomb interactions, i.e.,

V (r) = e−r2/2ξ 2

r
, (8)

where we have regulated the interaction at long distances
using a Gaussian factor with a width equal to ξ . We take

ξ = 6�, which was found to not cause any significant effect
in previous work [21].

A. Observing the stripe phase in quasi-1D geometry

In previous iDMRG simulations, the ground state at νe =
7/3, in the presence of an isotropic Coulomb potential, has
been found to be the Laughlin FQH state with a longer cor-
relation length compared to νe = 1/3 [19]. Therefore, unlike
νe = 1/3 [8], it could be more susceptible to a phase change.
As we show later, the magnetoroton gap collapses upon in-
creasing the band anisotropy and the system undergoes a
phase transition to a stripe phase.

We observe the stripe phase in iDMRG as follows. In the
infinite matrix-product state (iMPS) form, the Laughlin FQH
ground state at νe = 7/3 is found in the root configuration
010 [22,23]. This implies that the ground state on the infinite
cylinder can be constructed by repeating a unit cell MPS
composed of three orbitals with the same quantum numbers as
the electron configuration 010. If the stripes in the stripe phase
are parallel to the x axis and its period contains 3n number of
Landau orbitals, the translational symmetry of the Laughlin
state is broken “n-fold.” The transition to the ordered phase
can then be observed by computing the ground state iMPS
with a unit cell containing 3n orbitals at various values of
anisotropy.

On the infinite cylinder, we denote the stripe order as Zn.
In general, n depends on the circumference. It is found that
n = O(Lx/�), so that, in the units of magnetic lengths, the
period a0 = 3n × 2π�2/Lx remains roughly constant as we
increase the cylinder circumference. This indicates that the
stripe phase is not a finite-size artifact and is relevant to the 2D
physics.

Our strategy for computing the ground state is as follows.
We initialize the iMPS and environments with an electron
configuration 0n1n0n, introducing an initial Zn stripe order.
Here, the subscript denotes an n-fold repetition of the electron
occupation number. Notice that this has the same quantum
numbers as the configuration (010)n of the Laughlin FQH
state. As we perform the iDMRG steps, strength of the stripe
order parameter decays to zero (nonzero) if the system is
in the FQH (stripe) state. We found good convergence with
independent simulations at each anisotropy in the stripe phase.
On the FQH side, we find that the best convergence and lowest
energies are obtained if one starts in the FQH phase away
from the transition and uses the converged ground state as an
initial guess for a point closer to the transition. The ground
state is thus adiabatically evolved as one moves towards the
transition.

B. Observables and critical scaling analysis

Near the quantum phase transition, we measure observ-
ables and perform a critical scaling analysis. In particular,
we measure three quantities. First, the correlation length ξ

is calculated directly from the MPS form of the ground state
using its transfer matrix [24]. In general, all correlations decay
faster compared to this length scale. We find that it is close
to the one obtained by fitting the density-density correlation
function to an exponentially decaying function.
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TABLE I. Critical exponents for the FQH to stripe phase transi-
tions on an infinite cylinder.

Symmetry ν νz β

Z2 1.04 0.90 0.119
Z3 0.87 0.69 0.109
Z4 0.86 0.66 0.08

Second, we calculate the order parameter ρG by measuring
the density profile along the axial direction of the cylinder
and then taking a Fourier transform at the ordering wave
vector G = (0, 2π/a0). Third, the magnetoroton gap ωSMA

at q = G is measured using the single-mode approximation
(SMA) of Girvin, Macdonald, and Platzman [25]. While it is
possible that SMA breaks down due to interactions between
the gapless density fluctuations, it provides an energy scale
for the critical fluctuations [26]. As such, it can be useful for
studying dynamical scaling near the critical point.

We fit the three observables to power laws to obtain the crit-
ical exponents ν, β, and νz that correspond to the correlation
length, order parameter strength, and energy gap exponents
respectively [27].

The iMPS obtained in iDMRG is an approximation of the
true ground state. This is so because the iMPS truncates the
infinite-dimensional Hilbert space of the cylinder to a finite
one characterized by the bond dimension χ . One expects the
observables to converge to the χ → ∞ case as χ is increased.
However, we find that they do not show a numerically pre-
dictable behavior as a function of χ . Therefore, we use the
the largest χ we can access to perform the critical scaling
analysis. We find that the finite bond dimension affects the
phase diagram in mainly two ways. First, the stripe phase is
preferred since it has a lower entanglement entropy. Second,
an iMPS with a finite bond-dimension cannot have an infi-
nite correlation length and a continuous transition becomes
weakly first order. Fortunately, even though the observables
show such dependence on χ , the critical exponents are not
altered significantly.

III. LAUGHLIN FQH TO STRIPE PHASE
TRANSITION AT νe = 7/3

In this section, we present our numerical results for the
quantum phase transition from the νe = 7/3 Laughlin FQH
state to the stripe phase as a band anisotropy is introduced in
the system. We find that the transition is continuous, i.e., the
inverse correlation length, energy gap, and order parameter go
to zero at the critical point. As is evident in Fig. 1, it is driven
by the condensation of the magnetoroton, which becomes gap-
less at criticality. In Fig. 2, we present the numerical results
for the Z2, Z3, and Z4 cases of the transition. The exponents ν,
νz, and β are obtained by fitting the inverse correlation length,
magnetoroton gap, and order parameter to power laws respec-
tively. Their values are reported in Table I. These should be
interpreted as effective exponents rather than the asymptotic
ones [28]. Further, the energy gap exponent νz depends on the
validity of the SMA. For the Z4 case, we find that the bond
dimensions accessible to our numerical simulations are not

FIG. 1. The magnetoroton spectrum computed using the single-
mode approximation (SMA) [25] for various values of anisotropy
α (as indicated in the figure), Lx = 6.5�, and qy� = 0. The SMA
energy goes to zero at qy� = Lx/6� as the anisotropy is increased.
This indicates the onset of stripe ordering with a period that contains
six Landau orbitals in the y direction. The inset shows the divergence
of the static structure factor s̄(qy ) as one approaches the transition.

sufficient to perform a reliable critical scaling analysis [29].
In particular, the correlation lengths are not large enough to
avoid finite size effects that come from the finite cylinder
circumference and interaction range. Nevertheless, we have
indicated the exponents as obtained from the fitting procedure.

As mentioned in Sec. II A, generally, n = O(Lx/�). We
find that the commensurate stripe phase is strongest when the
relation Lx ≈ (3.5n − 0.5)� is satisfied. Thus, we obtain the
period of the stripe phase to be a0 ≈ 5.4�.

IV. QUASI-1D CRITICAL POINT AND Zn

CHIRAL CLOCK MODELS

Across the transition, the translation symmetry is sponta-
neously broken n-fold on the quasi-1D cylindrical geometry.
We expect such a critical point to be described by the Zn

chiral clock model [30–34]. To see this explicitly, note that
the different Zn stripe root configurations, for example 130303,
031303, and 030313 in the Z3 case, can be mapped to n number
of states of a clock model. In general, a domain wall con-
figuration, that moves the clock clockwise when moving to
the right, has a different energy compared to when the clock
moves anticlockwise. Thus, the Zn clock model is chiral [34].

Another way to see how the chirality arises is in terms
of the discrete symmetries. The Hamiltonian of Eq. (4) has
two discrete symmetries. First, there is an antiunitary sym-
metry constructed by combining time reversal with the mirror
transformation that leaves the y axis invariant. Additionally,
we have an inversion symmetry which corresponds to a 1800

rotation of the quasi-1D cylinder. In the language of clock
models [33], the first discrete symmetry corresponds to time
reversal while the second symmetry corresponds to the com-
bination of charge conjugation and parity. Note that the charge
conjugation and parity symmetries are broken individually in
our problem, which leads to the aforementioned chirality in
the Zn clock model [34]. In this sense, the n-state Potts model
which preserves all three discrete symmetries, i.e. charge con-
jugation, parity, and time reversal, is achiral.
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(a) Z2 (b) Z3 (c) Z4

FIG. 2. Inverse correlation length 1/ξ (red), SMA energy at the ordering wave vector, ωSMA, scaled up by an appropriate factor (green),
and order parameter ρG (blue) for Laughlin FQH to (a) Z2, (b) Z3, and (c) Z4 stripe phase transitions on an infinite cylinder. By fitting the three
quantities to a power law, we obtain the exponents (ν, νz, β ): (a) (1.04, 0.90, 0.119), (b) (0.87, 0.69, 0.109), and (c) (0.86, 0.66, 0.08). The
bond dimensions χ are (a) 512, (b) 4096, and (c) 8192. The fitted curves meet at a single point for Z2 and Z3 cases, indicating a continuous
transition. The appearance of a weakly first-order transition in the Z4 case may be due to stronger finite-size and bond-dimension effects.

Before comparing our results with the Zn clock models, we
mention an important caveat. The Hamiltonian of Eq. (4) has
an additional conservation law that restricts the domain wall
configurations and may change the universality class. To see
this, let us consider a thin torus geometry with � � Lx � Ly.
The root configuration for the Laughlin FQH state is given by
(010)Ne , where Ne is the number of electrons in the N = 1 LL.
In the Landau gauge, the total momentum along x direction is
conserved modulo κNφ , where Nφ = 3Ne. Thus, the momen-
tum is

Px/κ =
(Nφ−1∑

k=0

knk

)
mod Nφ. (9)

nk ≡ c†
kck is the occupation number operator of the kth orbital.

Notice that the conservation of Px is equivalent to the conser-
vation of center of mass along the y direction.

Assuming Ne/n ∈ Z, there are n degenerate ground states
with the same total momentum Px in the stripe phase. These
correspond to the stripe pattern (0n1n0n)Ne/n and the ones
generated when it is translated by 3m Landau orbitals, where
m ∈ {1, 2, . . . , n − 1}. The domain walls between different
ground states condense as one approaches the transition from
the stripe phase side towards the FQH side. However, an
arbitrary domain wall between two stripe patterns generally
changes the position of the center of mass of electrons. Only a
smaller set of configurations that respect the conservation law
are allowed. At present, we are not aware how this restriction
may change the universality class from the Zn chiral clock
model.

Fortuitously, the domain wall configurations for the n =
2 case are unaffected. This is so because the two degenerate
stripe patterns 001100, 100001 have exactly the same center
of mass. As such, we expect the corresponding critical point
to be in the universality class of the quantum Ising model in
1 + 1 dimensions. It predicts the following critical exponents:
ν = νz = 1, β = 1/8. These are within 5–10% of the ones
reported in Table I for the Z2 case.

In the Z3 case, we first compare our results with the
three-state Potts model, which corresponds to the achiral Z3-
symmetry breaking transition in one dimension. It predicts
ν = νz = 5/6, β = 1/9. While ν and β are close to what
we report in Table I, νz appears to be different. Since we

find the effective dynamical exponent z to be less than 1,
the correlations travel faster compared to a light cone at long
timescales and may be unphysical. This is similar to the Z2

case and we believe that it is affected by the assumption of
SMA. Nevertheless, the dynamical exponent is significantly
different from the chiral three-state clock model where z > 1
[35–37]. A possible explanation is that our critical point is
close to the achiral three-state Potts point and thus contains
crossover physics. Or, as explained earlier in this section,
the restriction on the domain wall configurations, due to the
conservation law, changes the universality class away from the
Z3 chiral clock model.

The achiral Z4 transition corresponds to a family of uni-
versality classes described by the Ashkin-Teller model and
has continuously varying exponents. Our exponent ν = 0.86
suggests that the chiral perturbation would be relevant [38,39].
However, we note that the Z4 case is also affected by the same
caveats as the Z3-symmetry breaking transition.

V. PHASE TRANSITION IN THE 2D LIMIT

The numerical results presented in this paper raise the
interesting possibility of a continuous transition between a
topologically ordered state and a conventional Landau ordered
state, i.e., the stripe phase. At first sight, the two phases ap-
pear to be unrelated to one another. And the experience from
Landau theory tells us that a direct transition between two
unrelated conventionally ordered states is generally first order.
As such, the nature of phase transitions that involve both
the topological and Landau ordered states is an interesting
problem. In this section, we argue that a continuous transition
of the kind proposed in this paper can be understood within
the framework of the composite-boson theory [20].

Composite bosons are emergent degrees of freedom ob-
tained by attaching three flux quanta to electrons. We assume
that the energy scale associated with Coulomb interactions
is weak compared to the cyclotron energy. Therefore, the
physics of the νe = 7/3 state is essentially equivalent to a
filling fraction νe = 2 + 1/3, i.e., a νe = 1/3 state with the
Hamiltonian given by Eq. (1) and additional filled lowest LLs
at νe = 2. As such, we attach flux quanta only to the electrons
residing in the partially filled N = 1 LL. The isotropic case
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can be described by the following Lagrangian:

L = iφ∗Da
t φ + μφ∗φ − 1

2m
φ∗(Da

j

)2
φ

+ 1

12π
(a − A)d (a − A) + 1

2π
A dA (10)

where φ, φ∗ are the composite-boson fields and Da
μ ≡ ∂μ −

aμ. aμ and Aμ are the emergent and electromagnetic gauge
fields respectively and μ corresponds to a chemical potential.
The second to last term is the Chern-Simons term [40] with its
prefactor signifying the three attached flux quanta. Addition-
ally, the last term denotes the effect of the completely filled
lowest LLs.

In the FQH side, the composite boson φ condenses and
forms a superfluid. The Goldstone mode of the superfluid is
eaten up by the gauge field and one obtains the νe = 7/3 FQH
state with gapped excitations. Importantly, the superfluid has a
collective roton mode [41] which produces the magnetoroton
excitation above the FQH state [20,25]. The transition to the
stripe phase can take place if the roton condenses at a nonzero
wave vector. The stripe phase would appear as coexisting su-
perfluidity and the unidirectional CDW ordering. This is how
a second-order transition could be allowed within a Landau
theory framework.

We briefly note that the transition can also be understood
from the perspective of composite- fermions (CFs) formed
by attaching two flux quanta to electrons in the N = 1 LL
[42–46]. The νe = 2 + 1/3 filling fraction corresponds to a
CF filling fraction νcf = 1. As such, the stripe phase may be
obtained by the condensation of the exciton excitation of CFs
at a finite wave vector corresponding to a missing CF in the
lowest CF LL and an extra CF in the first CF LL [47].

VI. CONCLUSIONS

In this paper, we have presented evidence for a direct con-
tinuous phase transition from the Laughlin fractional quantum
Hall (FQH) state at νe = 7/3 to a stripe ordered phase. The
transition is found to take place as one makes the system
anisotropic by introducing a band anisotropy.

We computed the correlation length, magnetoroton gap,
and the stripe order parameter on an infinite cylinder

geometry and performed a critical scaling analysis. In a QH
system on a cylinder, the translational symmetry is discrete
and the stripe phase spontaneously breaks it “n-fold.” In the
Z2 case, the exponents were found to be close to that of the
quantum Ising model. However, for Z3 and Z4 cases, we find
the exponents to be different compared to the chiral clock
models, possibly due to the presence of the conservation of
momentum along the circumference direction. Moreover, as
one approaches the 2D limit by increasing the circumference,
the effects of dislocations in the stripe order would become
more important. These considerations suggests that the finite
size scaling properties of the transition contain rich physics.
We leave this as a problem to be addressed by future research.

Although the stripe and FQH states appear to be distinct,
the theory of composite bosons provides a framework to study
the critical point between the two. We argued that stripe phase
can be understood as a coexistence phase of composite-boson
superfluid and a Bose-Einstein condensate of the roton. The
theory of this 2D quantum critical point is an interesting
problem.

We note that the infinite cylinder geometry cannot dis-
tinguish between a smectic stripe phase and a stripe crystal
[14]. The latter breaks translational symmetry in both x and y
directions and the order along the circumference direction is
hard to detect. If the FQH state goes into the stripe crystal in
the 2D limit, as the anisotropy is increased, we expect it to do
it via a first-order transition.

Experiments that study the effects of anisotropy are con-
sistent with the emergence of a stripe order in the N = 1 LL
in the clean limit [48–53]. However, it is unclear whether
they see a nematic or a stripe phase since the translational
order is difficult to observe. We believe that measuring the
magnetoroton dispersion at finite wave vectors may provide a
more direct evidence of the stripe phase [54–58].
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