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The Yu-Shiba-Rusinov (YSR) state appears as a bound state of a quasiparticle at a magnetic atom embedded
in a superconductor. We discuss why the YSR state has energy below the superconducting gap and why the
pair potential changes the sign at the magnetic atom. Although a magnetic atom in a superconductor has
been considered as a pair breaker since the 1960s, we propose an alternative physical picture to explain these
reasons. The analytical expression of the Green’s function indicates that a magnetic atom converts a spin-singlet
s-wave Cooper pair into odd-frequency Cooper pairs rather than breaking it and that the odd-frequency pairing
correlations coexist with the YSR states below the gap. The relationships among the free-energy density, the
amplitudes of pairing correlation functions, and the sign change of the pair potential at a magnetic impurity are
discussed utilizing the self-consistent solution of the Eilenberger equation. We conclude that the sign change
of the pair potential happens only when the amplitudes of odd-frequency pairing correlations are dominant at
the magnetic impurity. In the presence of the local π -phase shift in the pair potential, odd-frequency pairs can
decrease the free-energy density there because their response to a magnetic field is paramagnetic.

DOI: 10.1103/PhysRevB.106.104518

I. INTRODUCTION

The Yu-Shiba-Rusinov (YSR) state [1–3] is a bound state
around a magnetic impurity embedded in a superconduc-
tor and is considered to appear as a result of breaking a
spin-singlet Cooper pair by the magnetic moment. Supercon-
ducting junctions with the YSR states have been attracting
renewed attention as a possible platform for quantum com-
puter architectures. Actually, it is known that a chain of
magnetic nanoparticles on an s-wave superconductor accom-
modates Majorana fermions at its ends [4–6]. Controlling the
superconducting subgap state is a necessary element of future
quantum technology [7–9].

A spin-singlet Cooper pair is formed by two electrons
that are time-reversal partners to each other. Thus a magnetic
impurity (a defect breaking time-reversal symmetry) acts as
a pair-breaker. Indeed, it is widely accepted that magnetic
impurities drastically suppress the superconducting transition
temperature Tc [10,11]. Although the formation of the YSR
state was pointed out in the 1960s, there are three unsolved
issues: (i) This conventional simple picture does not explain
why magnetic impurity generates the YSR states below the
gap. (ii) A strong magnetic impurity changes the sign of the
pair potential around the impurity site [12–15]. As briefly
mentioned in a review paper [16], there is no convincing ex-
planation for the local π -phase shift even now. (iii) It has been
unclear the relation between the appearance of the YSR states
and the suppression of Tc. In this paper, we will show that the
existence of odd-frequency Cooper pairs around the magnetic
impurity provides a satisfactory explanation for these issues.

The odd-frequency Cooper pairing is a concept that was
introduced by Berezinskii [17] to explain the superfluidity in
3He. Although there has been much theoretical work on odd-
frequency superconducting states in bulk systems since the
1990s [18–25], experimental evidence is still lacking. One of
the authors showed that the spatially uniform odd-frequency
superconducting order is impossible in single-band metals
[26]. However, it turns out that the odd-frequency spin-triplet
s-wave triplet state can be realized as an induced subdominant
pairing correlation in a rather conventional system consisting
of a spin-singlet s-wave superconductor and a ferromagnet
[27]. Induced odd-frequency pairing correlations have been
discussed in connection with a subgap quasiparticle appearing
at a surface of unconventional superconductors [28–32], a
vortex core [33,34], and an edge of a Majorana nanowire
[35]. In superconductors having internal degrees of freedom
(e.g., sublattices, multiorbital, and multiband), a quasiparti-
cle on the Bogoliubov Fermi surface [36] accompanies an
odd-frequency Cooper pair [37]. Although the odd-frequency
pairing correlations around a magnetic impurity were pointed
out by recent studies [38,39], physical phenomena unique to
an odd-frequency Cooper pair have not been discussed yet.
The most important property of odd-frequency Cooper pairs is
that they exhibit a paramagnetic response to an external mag-
netic field [40–43]. When the amplitude of an odd-frequency
pair is dominant at some place in a superconductor, the spa-
tial gradient in the superconducting phase decreases the free
energy there. Indeed, two of the authors showed that the
magnetic response of a small unconventional superconductor
can be paramagnetic at low temperature [42]. We summarize
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the physical consequences of paramagnetic Cooper pairs in
Appendix A.

In this paper, we calculate the Green’s function around a
magnetic impurity in a spin-singlet s-wave superconductor
both analytically and numerically. The analytical expression
of the anomalous Green’s function shows that the magnetic
impurity converts a spin-singlet s-wave Cooper pair into an
odd-frequency Cooper pair. The direct comparison between
the normal and the anomalous Green’s functions explains well
the coexistence of such an odd-frequency pair and a quasi-
particle at the YSR states. Thus the formation of YSR states
below the gap is a natural consequence of the appearance of
an odd-frequency pair. As a result of the symmetry conversion
of a Cooper pair, the amplitude of the spin-singlet s-wave
pairing correlation decreases down to zero and changes sign
with an increase of the amplitude of the magnetic moment. To
explain why the pair potential changes sign around a magnetic
impurity, we analyze the free-energy density and the pairing
correlation function around the magnetic impurity by solv-
ing the Eilenberger equation [44,45] numerically. The results
show that the free-energy density at a magnetic impurity can
be larger than that in the normal state. Such an unusual local
state is possible only in a inhomogeneous superconductor.
Odd-frequency Cooper pairs increase the free-energy den-
sity because they are thermodynamically unstable under the
spatially uniform pair potential. We also show that the free-
energy density at the impurity is decreased by the π -phase
shift in the pair potential when odd-frequency Cooper pairs
stay more dominantly than even-frequency pairs. The param-
agnetic response of odd-frequency pairs explains naturally the
close relationships among the appearance of an odd-frequency
Cooper pair, the local π -phase shift in the pair potential, and
the instability of the superconducting state around the impu-
rity. As an extension of the main conclusions, we also discuss
the decrease of transition temperature Tc in the presence of a
number of magnetic impurities.

This paper is organized as follows. In Sec. II, we sum-
marize the pairing correlations around a magnetic impurity
embedded in a superconductor in one dimension. In Sec. III,
we display numerical results of the pair potential, the local
density of states, the pairing correlations, and the free-energy
density. We explain why the appearance of odd-frequency
pairs decreases Tc in Sec. IV. The conclusion is given in
Sec. V. Throughout this paper, we use the system of units
h̄ = kB = c = 1, where kB is the Boltzmann constant and
c is the speed of light.

II. COOPER PAIRS AROUND A MAGNETIC IMPURITY

Let us consider a spin-singlet s-wave superconductor in
one dimension where a magnetic impurity is embedded at
x = 0. The Bogoliubov–de Gennes (BdG) Hamiltonian of a
superconductor is given by

ȞBdG(x) =
[

ξx �iσ̂2eiϕ

�(−i)σ̂2e−iϕ −ξ ∗
x

]
+ V̌ (x), (1)

ξx = − 1

2m

d2

dx2
− εF , (2)

where � is the uniform pair potential in spin-singlet s-wave
symmetry, εF is the Fermi energy, V̌ represents the impu-
rity potential, and σ̂ j for j = 1–3 is the Pauli matrix in spin
space. The potential of a paramagnetic impurity at x = 0 is
described by

V̌ (x) =
[
V · σ̂ 0

0 −V · σ̂∗

]
δ(x). (3)

The Gor’kov equation reads

[iωn − ȞBdG(x)]Ǧ(x − x′) = 1̌ δ(x − x′), (4)

where ωn = (2n + 1)πT is the Matsubara frequency, with n
and T being an integer number and a temperature, respec-
tively. The Green’s function has a structure

Ǧ(x, x′) =
[

ĝ(x, x′) f̂ (x, x′)

− f̂ ∗(x, x′) −ĝ∗(x, x′)

]
, (5)

because of particle-hole symmetry in the BdG Hamiltonian.
As shown in Appendix B, the Green’s function in the presence
of an impurity can be calculated exactly. The normal Green’s
function is shown in Eq. (B14) in Appendix B. The density of
states are calculated from the normal Green’s function in the
retarded causality,

N (x, ε) = − 1

4π
Im Tr

[
ǦR

ε (x, x)
]
,

= − 1

4π
Im Tr

[
ĝR

ε (x, x) − (ĝR
ε )∗(x, x)

]
,

ǦR
ε (x, x′) = Ǧ(x, x′)

∣∣
iωn→ε+iδ, (6)

where δ is a small positive real value. The retarded Green’s
function at x = x′ for 0 � ε < � is calculated as

Tr
[
ǦR

ε (x, x)
] = 4π N0 ε√

�2 − ε2

[
1 − e−2|x|/ξ0 |γ|2 2�2 + {�2(1 − |γ|2) + ε2(1 + |γ|2)} cos 2k|x|

�2(1 − |γ|2)2 − ε2(1 + |γ|2)2

]
, (7)

where N0 is the density of states per spin at the Fermi level, and γ = πN0 V . The first term representing the bulk superconducting
gap does not contribute to the density of states for 0 < |ε| < �. The second term represents a quasiparticle excitation at a
magnetic impurity. It is easy to show that the denominator has poles at ε = ±ε0 with

ε0 = �
1 − |γ|2
1 + |γ|2 , (8)
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TABLE I. Symmetry of the potential for random magnetic impurities in three theoretical models. The potential of a magnetic impurity
in Eq. (3) breaks translational symmetry, inversion symmetry locally, spin-rotation symmetry, and time-reversal symmetry. Breaking local
inversion symmetry enables the parity conversion of the pairing correlation between even-parity and odd-parity as indicated by (a). Breaking
spin-rotation symmetry enables the spin conversion of the pairing correlation between spin-singlet and spin-triplet as indicated by (b). In the
self-consistent Born approximation resulting in Eqs. (20) and (22), translational, local inversion, and spin-rotation symmetries are restored in
the self-energy due to magnetic impurities. The renormalization factor changes sign in the absence of time-reversal symmetry, as indicated
by (c). In the present theory resulting in Eq. (32), translational and local inversion symmetries are recovered by averaging Eq. (31). Since
spin-rotation symmetry is broken as indicated by (d), the odd-frequency spin-triplet even-parity state can be considered as an intermediate
state for scatterings.

Translational Local inversion Spin-rotation Time-reversal

A magnetic impurity × ×(a) ×(b) ×
Born approximation ◦ ◦ ◦ ×(c)

Present theory ◦ ◦ ×(d) ×

which corresponds to an energy of the YSR state. The anomalous Green’s function is also calculated as

f̂ (x, x′) = πN0�




[
− cos k(|x − x′|)e−|x−x′|/ξ0 + e−(|x|+|x′|)/ξ0 |γ|2

Z

{
2ω2

n(C+ + C−) − 
2(1 − |γ|2)C+
}]

iσ̂2eiϕ

+ πN0� e−(|x|+|x′|)/ξ0

Z
2 i ωn |γ|2 S− iσ̂2eiϕ − πN0� e−(|x|+|x′|)/ξ0

Z

 (1 − |γ|2)S−γ · σ̂iσ̂2eiϕ

+ πN0� e−(|x|+|x′|)/ξ0

Z
i ωn

{
(1 + |γ|2)C+ + (1 − |γ|2)C−

}
γ · σ̂ iσ̂2eiϕ, (9)

with S± and C± in Eq. (B11), and Z in Eq. (B15). Similar
results were obtained in the previous paper [38].

The first term stems from the unperturbed Green’s func-
tion. The second term is the pairing correlation at the impurity.
These two terms belong to an even-frequency spin-singlet
even-parity s-wave symmetry class and are linked to the pair
potential through the gap equation. In Table I, we summa-
rize symmetries broken by a magnetic impurity. Equation (3)
breaks translational symmetry, inversion symmetry in the
vicinity of x = 0, spin-rotation symmetry, and time-reversal
symmetry. As a consequence, a magnetic impurity gener-
ates various pairing correlations, as shown in Eq. (9). The
absence of local inversion symmetry allows the generation
of an odd-parity p-wave Cooper pair from an even-parity
s-wave pair. Indeed, the third term in Eq. (9) is the pairing
correlation belonging to the odd-frequency spin-singlet odd-
parity symmetry class because it is an odd function of ωn,
proportional to σ̂2, and antisymmetric under the interchange
of x ↔ x′. The breaking spin-rotation symmetry enables the
generation of a spin-triplet Cooper pair from a spin-singlet
pair. The last term in Eq. (9) represents the pairing correla-
tion belonging to the odd-frequency spin-triplet even-parity
symmetry class. It is easy to confirm that the last term is
symmetric under the interchange of x ↔ x′. As a result of
breaking spin-rotation symmetry and local inversion sym-
metry simultaneously, even-frequency spin-triplet odd-parity
pairing correlation appears as indicated by the fourth term in
Eq. (9). It is more natural to think that the magnetic impurity
converts a spin-singlet s-wave Cooper pair into a Cooper pair
belonging to another symmetry class rather than destroying it.

Comparing the normal and the anomalous Green’s func-
tion enables us to understand the close relationship between
odd-frequency pairs and quasiparticles in the YSR states. The

local density of states (LDOS) derived from the second term
of Eq. (7) is calculated as

NYSR(x, ε) = −N0 �
|γ|

1 + |γ|2

× Y (x) Im

[
1

ε + iδ − ε0
+ 1

ε + iδ + ε0

]
(10)

for ε ≈ ±ε0, where the function

Y (x) = e−2|x|/ξ0 (cos2 kx + |γ|2 sin2 kx) (11)

represents the x dependence of the Green’s function, and

1

ε + iδ ± ε0
= P

ε ± ε0
− i π δ(ε ± ε0) (12)

gives two peaks in the LDOS due to YSR states below the
gap. The last term of Eq. (9) indicated by f̂OTE describes the
odd-frequency spin-triplet even-parity pairing correlation and
is calculated to be

f̂OTE(x, x) = −π N0 �
γ · σ̂

1 + |γ|2 iσ̂2eiϕ

× Y (x)

[
1

iωn − ε0
+ 1

iωn + ε0

]
. (13)

The two Green’s functions in Eqs. (10) and (13) have the same
x dependence and the same singularity in energy. Since the
two Green’s functions satisfy the Gor’kov equation, the sin-
gularity at ε = ±ε0 in the normal Green’s function in Eq. (10)
and that in the anomalous Green’s function in Eq. (13) com-
pensate each other. The former describes the peaks in the
LDOS reflecting the existence of YSR states, and the latter
represents the odd-frequency pairing correlation. Therefore,
odd-frequency Cooper pairs and subgap quasiparticles at YSR

104518-3



SUZUKI, SATO, AND ASANO PHYSICAL REVIEW B 106, 104518 (2022)

FIG. 1. The numerical results of the pair potential �(x) and the free-energy density FSN, and the local density of states N (x, ε) are plotted
for several choices of the amplitude of magnetic moment as |V |/2πTc = 1.0 in (a), 1.5 in (b), 1.814 in (c), and 2.0 in (d). The pair potential
shown with a solid line is normalized to �0, which is the amplitude of the pair potential in a uniform superconductor at T = 0. The free-energy
density shown with a broken line is normalized to F0 = N0�

2
0/2. The local density of states is shown on the right panel, where we solve the

Eilenberger equation for complex energies ε + iδ with δ/2πTc = 0.005. The size of a magnetic impurity in Eq. (16) is set as x0/ξ0 = 0.5.

states coexist with each other. As far as we have studied,
odd-frequency pairs are almost always associated with subgap
quasiparticles. Thus the appearance of the YSR states below
the gap is a direct consequence of the generation of the odd-
frequency pairing correlations.

The pair potential and the pairing correlation functions are
related to each other by the gap equation

�(x) =T
∑
ωn

λ 1
2 Tr[ f̂ (x, x)(−iσ̂2)], (14)

where λ is the strength of the short-range attractive interaction
between two electrons. Tracing in spin space and putting
x′ → x, the spin-singlet s-wave component is extracted from
Eq. (9). As a result, only the first two terms in Eq. (9) con-
tribute to the pair potential. The gap equation at x = 0,

�(0) = π λ N0 T
∑
ωn

�
 (1 − |γ|2)

Z
, (15)

suggests that the pair potential at the impurity decreases with
the increase of the magnetic moment. The suppression of �

can be interpreted as a result of the pair conversion from
a spin-singlet s-wave pair to an odd-frequency pair. Strictly
speaking, an idealistic magnetic impurity characterized by
the δ-function in Eq. (3) does not change the sign of the
pair potential [3]. But a magnetic impurity with a finite size
causes the sign change of the pair potential when its magnetic
moment is larger than a critical value irrespective of the spatial
dimension of a superconductor [12,13]. It has been unclear
what causes the sign change of the pair potential [16]. As
we discussed briefly in the Introduction, an odd-frequency

pair indicates the paramagnetic response to a magnetic field
and favors the spatial gradient in the superconducting phase.
Therefore, odd-frequency pairs around the magnetic impurity
stabilize the local π -phase shift in the pair potential. In the
next section, we will check the validity of this conclusion by
numerical simulation.

III. SIGN CHANGE IN THE PAIR POTENTIAL

In Sec. II, we assume that the pair potential is uniform in
real space. In this section, we check the validity of our conclu-
sions in the presence of spatial variation in the pair potential.
In particular, we focus on the effects of odd-frequency pairs on
the sign change of the pair potential. We solve the Eilenberger
equation in a superconductor in one dimension, where the
potential of a magnetic impurity is described by

V (x) = V e−( x
x0

)2

, (16)

where x0 represents the spatial range of the impurity potential.
The details of the simulation are shown in Appendix C. We
numerically calculate the pair potential in Eq. (C13) and the
LDOS in Eq. (C14). In this section, we measure the length
and the energy in units of the coherence length ξ0 = vF /2πTc

and 2πTc, respectively. Here we summarize parameters used
in numerical simulation. The length of the superconductor is
fixed at 20ξ0, x0 in Eq. (16) is 0.5 ξ0, and the cutoff energy ωc

for the Matsubara frequency is 3 ×2πTc.
Figure 1 shows the pair potential and LDOS around a

magnetic impurity for several choices of the amplitude of
magnetic moment |V |, where �0 is the amplitude of the pair
potential in the bulk at T = 0. The results at |V |/2πTc = 1.0
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FIG. 2. The amplitude of the pairing correlations around the
magnetic impurity for (a) |V |/2πTc = 1, (b) 1.5, (c) 1.814, and
(d) 1.815. The solid (broken) lines are the results of even-frequency
(odd-frequency) components. The Matsubara frequency is fixed at
ωn=0/2πTc = 0.1.

in Fig. 1(a) show the slight suppression of the pair potential
around a magnetic impurity. The LDOS in the right panel
of (a) indicates the existence of the YSR states around the
impurity. The energy of the bound state is about ε = ±0.6�0,
which is related to the minimum gap size around the impu-
rity. For |V |/2πTc = 1.5 in Fig. 1(b), a magnetic impurity
suppresses the pair potential further. As a result, the two
bound-state energies get closer to the Fermi level as shown
in the right panel in (b). The minimum gap size is 0.45�0 and
the energy of a YSR state is ±0.21�0. Although the minimum
gap size for |V |/2πTc = 1.814 is 0.26�0 in Fig. 1(c), the two
YSR states exist at almost zero energy. When the magnetic
moment increases up to |V |/2πTc = 2, the pair potential at the
impurity changes sign and the two bound-state energies cross,
as shown in Fig. 1(d). The one-dimensional superconductor
with a magnetic impurity is similar to the SFS junction. The
cross of the Andreev bound-state energies at an SFS junction
is responsible for the transition between the 0-state and the
π -state [46].

In Fig. 2, we plot the amplitude of the pairing correlations
around the magnetic impurity at ωn/2πTc = 0.1, where we
choose (a) |V |/2πTc = 1.0, (b) 1.5, (c) 1.814, and (d) 1.815.
In Fig. 2(a), the spin-singlet s-wave component is the most
dominant and has a small peak at x = 0, which results in a
tiny peak in the pair potential at x = 0 as shown in Fig. 1(a).
The amplitude of the even-frequency spin-triplet p-wave com-
ponent is the second most dominant. The odd-frequency
spin-triplet s-wave and the odd-frequency spin-singlet
p-wave components shown with broken lines are subdominant
everywhere in a superconductor at |V |/2πTc = 1.0. The ap-
pearance of an odd-frequency pair and the spatial variation

in the pair potential are related to each other [47]. In this
case, the local odd-frequency pairing correlation generates the
tiny peak at x = 0 in the pair potential in Fig. 1(a). In ad-
dition to this, odd-frequency pairs make the superconducting
state unstable locally. We calculate the free-energy density in
Eq. (C16) and plot the results with a broken line in Fig. 1(a).
The free-energy density is almost equal to −F0 far from the
impurity, where F0 = N0�

2
0/2 is the condensation energy of

the uniform superconducting state measured from the energy
of the normal state. The negative free energy means that the
superconducting state is more stable than the normal state.
Although the odd-frequency pairing correlations are subdom-
inant as shown in Fig. 2(a), the free-energy density becomes
positive at x = 0 in Fig. 1(a). The positive free energy at
some place does not mean the absence of the pair potential
there immediately. Such a locally destroyed superconductiv-
ity cannot be a self-consistent solution of the Eilenberger
equation. To achieve zero pair potential at the impurity, the
spin-singlet s-wave correlation must rapidly become zero in
real space. This costs the kinetic energy of the supercon-
ducting condensate. The nonzero pair potentials under the
positive free-energy density are only locally possible in inho-
mogeneous superconductors. The total free energy of such an
inhomogeneous superconducting state is lower than that in the
normal state.

Under a spatially uniform pair potential, odd-frequency
Cooper pairs are thermodynamically unstable because of their
paramagnetic property. The results of the free-energy density
in Fig. 1 show that the superconducting state is locally un-
stable due to the presence of odd-frequency pairs. When we
increase the magnetic moment to |V |/2πTc = 1.5, the spin-
singlet s-wave correlation decreases its amplitude slightly,
as shown in Fig. 2(b). In contrast, the two odd-frequency
pairing correlations grow as shown with broken lines. As
a result, the free-energy density around x = 0 in Fig. 1(b)
increases and becomes larger than that in (a). In Fig. 2(c),
we increase the magnetic moment to |V |/2πTc = 1.814. The
spin-singlet s-wave correlation is suppressed drastically at
x = 0 and the two odd-frequency pairing correlations become
dominant locally around the impurity, as shown with two
broken lines. In Fig. 2(d), we increase the magnetic moment
only slightly to |V |/2πTc = 1.815. The spin-singlet s-wave
component changes sign around x = 0, which leads to the
local sign change of the pair potential. The profiles of the two
odd-frequency components, on the other hand, are insensitive
to the slight increase of |V |.

In Fig. 3, we compare the pair potential in (a) and the free-
energy density in (b) at the two values of |V |/2πTc = 1.814
and 1.815. The abrupt sign change of the pair potential in
Fig. 3(a) happens as a result of the finite-size effect. The local
sign change in the pair potential causes the drastic decrease of
the free-energy density as shown in Fig. 3(b). The free energy
for |x| < 0.8ξ0 in the presence of the sign change is smaller
than that in the absence of the sign change. As displayed in
both Figs. 2(c) and 2(d), odd-frequency pairs are dominant
in such places. As odd-frequency pairs are paramagnetic, the
sign change of the pair potential is one of the possible solu-
tions to decrease the free-energy density. We conclude that
odd-frequency pairs generated by a magnetic impurity cause
the local π -phase shift in the pair potential near the impurity.
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FIG. 3. The pair potential (a) and the free-energy density (b) are
plotted for |V |/2πTc = 1.814 and 1.815. At |V |/2πTc = 1.815, the
pair potential at x = 0 changes sign, as shown in (a). As a result of
the sign change, the free energy at |V |/2πTc = 1.815 can be smaller
than that at |V |/2πTc = 1.814.

Finally, we show that the overall sign change in the spin-
triplet p-wave component [Figs. 2(c) and 2(d)] does not
affect the free-energy density. The pairing correlations are
calculated from the parameters aν for ν = 0–3 as shown in
Eqs. (C9)–(C14). Thus the overall sign change of the pair-
ing correlation is derived from that of aν (i.e., aν → −aν).
The induced pairing correlations contribute to the free-energy
density through the second term in Eq. (C16). The function
N0 shown in Eq. (C14) consists of the products of aν and
its particle-hole conjugation aν . Thus the overall sign change
of the spin-triplet p-wave component does not affect the
free-energy density because aν aν remains unchanged under
aν to −aν .

IV. SUPPRESSION OF Tc

It has been widely accepted since the 1960s that the transi-
tion temperature decreases with the increase of the magnetic
impurity concentration [10,11]. We first summarize the out-
line of these historical papers. The transition temperature is
determined by solving the linearized gap equation,

� = gN02πT
∑
ωn>0

F, (17)

where F is the linearized anomalous Green’s function, and it is
F = F0 = �/|ωn| in the clean limit. The anomalous Green’s
function is renormalized by the self-energy due to impu-
rity scatterings. For nonmagnetic impurities, the anomalous
Green’s function is calculated as

F =Fnm = �̃

ω̃n
, (18)

�̃ =�

[
1 + 1

2τn|ωn|
]
, ω̃n = ωn

[
1 + 1

2τn|ωn|
]
, (19)

where τn is the lifetime of an electron due to scatterings
by nonmagnetic impurities. The relation Fnm = F0 holds true
because the renormalization factor in the numerator of Fnm

cancels that in the denominator. As a result, the transition
temperature does not change in the presence of nonmagnetic
impurities. For magnetic impurities, however, we find within

the self-consistent Born approximation that

F =Fm = �̃

ω̃n
= �

|ωn| + 1/τm
, (20)

where τm is the lifetime of an electron due to scatterings
by magnetic impurities. In Table I, we summarize symme-
tries broken by the self-energy due to magnetic impurities.
Thus translational symmetry, local inversion symmetry, and
spin-rotation symmetry are restored after averaging. The
renormalization factor of ωn and that of � can be different
from each other because the magnetic moments of impurities
break time-reversal symmetry,

σ̂2 V · σ̂∗ σ̂2 = −V · σ̂. (21)

The negative sign on the right-hand side is the source of 1/τm

in Eq. (20) that explains the suppression of Tc. Indeed, the
transition temperature is estimated as

ln
(Tc

T0

)
≈ ψ

(
1

2

)
− ψ

(
1

2
+ ξ0

�m

T0

Tc

)
, (22)

ψ

(
1

2

)
− ψ

(
1

2
+ x

2

)

=
∞∑

n=0

2

2n + 1 + x
−

∞∑
n=0

2

2n + 1
, (23)

where T0 is the transition temperature in the clean limit, �m =
vF τm is the mean-free path of an electron due to scatterings
by magnetic impurities, and ψ (x) is the digamma function.
As shown with a broken line in Fig. 4, Tc decreases rapidly
with the increase of ξ0/�m. We note that neither spin-triplet
pairing correlations nor odd-frequency pairing correlations
are considered on the way to Eq. (22).

Secondly, we discuss how odd-frequency pairs affect the
transition temperature. To do this, we derive the linearized
Eilenberger equations, which are displayed in Eqs. (C17) and
(C18). The gap equation in the linearized regime is given in
Eq. (C19). We consider a pair of the classical trajectories: one
is along k̂ and the other is along −k̂. As a result, we obtain the
following equations, which relate the four pairing correlations
belonging to different symmetry classes:

vF k̂ · ∇S− + 2ωn S+ − 2iT+ · V − 2 sgn(ωn) � = 0, (24)

vF k̂ · ∇T− + 2ωn T+ − 2iS+V = 0, (25)

vF k̂ · ∇S+ + 2ωn S− − 2iT− · V = 0, (26)

vF k̂ · ∇T+ + 2ωn T− − 2iS−V = 0, (27)

S±(r, k̂, ωn) = a0(r, k̂, ωn) ± a0(r,−k̂, ωn), (28)

T±(r, k̂, ωn) = a(r, k̂, ωn) ± a(r,−k̂, ωn). (29)

Riccati’s parameter S+ (S−) represents the spin-singlet
even-parity (odd-parity) pairing correlation, and T+ (T−)
represents the spin-triplet even-parity (odd-parity) pairing
correlation. Equation (24) describes the relation among the
three spin-singlet even-parity pairing correlations and the pair
potential. The spatial gradient of the odd-parity correlation
S− generates the even-parity component, which is a result of
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FIG. 4. The theoretical results of the transition temperature are
plotted as a function of the inverse of the mean-free path. The broken
line is the result calculated from the impurity self-energy within the
self-consistent Born approximation, where we use Eq. (20). The solid
line is the result of this paper, where we use Eq. (32). It is impossible
to compare Tc in the two results because the horizontal lines are
defined in different ways. In Eq. (20), �m = vF τm is the mean-free
path of an electron on the Fermi level. In Eq. (32), on the other hand,
�s = τsvF can be interpreted as the mean free path of a spin-singlet
Cooper pair.

breaking local inversion symmetry. For simplicity, we neglect
the effects of breaking local inversion symmetry and delete the
gradient terms in real space in Eqs. (24)–(27). In this approxi-
mation, we implicitly consider the homogeneous correlation
functions after averaging over the position of magnetic
impurities. The correlation functions under the approxima-
tion recover both translational symmetry and local inversion
symmetry.

In the absence of gradient terms in real space, S− = T− =
0 is a solution of Eqs. (26) and (27). The odd-frequency cor-
relation T+ contributes to the spin-singlet pairing correlation
as a result of breaking spin-rotation symmetry by magnetic
impurities. In what follows, we analyze the two remaining
equations, Eqs. (24) and (25), in the absence of gradient terms.
Equation (25) implies that the magnetic moment generates
the odd-frequency spin-triplet pairing correlation T+ from
the spin-singlet even-parity correlation S+ in the absence of
spin-rotation symmetry. The Matsubara frequency ωn in the
second term enables the conversion from the odd-frequency
correlation T+ to the even-frequency correlation S+. As a
result of the conversion, the free-energy density at a mag-
netic impurity increases above zero, as shown in Fig. 1. The
free energy averaged over a whole superconductor increases
and the transition temperature decreases with the increase
of the magnetic impurity concentration. The superconduct-
ing state disappears when the averaged free energy becomes
zero. By eliminating the odd-frequency pairing correlation
T+ at Eqs. (24) and (25), we reach an equation only for the

spin-singlet even-parity component,

ω2
nS+ + V · V S+ = �|ωn|. (30)

We assume the properties of a random potential,

V (r) = 0, V (r)V (r) = 1

τ 2
s

, (31)

under ensemble-averaging, where 1/τs can be interpreted as
the lifetime of a spin-singlet Cooper pair in the presence
of magnetic impurities. This can be confirmed by changing
iωn → −∂τ → −i∂t in Eq. (30). We find that τs gives the
characteristic timescale of the equation. We finally reach a
solution of

S+ = � |ωn|
ω2

n + 1/τ 2
s

. (32)

The scatterings by magnetic impurities remove the singularity
at ωn = 0 at the denominator. This explains the decrease of Tc

when we substitute F = S+ into Eq. (17). In Fig. 4, we show
Tc calculated by using Eq. (32) with a solid line, where the
horizontal axis is ξ0/�s, with �s = τsvF meaning the mean-
free path of a spin-singlet s-wave Cooper pair under magnetic
impurities. The calculated results show that Tc decreases
with the increase of scatterings by magnetic impurities. This
phenomenon can be understood from two different view-
points because magnetic impurities simultaneously generate
odd-frequency Cooper pairs and subgap quasiparticles. The
viewpoint from a Cooper pair shows that the odd-frequency
pair increases the free energy locally. The viewpoint from a
quasiparticle suggests that the occupation of the YSR states
below the Fermi level reduces the condensation energy. We
conclude that these two facts make the superconducting state
unstable and decrease Tc.

V. CONCLUSION

We have studied the properties of a superconducting state
around a magnetic impurity embedded in a conventional su-
perconductor. The analytical results of the anomalous Green’s
function show that the magnetic impurity converts a spin-
singlet s-wave Cooper pair into odd-frequency Cooper pairs.
Comparing the normal and the anomalous Green’s function
explains the coexistence of odd-frequency Cooper pairs and
quasiparticles at the Yu-Shiba-Rusinov (YSR) states. We con-
clude that the formation of the YSR states below the gap is
a direct consequence of the appearance of an odd-frequency
Cooper pair.

The numerical results of the free-energy density show
that the superconducting states around a magnetic impurity
are thermodynamically unstable because of the paramagnetic
property of odd-frequency Cooper pairs. This fact explains
naturally the remaining open issues listed in the Introduction.
The sign of the pair potential changes around an impurity with
a sufficiently large magnetic moment because odd-frequency
pairs are dominant around such a strong magnetic impurity.
On the basis of the obtained results, we also proposed an
alternative scenario to explain the suppression of the transition
temperature in the presence of many magnetic impurities.

104518-7



SUZUKI, SATO, AND ASANO PHYSICAL REVIEW B 106, 104518 (2022)

ACKNOWLEDGMENTS

The authors are grateful to A. A. Golubov, Y. Tanaka,
Ya. V. Fominov, and S. Hoshino for useful discussion. This
work was supported by JSPS KAKENHI (No. JP20H01857)
and JSPS Core-to-Core Program (No. JPJSCCA20170002).
S.-I.S. is supported by a Grant-in-Aid for JSPS Fellows (JSPS
KAKENHI Grant No. JP19J02005) and by Overseas Research
Fellowships by JSPS. S.-I.S. acknowledges the hospitality at
the University of Twente. T.S. is supported in part by the
establishment of university fellowships towards the creation
of science technology innovation from the Ministry of Edu-
cation, Culture, Sports, Science, and Technology (MEXT) of
Japan.

APPENDIX A: PARAMAGNETIC COOPER PAIRS

The superconducting condensate can be described phe-
nomenologically by the macroscopic wave function

ψ (r) =
√

nS(r) eiθ (r), (A1)

where nS is the density of Cooper pairs and θ is the phase
of the condensate. The flux quantization is derived from the
single-valuedness of this wave function. The Josephson effect
is explained as the tunnel effect between two superconductors
characterized by such wave functions. The energy of the con-
densate can be calculated in terms of the macroscopic wave
function,

E =
∫

dr
h̄2

2m

{(
∇ + i

e

h̄c
A

)
ψ†(r)

}{(
∇ − i

e

h̄c
A

)
ψ (r)

}
,

(A2)

=
∫

dr
h̄2

2m

{
(∇nS)2

4nS
+ nS

(
∇θ − e

h̄c
A

)2
}
. (A3)

The first term in Eq. (A3) represents the kinetic energy of
the condensate, and the second term means the elastic energy
of the superconducting phase. Since nS > 0, both the spatial
gradient of the density and the spatial gradient of the phase
increase the energy of the condensate, which describes the
rigidity of the superconducting state. Therefore, both the pair
density and the phase are uniform at the ground state in
the absence of a magnetic field. The electric current can be
described by

j= e h̄

2im

[
ψ†(r)

(
∇ − i

e

h̄c
A

)
ψ (r) −

(
∇ + i

e

h̄c
A

)
ψ†(r) ψ (r)

]

= e h̄ nS

m
∇θ − nS e2

mc
A. (A4)

Together with the Maxwell equation ∇ × H = 4π
c j, we obtain

the equation for a magnetic field in a superconductor,

∇2H − 4π nSe2

m c2
H = 0. (A5)

London’s length λL =
√

m c2/4π nS e2 characterizes the spa-
tial variation of a magnetic field. Equation (A5) represents the
Meissner screening effect of a magnetic field. The dumping
of a magnetic field into a superconductor is described by the

negative sign at the second term on the last line in Eq. (A4).
The argument above is valid when the pair density nS is
positive everywhere in a superconductor.

Let us assume that the pair density is negative locally at
a finite area around r = r0, and let us discuss the physical
consequence of nS(r0) < 0. The second term in Eq. (A3)
suggests that a large gradient of the phase and the penetration
of a magnetic field are necessary to decrease the energy of
the condensate. Namely, the condensate with the “negative
pair density” is paramagnetic. Equation (A5) with negative
nS suggests also that a magnetic field can penetrate into such
a paramagnetic superconductor [40,41]. Such a local area
around r0 may no longer be superconductive because the
phase θ fluctuates easily from a constant value. Thus the pair
density nS must be positive to realize the stable homogeneous
superconducting ground state both electromagnetically and
thermodynamically. However, the “pair density” can be nega-
tive locally in the presence of an odd-frequency pair.

The surface of a superconductor breaks inversion sym-
metry locally. As a result of breaking inversion symmetry,
odd-parity (even-parity) pairing correlations appear at the
surface of an even-parity (odd-parity) superconductor. Such
induced pairing correlations belong to an odd-frequency sym-
metry class because the surface does not change the spin of
a Cooper pair. In what follows, we demonstrate that the pair
density can be negative at such a surface by using an analytical
solution of the Eilenberger equation,

h̄vF k̂ · ∇ĝ + [H, ĝ] = 0, (A6)

H =
[

ωn �(r, k̂)
−ss�

˜
(r, k̂) −ωn

]
, ĝ(r, k̂, ωn)

=
[

g(r, k̂, ωn) f (r, k̂, ωn)
−ss f

˜
(r, k̂, ωn) −g(r, k̂, ωn)

]
. (A7)

Here we have reduced to 2 × 2 particle-hole space by ex-
tracting one spin sector of the Bogoliubov–de Gennes (BdG)
Hamiltonian. The pair potential obeys the symmetry relation

�(r,−k̂) =
{

�(r, k̂) singlet ss = −1,

−�(r, k̂) triplet ss = 1,
(A8)

which is derived from the Fermi-Dirac statistics of elec-
trons. The Eilenberger equation can be decomposed into three
equations [47],

vF k̂ · ∇g = 2� fS, vF k̂ · ∇ fB = −2ωn fS,

vF k̂ · ∇ fS = 2(� g − ωn fB), (A9)

with

fB = 1
2 ( f − ss f

˜
), fS = 1

2 ( f + ss f
˜

). (A10)

The quasiclassical Green’s functions satisfy the normalization
condition

g2 − ss f
˜

f = g2 + f 2
B − f 2

S = 1. (A11)
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In a homogeneous superconductor, we obtain the solution as

g = ωn



, fB = �(k̂)



, fS = 0, 
 =

√
ω2

n + �2(k̂).

(A12)

Thus fB is interpreted as a bulk component of pairing corre-
lation, which contributes to the pair potential through the gap
equation

�(r, k̂) = T
∑
ωn

∫
d k̂

′

Sd
λ(k̂, k̂

′
) f (r, k̂

′
, ωn), (A13)

where λ represents an attractive interaction between two
electrons. The second equation in Eqs. (A9) represents the
symmetry relationship between fB and fS . Since k̂ is an odd-
parity function and ωn is an odd in Matsubara frequency, fS

belongs to the opposite parity and opposite frequency sym-
metry class to fB. Therefore, fS is considered as an induced
pairing component due to the spatial gradient of fB. Although
the anomalous Green’s function f in Eq. (A13) consists of
both fB and fS , only the bulk component fB contributes to
the pair potential. Since fS is an odd function of ωn, the
summation of fS over ωn vanishes. The Meissner kernel for
the quasiclassical Green’s function is described as [48]

jμ = − 2ne2

mc
Qμ,νAν, (A14)

Qμ,ν = dπT
∑
ωn

∫
d k̂
Sd

k̂μ k̂ν ∂ωn g(r, k̂, ωn)

= dπT
∑
ωn>0

∫
d k̂
Sd

k̂μ k̂ν

(
f 2
B − f 2

S

)
∂ωn log

1 + g

1 − g
.

(A15)

The last expression suggests that the odd-frequency pairing
correlation decreases Qμ,ν . By putting the results in Eq. (A12)
for a spin-singlet s-wave superconductor into Q, it is possible
to recover the results of [49]

Qμ,ν = π T
∑
ωn

�2(
ω2

n + �2
)3/2 δμ,ν . (A16)

The product of nQμ,μ is often referred to as pair density.
As an example of inhomogeneous superconducting states,

we consider the condensate near the surface of a two-
dimensional p-wave superconductor. The pair potential is
described as

�(x) = � cos θ tanh

(
x

ξ0

)
, k̂x = cos θ,

k̂y = sin θ, ξ0 = vF

� cos θ
, (A17)

where we assume that a surface is at x = 0 and a p-wave
superconductor occupies x > 0, the superconducting state is
uniform in the y direction, and ξ0 is the coherence length. The

solution of Eq. (A9) can be obtained as [50]

g(x, θ, ωn) = ωn


θ

+ �2 cos2 θ

2ωn
θ

cosh−2

(
x

ξ0

)
,

fB(x, θ, ωn) = � cos θ


θ

tanh

(
x

ξ0

)
, (A18)

fS (x, θ, ωn) = −�2 cos2 θ

2ωn
θ

cosh−2

(
x

ξ0

)
,


θ =
√

ω2
n + �2 cos2 θ. (A19)

The bulk component fB(x, θ + π,ωn) = − fB(x, θ, ωn) is
odd-parity, whereas the surface component fS is even-
parity because of cos2(θ + π ) = cos2 θ . The gap equation in
Eq. (A13) is described as

�(x) = T
∑
ωn

∫ 2π

0

dθ ′

2π
(2λ cos θ cos θ ′)

× [ fB(x, θ ′, ωn) + fS (x, θ ′, ωn)], (A20)

=� cos θ tanh

(
x

ξ0

)
λT

∑
ωn

1√
ω2

n + �2
. (A21)

On the way to the second line, we approximately neglect the
θ dependence of 
θ and that of ξ0 in fB. The amplitude of fS

increases with the decrease of ωn at its denominator and can
be larger than the amplitude of fB for ωn � �. The resulting
response kernel,

Qμ,ν ≈ δμ,ν πT
∑
ωn

∫ 2π

0

dθ

2π

�2 cos2 θ(
ω2

n + �2 cos2 θ
)3/2

×
[

1 − �2 cos2 θ

2ω2
n

cosh−2

(
x

ξ0

)]
, (A22)

can be negative for a low temperature T � Tc near the sur-
face 0 < x < ξ0. The paramagnetic response at the surface
of an unconventional superconductor was pointed out for a
d-wave superconductor [51,52]. To make clear the details
of the paramagnetic effect theoretically, analysis beyond the
linear response is necessary. In Refs. [42,53], the pair po-
tential and a magnetic field are determined self-consistently
with each other in a small unconventional superconductor. A
small p-wave superconducting disk shows a paramagnetic re-
sponse to a magnetic field at low temperature. Even-frequency
pairs stabilize p-wave superconductivity in the bulk, and
odd-frequency pairs exhibit the paramagnetic response at the
surface.

Finally, we briefly explain the coexistence of an odd-
frequency pair and a quasiparticle at the Andreev bound state
at a surface. After applying iωn → ε + iδ, the local density
of states for |ε| < � calculated from the second term of the
normal Green’s function becomes

N (x, ε)

N0
= Re

∫
dθ

2π
i

�2 cos2 θ

2(ε + iδ)
√

�2 cos2 θ − ε2

× cosh−2

(
x

ξ0

)
→ δ(ε)

�

π
cosh−2

(
x

ξ0

)
.

(A23)
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The peak of the local density of states at zero energy re-
flects the existence of a quasiparticle at the surface Andreev
bound state.

APPENDIX B: LIPPMANN-SCHWINGER EQUATION

The Lippmann-Schwinger equation relates the Green’s
function in the presence of perturbations V̌ to the Green’s
function in the absence of perturbation as

Ǧ(r, r′) = Ǧ (0)(r, r′)

+
∫

dr1 Ǧ (0)(r, r1) V̌ (r1) Ǧ(r1, r′). (B1)

When we consider an impurity potential V̌ (r) = V̌ δ(r), the
equation becomes

Ǧ(r, r′) = Ǧ (0)(r, r′) + Ǧ (0)(r, 0) V̌ Ǧ(0, r′). (B2)

By putting r = 0 into the equation, the equation

Ǧ(0, r′) = Ǧ (0)(0, r′) + Ǧ (0)(0, 0) V̌ Ǧ(0, r′) (B3)

has a closed form. Substituting the solution

Ǧ(0, r′) = [
1 − Ǧ (0)(0, 0)V̌

]−1Ǧ (0)(0, r′) (B4)

into Eq. (B2), we obtain

Ǧ(r, r′) = Ǧ (0)(r, r′) + Ǧ (0)(r, 0) V̌

× [
1 − Ǧ (0)(0, 0)V̌

]−1Ǧ (0)(0, r′). (B5)

In this paper, we consider a spin-singlet s-wave super-
conductor in one dimension as described by Eq. (1). The
unperturbed Green’s function in the Matsubara representation
is given by

Ǧ (0)(x, x′) = −πN0



Ǔ †

[
iωnC0 − 
S0 �C0

�C0 iωnC0 + 
S0

]

× e−|x−x′|/ξ0Ǔ , (B6)

with


 =
√

ω2
n + �2, k± = k

(
1 ± i




2εF

)
,

Ǔ =
[

1 0
0 iσ̂2eiϕ

]
, (B7)

C0 = cos(k|x − x′|), S0 = sin(k|x − x′|), ξ0 = 2εF


kF
,

(B8)

where σ̂ j for j = 1–3 is the Pauli matrix in spin space, and k
denotes the Fermi wave number.

The potential of a nonmagnetic impurity is described by

V̌ =
[
V0σ̂0 0

0 −V0σ̂0

]
= V0τ̂3, (B9)

where τ̂ j for j = 1–3 is the Pauli matrix in particle-hole space.
The Green’s function in the presence of a nonmagnetic impu-
rity is calculated as

Ǧ(x, x′) = Ǧ (0)(x, x′) − πN0



e−(|x|+|x′|)/ξ0

γ0(
1 + γ 2

0

)
× Ǔ †

[
iω(S+ − γ0C+) + 
(C+ + γ0S+) �(S+ − γ0C+)

�(S+ − γ0C+) iω(S+ − γ0C+) − 
(C+ + γ0S+)

]
Ǔ , (B10)

C± = cos {k(|x| ± |x′|)}, S± = sin {k(|x| ± |x′|)}, γ0 = πN0V0. (B11)

The anomalous Green’s function results in

f̂ (x, x′) = −πN0�



iσ̂2

[
C0 e−|x−x′|/ξ0 + γ0

1 + γ 2
0

(S+ − γ0 C+)e−(|x|+|x′|)/ξ0

]
. (B12)

The anomalous Green’s function f̂ (x, x′) consists only of a spin-singlet even-parity Cooper pair because it remains unchanged
under x ↔ x′. The normal Green’s function becomes

Tr
[
ǦR

ε (x, x)
] = −4π i N0 ε√

ε2 − �2

[
1 + γ0

1 + γ 2
0

(sin 2k|x| − γ0 cos 2k|x|)e−2|x|/ξ0

]
, (B13)

which is always a real value for ε < �.
In the presence of a magnetic impurity, the normal Green’s function is calculated to be

ĝ(x, x′) = πN0




[−e−|x−x′|/ξ0 (iωnC0 − 
S0)

− e−(|x|+|x′|)/ξ0

Z
|γ|2[2iωn�

2C− + {�2(1 − |γ|2) − ω2
n(1 + |γ|2)}(iωnC+ − 
S+)]

+ e−(|x|+|x′|)/ξ0

Z
γ · σ̂
{�2(1 − |γ|2)C− + iωn(iωnC+ − 
S+)(1 + |γ|2)]}, (B14)

Z =�2(1 − |γ|2)2 + ω2
n(1 + |γ|2)2, γ = πN0V . (B15)

where S± and C± are given in Eq. (B11). The anomalous Green’s function is displayed in Eq. (9).
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APPENDIX C: EILENBERGER EQUATION

To study the pairing correlations around a magnetic impurity, we solve the Eilenberger equation numerically. The Matsubara
Green function can be decomposed into the Riccati parameters as

Ǧ(r, k̂, iωn) =
(
Ĝ F̂
F̂ −Ĝ

)
=

(
N̂ 0̂
0̂ N̂

)(
sgn(ωn) (1 − ââ) 2â

2â −sgn(ωn) (1 − ââ)

)
, (C1)

â = â(r, k̂, iωn), â = â(r, k̂, iωn), (C2)

N̂ = (1 + ââ)−1, N̂ = (1 + ââ)−1. (C3)

The Riccati parameters can be decomposed into four components as

â(r, k̂, iωn) =a0(r, k̂, iωn) + a(r, k̂, iωn) · σ̂, (C4)

where a0 is the spin-singlet component, and a j for j = 1–3 are three spin-triplet components. They obey the symmetry relations

a0(r,−k̂,−iωn) = a0(r, k̂, iωn), a(r,−k̂,−iωn) = −a(r, k̂, iωn). (C5)

The spin-singlet component a0 is either the even-parity even-frequency symmetry or the odd-parity odd-frequency one. The
three spin-triplet components a are either the odd-parity even-frequency symmetry or the even-parity odd-frequency one. The
Riccati parameter â in Eq. (C2) obeys the Eilenberger equation,

ih̄vF k̂ · ∇â + 2iωn â + V (r) · σ â + âV (r) · σ − i sgn(ωn) �(r) + i sgn(ωn) â �(r) â = 0, (C6)

ih̄vF k̂ · ∇â − 2iωn â − V (r) · σ â − âV (r) · σ + i sgn(ωn) �(r) − i sgn(ωn) â �(r) â = 0. (C7)

The equation

X (r, k̂, iωn) = σ̂2 X
˜

(r, k̂, iωn) σ̂2 = σ̂2 X ∗(r,−k̂, iωn) σ̂2 (C8)

defines the relation among X , X
˜

, and X .

The anomalous Green’s function is represented by

F̂ (r, k̂, iωn) =2 N̂ (r, k̂, iωn) â(r, k̂, iωn) = F0(r, k̂, iωn) + F (r, k̂, iωn) · σ̂, (C9)

F0(r, k̂, iωn) = 2

ZN

[
a0 + (

a2
0 − a2

)
a0

]
(r,k̂,iωn ), (C10)

F (r, k̂, iωn) = 2

ZN

[
a + (

a2
0 − a2

)
a
]

(r,k̂,iωn ), (C11)

ZN = 1 + (
a2

0 − a · a
)(

a2
0 − a · a

) + 2(a0 a0 − a · a). (C12)

The pair potential for spin-singlet s-wave symmetry is calculated self-consistently by using the gap equation,

�(r) = π N0 g
∫

d k̂
Sd

T
∑
ωn

F0(r, k̂, iωn), (C13)

where sd is the solid angle in d-dimension and g is the coupling constant. The Ricatti parameters in the real energy representation
iωn → ε + iδ enable us to calculate the local density of states

N (r, ε) =N0 Re
∫

d k̂
Sd

[2N0(r, k̂, ε) − 1], N0 = 1

ZN
(1 + a0 a0 − a · a), (C14)

where N0 is the spin-singlet component of N̂ in Eq. (C3). The condensation energy of the superconducting states can be
represented as [54]

FS − FN =
∫

dr fSN(r), (C15)

fSN(r) =πN0

∫
d k̂
Sd

[
T

∑
ωn

�∗(r)F0(r, k̂, iωn) + 8T
∑
ωn>0

∫ ∞

ωn

dωRe
[
N0(r, k̂, iω) − 1

]]
. (C16)

The first term is derived from the constant term in the mean-field Hamiltonian. Although the second term is calculated from the
normal Green’s function, a Cooper pair affects the condensation energy through the normalization of the Green’s function (i.e.,
Ĝ2 + F̂F̂ = 1̂).
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To discuss the suppression of Tc due to odd-frequency Cooper pairs, we analyze the linearized Eilenberger equation. By
deleting the last term in Eq. (C6), we obtain

(vF k̂ · ∇ + 2ωn)a0 − 2ia · V (r) − sgn(ωn) �(r) = 0, (C17)

(vF k̂ · ∇ + 2ωn)a − 2ia0V (r) = 0. (C18)

The first (second) equation corresponds to the spin-singlet (spin-triplet) part of Eq. (C6). The gap equation in the linear regime
is given by

�(r) = π gN0 T
∑
ωn

∫
d k̂
Sd

2a0(r, k̂, ωn). (C19)

In numerical simulation in this paper, we calculate the Ricatti parameters a(x,±, iωn), where + (−) indicates the positive
(negative) momentum point on the Fermi surface in one dimension. The angle average on the Fermi surface is represented as∫

d k̂
Sd

X (r, k̂, iωn) → 1

2

∑
s=±

X (x, s, iωn). (C20)
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