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Magnetic field constraint for Majorana zero modes in a hybrid nanowire
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The hybrid semiconductor-superconductor nanowire is expected to serve as an experimental platform to
support Majorana zero modes. By rederiving its effective Kitaev model with spins, we discover a topological
phase diagram, which assigns a more precise constraint on the magnetic field strength for the emergence of
Majorana zero modes. We find that the effective pairing strength dressed by the proximity effect exhibits a
significant dependence on the magnetic field, and thus the topological phase region is refined into a closed
triangle in the phase diagram with chemical potential vs Zeeman energy (which is obviously different from the
open hyperbolic region known before). This prediction is confirmed again by an exact calculation of quantum
transport, where the zero bias peak of 2e2/h in the differential conductance spectrum, as the necessary evidence
for the Majorana zero modes, disappears when the magnetic field grows too strong. Therefore, the hybrid
nanowire system does not support Majorana zero modes under a too strong magnetic field. For illustrations
with practical hybrid systems, in the InSb nanowire coupled to NbTiN, the accessible magnetic field range is
around 0.1–1.5 T; when coupled to an aluminum shell, the accessible magnetic field range should be smaller
than 0.12 T. Our predictions are essential to significantly narrow down the range of magnetic fields for further
searching Majorana zero modes in experiments.
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I. INTRODUCTION

Recent experiments for Majorana zero modes (MZMs)
have attracted extensive attentions [1–7] due to their fractional
statistics and potential applications in quantum computa-
tion [1,8,9]. In particular, the possible signature for MZMs has
been shown in hybrid semiconductor-superconductor (HSS)
systems [10,11], where a semiconductor nanowire with ap-
preciable spin-orbit coupling is in contact with an s-wave
superconductor (SC) providing the SC proximity effect. In
transport experiments, the existence of MZMs would result
in a zero bias peak (ZBP) in the differential conductance
spectrum, and the height of the ZBP should be 2e2/h in the
ideal case at zero temperature [12–14].

However, most of the current ZBP detections for MZMs do
not reach the ideal height of 2e2/h but are lower [10,11,15,16].
As a result, such a ZBP signature alone cannot sufficiently
confirm the existence of MZMs as the unique reason apart
from other possible physical effects, such as Andreev bound
states [7,17–19], and the Kondo effect [20,21]. To help narrow
down the searching range in experiments, a more precise
phase diagram for different parameter regimes is urgently
needed to find the MZMs, for example, what is the allowed
magnetic field range where the MZMs could exist.

In previous investigations, the SC proximity effect was
assumed to be an s-wave pairing in the nanowire with the
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pairing strength, which is approximated as a constant
[2,22–26], and this is consistent with the result from the
Bogoliubov–de Gennes equation projected into the low
energy band [5,6,27–32]. It follows from this crude approx-
imation that the topological region bearing MZMs fills up the
whole upper half of a hyperbolic curve in the μ-B diagram
(μ, B are the chemical potential and Zeeman splitting of the
nanowire, respectively). Namely, these approximated results
indicate MZMs exist no matter how strong the magnetic field
grows. In this paper, however, we find that such a conclusion
is not as solid as has been taken for granted, and MZMs
emerge only when the magnetic field lies within a modest
regime.

First, we utilize the Fröhlich-Nakajima (Schrieffer-Wolff)
transformation to obtain an effective Hamiltonian for the
nanowire, which encloses the SC proximity effect and then
gives an effective Kitaev model in the HSS nanowire [33–35].
It turns out the effective pairing strength exhibits significant
dependence on the strong magnetic field when the higher-
order effect of the magnetic field is considered. As a result,
the topological region bearing MZMs becomes a closed trian-
gle in the μ-B diagram compared with the hyperbolic curve
known before. Namely, when the magnetic field is too strong,
the system becomes nontopological, and MZMs disappear;
when the magnetic field is weak, this triangle region reduces
to the previous hyperbolic curve. It is predicted from this
phase diagram that the MZMs only emerge when the magnetic
field strength lies within a modest regime. For the current
experiments with InSb-NbTiN and InSb-Al, the magnetic field
ranges supporting MZMs are 0.1–1.5 T and 0.012–0.12 T,
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FIG. 1. Setup of the hybrid nanowire: The semiconductor
nanowire is in contact with surface of the s-wave SC through tun-
neling. Through virtual exchanges of the quasiexcitations in the SC,
this proximity effect induces an effective pairing among the electrons
in the nanowire. In the experiment of quantum transport to probe
Majorana zero modes, the hybrid system is connected to the electron
leads.

respectively, the latter of which is outside the range used in
some current experiments.

To confirm the above prediction based on the effective
theory, we further make an exact calculation on the differ-
ential conductance in the transport measurement of the HSS
nanowire by a quantum Langevin equation [36–40]. When
the magnetic field increases from zero, a ZBP with 2e2/h
appears at a certain field strength, stays for a while, and then
disappears at a higher strength, which is consistent with the
conclusion from the effective Hamiltonian. This confirms that
MZMs do not exist in the hybrid nanowire when the magnetic
field is too strong.

II. EFFECTIVE KITAEV MODEL IN LOW ENERGY SCALE

In this HSS system (see Fig. 1), the semiconductor
nanowire is described by the Hamiltonian [3]

Ĥw =
∫

dx ψ̂
†
(x)

[
− ∂2

x

2mw
− μ − iασ y∂x + Bσ z

]
ψ̂(x), (1)

where ψ̂(x) := [ψ̂↑(x), ψ̂↓(x)]T , and σ y,z are the Pauli matri-
ces. Here ↑,↓ indicate the electron spins, α is the spin-orbit
coupling strength, mw is the effective mass, μ is the chemical
potential of the nanowire, and B is the Zeeman splitting from
the external magnetic field, respectively.

The semiconductor nanowire is placed in contact with an
s-wave SC providing the SC proximity effect, which is de-
scribed by the BCS Hamiltonian

Ĥsc =
∑

k

εsc
k (ĉ†

k↑ĉk↑ − ĉ−k↓ĉ†
−k↓) + �s(ĉ

†
k↑ĉ†

−k↓ + H.c.),

(2)
with εsc

k ≡ k2/2msc − μsc. The whole nanowire is contacted
with the surface of the s-wave SC through the tunneling term

Ĥw-sc = −Js

∑
s=↑,↓

∫
dx [ψ̂†

s (x)ĉs(x, 0, 0) + H.c.], (3)

where Js is the tunneling strength, and ĉks and ĉs(x) are the
Fourier images of each other. The tunneling coupling induces
an effective pairing among the electrons in the nanowire and
this proximity effect is caused by the virtual exchanges of the
quasiexcitations in the SC.

To describe the above mentioned virtual progress governed
by the total Hamiltonian Ĥ ≡ Ĥw + Ĥsc + Ĥw-sc, we apply
the Fröhlich-Nakajima (Schrieffer-Wolff) transformation to

eliminate the degrees of freedom of the s-wave SC [33–35].
When the coupling between the nanowire and the s-wave SC
is weak enough, the effective Hamiltonian for the nanowire is
obtained as (see Appendix A)

Ĥeff =
∫

dk

2π
{(ε̃w,k − μ̃k )[ϕ̂†

↑(k)ϕ̂↑(k) + ϕ̂
†
↓(k)ϕ̂↓(k)]

+ iα̃kk[ϕ̂†
↓(k)ϕ̂↑(k) − H.c.]

+ B̃k[ϕ̂†
↑(k)ϕ̂↑(k) − ϕ̂

†
↓(k)ϕ̂↓(k)]

+ �̃k[ϕ̂†
↑(k)ϕ̂†

↓(−k) + H.c.]}. (4)

Here ϕ̂s(k) is the Fourier transform of ψ̂s(x). �̃k is the
effective pairing strength induced by the SC proximity effect,
and ε̃w,k , μ̃k , α̃k , and B̃k are the corrected kinetic energy
(εw,k ≡ k2/2mw), chemical potential, spin-orbit coupling, and
Zeeman splitting of the nanowire, respectively, i.e.,

�̃k = ϒs

[
1 − α2k2 + B2

�2
s

]− 1
2

,

ε̃w,k

εw,k
= μ̃k

μ
= α̃k

α
= B̃k

B
= 1 − �̃k

�s
. (5)

Here ϒs := J2
s ρs describes the coupling strength between the

nanowire and the s-wave SC, with ρs as the density of states
from the s-wave SC, and approximately ϒs is a constant.

Notice that here the dependence on the magnetic field B
is well kept in the above corrected parameters (5). Usually,
the induced s-wave pairing is regarded as a constant in pre-
vious studies, and the high-order dependencies on B/�s in
Eq. (5) are ignored. However, in the following, we show that
such high-order dependencies are essential when studying the
phase diagram in the strong field regime.

Under the open boundary condition, the effective Hamil-
tonian (4) has two edge modes localized at the two ends of
the nanowire, whose mode energies are zero, and they are
just the MZMs. It can be proved that the existence condi-
tion for the MZMs is given by the critical condition [B̃2

k −
μ̃2

k − �̃2
k]|k=0 = 0 (see Appendix B), which determines the

topological phase region [3,41]. It turns out this topological
region bearing MZMs appears as a closed triangle in the μ-B
phase diagram (Fig. 2). For a fixed chemical potential μ,
the MZMs could emerge only if the magnetic field strength
properly lies inside the triangle range. It is worth emphasizing
that the magnetic field range determined by the closed phase
diagram is much smaller than the critical magnetic field of the
s-wave superconductor (respectively Bc ∼ 10 T and B⊥,c ∼
0.1 T, B‖,c ∼ 1 T for NbTiN and Al [4,42]). However, the
s-wave SC gap �s would also decrease with the increase of
the magnetic field. This effect is not considered, and �s is
treated as a constant independent of the magnetic field. If this
effect is considered, the topological region in Fig. 2 would
be smaller. Thus, when the magnetic field strength exceeds
the range of the magnetic field determined by refined phase
region, the effective Hamiltonian (4) of the hybrid nanowire
does not support the existence of the MZMs.

For the weak field situation (B � �s), in the low energy
regime (k 	 0), the induced paring strength can be approxi-
mated as a constant �̃k 	 ϒs [see Eq. (5)]. Correspondingly,
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FIG. 2. (a) The topological phase diagram for HSS nanowire
given by the effective Hamiltonian (4) scaled by �s. The topological
phase region bearing MZMs is a closed triangle. The dotted black
line is given by the approximated topological criterion B2 − μ2 =
ϒ2

s [3,41]. The vertical line is μ = 0.1 �s, and the valid range for
the magnetic field is B ∼ 0.15–0.98 �s. (b) The rescaled phased
diagram. For InSb nanowire (Landé factor g 	 50) coupled to NbTiN
as the s-wave SC (�s 	 26 K [10]), the valid topological phase lies
in the yellow region, with the magnetic field range B ∼ 0.15–1.5 T;
for InSb nanowire coupled to aluminum shell (�s 	 2 K [4,43]),
the valid topological phase lies in the smaller gray region, with the
magnetic field range around 0.012–0.12 T, where MZMs could exist.

the above topological phase condition is reduced as B2 −
μ2 = ϒ2

s /(1 − ϒs/�s)2 	 ϒ2
s , which just returns the hyper-

bolic curve extensively studied in previous literatures [3,41].
Indeed, the bottom part of the close triangle region and the
hyperbolic curve agree well with each other (Fig. 2), which is
consistent with the fact that the hyperbolic curve comes from
an effective theory in the low energy regime.

To have a more clear understanding of the above obser-
vations, we study the above effective Hamiltonian in a new
representation [by diagonalizing the first three bracket terms
of (4)],

Ĥeff =
∫

dk

2π
{ε̃k+ϕ̂

†
+(k)ϕ̂+(k) + ε̃k−ϕ̂

†
−(k)ϕ̂−(k)

+ 1

2
�̃

(p)
k [ϕ̂†

+(k)ϕ̂†
+(−k) + ϕ̂

†
−(k)ϕ̂†

−(−k) + H.c.]

+ �̃
(s)
k [ϕ̂†

+(k)ϕ̂†
−(−k) + H.c.]}, (6)

which appears as an effective Kitaev model with spins [1,44].
Here ε̃k± = ε̃w,k − μ̃k ±

√
B̃2

k + α̃2
k k2, and

�̃
(p)
k := αk�̃k√

B2 + α2k2
, �̃

(s)
k := B�̃k√

B2 + α2k2
,

[
ϕ̂+(k)
ϕ̂−(k)

]
:=

[
cos ϑk i sin ϑk

−i sin ϑk cos ϑk

][
ϕ̂↑(k)
ϕ̂↓(k)

]
, (7)

with tan 2ϑk = α̃kk/B̃k = αk/B.
In the above representation, �̃

(s)
k and �̃

(p)
k are effectively

regarded as the s-wave and p-wave pairing strength, respec-
tively. With the increase of the magnetic field B, the p-wave
pairing �̃

(p)
k becomes weaker and weaker, while relatively the

s-wave pairing �̃
(s)
k becomes more dominant. Thus when the

magnetic field is too strong, the nanowire system enters

the nontopological phase region, and the MZMs would disap-
pear. Indeed, the disappearance of ZBP in the strong magnetic
field was claimed in some of the current experiments [10,11],
which is well explained by our result.

III. THE HYBRID NANOWIRE
OF QUANTUM TRANSPORT

To confirm the above observations from the effective
Hamiltonian, we carry out an exact calculation of the trans-
port behavior for the hybrid nanowire. To this end, the above
continuous Hamiltonian (1) is first discretized into an N-site
system as [26,45–47]

Ĥw =
∑
n,s

−J

2
(d̂†

n,sd̂n+1,s + d̂†
n+1,sd̂n,s) − (μ − J )d̂†

n,sd̂n,s

+
∑

n

αR

2
(d̂†

n,↓d̂n+1,↑ − d̂†
n,↑d̂n+1,↓ + H.c.)

+
∑

n

B(d̂†
n,↑d̂n,↑ − d̂†

n,↓d̂n,↓). (8)

Correspondingly, the tunneling term (3) between the nanowire
and the s-wave SC becomes Ĥw-sc = −∑

n,ks(Jn,ks d̂†
n,sĉks +

H.c.), with the tunneling strength |Jm,ks| = |Jn,ks′ | := Jk for
m �= n, s �= s′. We consider two electron leads are in contact
with the two ends of the nanowire (the site number x = 1, N),
which are described by the free electron gas model of metal
Ĥe-x = ∑

ks εx,k b̂†
x,ksb̂x,ks. The kinetic of the free electron

with respect to the chemical μx is εx,k = k2/2m − μx. The
tunneling interaction between the nanowire and lead x is
Ĥw-x = −∑

ks(gx,k d̂†
x,sb̂x,ks + H.c.).

The semiconductor nanowire is in contact with an s-wave
SC providing the SC proximity effect, which is described
by the BCS Hamiltonian with εsc

k ≡ k2/2msc − μsc and
the constant s-wave pairing strength �s [see Eq. (2)]. All
the N nanowire sites are contacted with the s-wave SC
through the tunneling interaction, which is described by
Ĥw-sc = −∑

n,ks(Jn,k d̂†
n,sĉks + H.c.), with Jn,k as the tunnel-

ing strength between site n and the s-wave SC, and they have
the same amplitude |Jn,k| = |Jm,k| := Jk for different sites
m �= n.

Notice that, similar to the two electron leads, indeed
the s-wave SC is also regarded as the third fermionic bath
interacting with the nanowire. Here we use the quantum
Langevin equation to study the transport current through the
nanowire [36–40], which is derived by combining the Heisen-
berg equations of d̂ns (nanowire), ĉks (s-wave SC), and b̂x,ks

(electron leads), that is (see Appendix C),

∂t d̂ = −iHw · d̂ −
∫ t

0
dτ D(t − τ ) · d̂(τ ) + iξ̂sc + iξ̂e. (9)

Here d̂(t ) := (d̂1, . . . , d̂N )T is a 4N-vector form with N
blocks d̂n := (d̂n↑, d̂n↓, d̂†

n↑, d̂†
n↓)T and the nanowire Hamilto-

nian Ĥw ≡ 1
2 d̂† · Hw · d̂ is rewritten with a 4N × 4N matrix

Hw. The dissipation kernel D(t ) ≡ De(t ) + Dsc(t ) contains
the contributions from both the two electron leads and the
s-wave SC, and ξ̂e(t ) and ξ̂sc(t ) are the corresponding random
forces, respectively.

104517-3



GUO-JIAN QIAO, SHENG-WEN LI, AND C. P. SUN PHYSICAL REVIEW B 106, 104517 (2022)

The Langevin equation (9) of d̂(t ) is exactly solved
in the Fourier space as d̃(ω) = G(ω) · [d̂(t=0) + iξ̃sc(ω) +
iξ̃e(ω)], where [G(ω)]4N×4N is the Green function of the
nanowire,

G(ω) = i[ω+ − Hw + iD̃sc(ω) + iD̃e(ω)]−1

≡ i

{
ω+ − Hw − Ṽs(ω) + i

2
[�̃s(ω) + �̃e(ω)]

}−1

,

(10)

with ω+ ≡ ω + iε (ε is infinitesimal). Here D̃sc(ω) ≡
�̃s(ω)/2 + iṼs(ω) is the Fourier image of the dissipation ker-
nel Dsc(t ) from the s-wave SC, where the “real part” �̃s(ω)
leads to dissipation, and the “imaginary part” Ṽs(ω) provides
an effective interaction for the nanowire Hamiltonian.

Specifically, D̃sc(ω) := diag{D̃s, . . . , D̃s} is a block-
diagonal matrix, with blocks D̃s(ω) := Γ̃s(ω)/2 + iṼs(ω),
where Γ̃s(ω) := Γ̃+

s (ω) + Γ̃−
s (ω) and

Ṽs(ω) := −�(�s − |ω|)ϒs√
�2

s − ω2
Σ(ω),

Γ̃±
s (ω) := ±2�(±ω − �s)ϒs√

ω2 − �2
s

Σ(ω),

Σ(ω) :=

⎡
⎢⎣

ω 0 0 −�s

0 ω �s 0
0 �s ω 0

−�s 0 0 ω

⎤
⎥⎦. (11)

Here ϒs(ω) := π
∑

k |Jk|2δ(ω − εsc
k ) → π |Js(ω)|2ρs(ω) is

introduced as the spectral density of the coupling with the
s-wave SC, which is approximated as a constant coupling
strength ϒs(ω) 	 ϒs.

The dissipation kernels of the two electron leads also
give D̃e(ω) ≡ �̃e(ω)/2 + iṼe(ω), while Ṽe(ω) 	 0 in the
usual transport experiments, only with �̃e(ω) := �1 + �N

left providing dissipation to the system. Here �1 :=
diag{Γ1, 0, . . . , 0} and �N := diag{0, . . . , 0, ΓN } are the dis-
sipation matrices from the two electron leads respectively,
where Γx := ϒx 14×4 (x = 1, N), and ϒx indicates the cou-
pling strength with lead-x, defined from the coupling spectral
density ϒx(ω) := 2π

∑
k |gx,k|2δ(ω − εx,k ) 	 ϒx.

It is worth noting that, without deriving the effective
Hamiltonian in priori with any approximations, the SC prox-
imity effect is naturally presented as off-diagonal elements of
Ṽs(ω) in the dynamical propagator (10), which measures the
on-site s-wave pairing for the nanowire [7,28,44,45]. More-
over, a Heaviside function appears in both Ṽs(ω) and Γ̃s(ω),
indicating a complementary effect of the SC proximity: when
the system energy scale lies within the s-wave gap |ω| < �s,
the s-wave SC just provides the effective pairing interaction
without any dissipation; in contrast, outside the gap |ω| > �s,
the SC proximity does not give the effective pairing, but
only brings in the dissipation effect similarly as the normal
leads.

IV. TRANSPORT SIGNATURE

To study the transport current, we consider the initial states
of the three baths (the two normal leads, and the s-wave

SC) in the Fermi-Dirac distributions at zero temperature. The
chemical potentials of the electron lead N is set as μN = 0,
while the lead 1 is μ1 = eV with V the bias voltage.

The electric current flowing from lead 1 to the nanowire is
obtained from the changing rate of the total electron number in
lead 1, i.e., Î1(t ) := −e ∂t

∑
ks〈b̂†

1,ksb̂1,ks〉. After a long enough
time relaxation t → ∞, by the solution (10) of the above
quantum Langevin equation in the Fourier space, a steady
current is achieved without any approximation. Furthermore,
the exact differential conductance σ ≡ dI1/dV is obtained as
(see Appendix E)

σ = e2

h
{tr[G†�+

1 G�N ](eV ) + tr[G†�+
1 G�̃s](eV )

+ tr[G†�+
1 G�−

1 ](eV ) + tr[G†�+
1 G�−

1 ](−eV )}. (12)

Here the dissipation matrices �±
1,N are given by

�±
1 := diag{Γ±

1 , 0, . . . , 0}, and �±
N := diag{0, . . . , 0, Γ±

N },
with the 4 × 4 blocks Γ+

x := ϒx diag{1, 1, 0, 0}, and
Γ−

x := ϒx diag{0, 0, 1, 1}. Similarly, the dissipation matrix
�̃s(ω) also has been obtained by dissipation kernel of SC in
Eq. (11).

The first two terms in Eq. (12) come from the electron
exchanges among lead 1 to lead N and the s-wave SC, respec-
tively; the last two terms indicate the contribution from the
Andreev reflection between lead 1 and the nanowire, which
gives the ZBP of 2e2/h as the necessary signature for the
emergence of MZMs at zero temperature [12,13,38,40]. Up
to now, no other approximations are made except the form
of the coupling spectral density, thus the obtained result is
sufficiently accurate even for the situations when the coupling
strength or the magnetic field is quite strong.

The corresponding numerical results under different phys-
ical conditions are illustrated in Fig. 3. It is shown that a
ZBP with height 2e2/h appears in the conductance spectrum
when the magnetic field B lies in a continuous regime of
modest strength. The ZBP disappears when the magnetic field
strength is too weak or too strong, thus, it is confirmed that the
MZMs do not exist in these regimes. The similar phenomenon
for the refined magnetic field constraint in the phase diagram
of the multiband nanowire models has also been discussed
based on the low-energy effective Hamiltonian [48]. The trend
of changing ZBP signature with the magnetic field is fitted
with the observed result in experiment [10,11,49].

It is especially worth noting that under certain conditions
the ZBP could be even higher than 2e2/h [see Figs. 3(e)
and 3(f)] which may be caused by the bulk states or subgap
states in the induced gap of the nanowire. When the more
bulk states are involved in electron transport, or subgap states
approach zero energy with the magnetic increase, the dif-
ferential conductance σ will increase continuously and even
more than 2e2/h. At finite temperatures, such a ZBP would
be as low as 2e2/h and thus might be confused with the
signature from MZMs. Therefore, it should be emphasized
that the ZBP of 2e2/h is the necessary but not sufficient
condition for the MZMs and may represent MZMs only
when the range of chemical potential and the magnetic field
strength is within the topological phase region determined
by the effective Kitaev Hamiltonian of the hybrid nanowire
system.
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FIG. 3. (a) The differential conductance σ = dI1/dV depending
on the bias voltage and the magnetic field (site number N = 500).
Here �s is set as the energy unit, and the other parameters are set
as μ = 0.1�s, αR = 0.15�s, J = 0.5�s, ϒs = 0.1�s, ϒ1 = ϒN =
0.025�s. (b)–(d) The differential conductance depending on the bias
voltage, when the Zeeman energies are fixed as B/�s = 0, 0.5, 1.0,
respectively. (e) anjd (f) The differential conductance at V = 0 de-
pends on the magnetic field B. Under certain parameters, the ZBP
could be higher than 2e2/h, which indicates this is not from the
MZMs.

V. SUMMARY

By examining the the low-energy effective model for the
hybrid system with the semiconductor nanowire in proximity
to the s-wave superconductor, we obtain a refined topolog-

ical phase diagram where the Majorana zero modes (MZMs)
could exist but over a confined parameter region. The affirmed
topological phase region bearing MZMs appears as a closed
triangle in the μ-B phase diagram, in comparison with the
open hyperbolic region known before. These predictions are
also confirmed by an exact calculation of the quantum trans-
port based on the quantum Langevin equation: in the transport
spectrum, the zero bias peak with 2e2/h, as the necessary sig-
nature for MZMs, disappears when the magnetic field grows
too strong. Therefore, we claim that the hybrid nanowire does
not support MZMs under a strong magnetic field.

To search for MZMs in this hybrid nanowire system,
we suggest that the magnetic field strength be properly set
within a modest range according to our phase diagram. For
the electron-doped InSb nanowire coupled to NbTiN (�s 	
26 K), the chemical potential is around μ ∼ 0–10 K, the spin-
orbit energy is around 2mwα2 ∼ 1–3 K [4,10,11,24,42,43,
50–51], and the above results show that the proper range for
the magnetic field is around B ∼ 0.1–1.5 T where MZMs
could exist. For InSb nanowire coupled to an aluminum shell
(�s 	 2 K) [4,43], the convincing range for the magnetic field
is no greater than 0.12 T. However, some of the recent experi-
ments claim the emergence of MZMs when the magnetic field
strength exceeds much beyond the validity range we obtained
in this paper. It is believed that our current theoretical study
will help narrow down the range of magnetic fields for further
searching Majorana zero modes in experiments.
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APPENDIX A: THE LOW ENERGY EFFECTIVE HAMILTONIAN OF NANOWIRE

Here we derive the effective Hamiltonian of the nanowire by using the Fröhlich-Nakajima transformation. For the hybrid
semiconductor-superconductor nanowire system, the total Hamiltonian has three basic terms: Ĥ = Ĥw + Ĥsc + Ĥw-sc. The
nanowire Hamiltonian (1) in the continuous limit is [3]

Ĥw =
∫

dx ψ̂
†
(x)

[
− ∂2

x

2mw
− μ − iασ y∂x + Bσ z

]
ψ̂(x), (A1)

where ψ̂(x) = [ψ̂↑(x), ψ̂↓(x)]T , and σ y,z are the Pauli matrices. Here ↑,↓ indicate the electron spins, α is the spin-orbit coupling
strength, mw is the effective mass, μ is the chemical potential of the nanowire, and B is the Zeeman splitting from the external
magnetic field, respectively. The s-wave superconductor (SC) providing the SC proximity effect for the nanowire, which is
described by the BCS Hamiltonian

Ĥsc =
∫

d3k

(2π )3
εsc

k [ĉ†
↑(k)ĉ↑(k) − ĉ↓(−k)ĉ†

↓(−k)] + �s[ĉ
†
↑(k)ĉ†

↓(−k) + H.c.], (A2)

with the kinetic energy εsc
k and real pairing potential �s of SC. The fermion operator ĉ↑,↓(k) follows the anticommutation

relation {ĉs(k), ĉ†
s′ (k′)}+ = (2π )3δss′δ(k − k′). The tunneling interaction between the nanowire and s-wave superconductor is

Ĥw-sc = −Js

∑
s

∫
dx [ψ̂†

s (x)ĉs(x, 0, 0) + ĉ†
s (x, 0, 0)ψ̂s(x)]. (A3)
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Here Js describes the tunneling strength between the nanowire and the s-wave SC, and ĉs(x) is Fourier image of ĉs(k):

ĉs(x) = 1

(2π )3

∫
ĉs(k)eik·xd3k. (A4)

Similarly, the above nanowire Hamiltonian (A1) and tunneling Hamiltonian (A3) in Fourier space become

Ĥw =
∫

dkx

2π
ϕ̂†(kx )[εkx + αkxσ

y + Bσ z]ϕ̂(kx ), Ĥw-sc = −Js

∑
s

∫
d3k

(2π )3
[ϕ†

s (kx )ĉs(k) + ĉ†
s (k)ϕs(kx )]. (A5)

Here ϕ̂(kx) = [ϕ̂↑(kx), ϕ̂↓(kx)]T is obtained by Fourier transform of two-component operator ψ̂(x) in real space, εkx ≡ k2
x

2mw
− μ

is the electron kinetic energy of the nanowire, and kx is the x component of k.
By the following Bogoliubov transformation:

η̂↑(k) := cos θkĉ↑(k) + sin θkĉ†
↓(−k), η̂

†
↓(−k) := − sin θkĉ↑(k) + cos θkĉ†

↓(−k), (A6)

with tan 2θk = �s/ε
sc
k , the Hamiltonian of the s-wave SC can be diagonally reduced to

Ĥsc =
∫

d3k

(2π )3
E sc

k [η̂†
↑(k)η̂↑(k) + η̂

†
↓(−k)η̂↓(−k)], (A7)

with the excitation spectrum of the SC E sc
k = √

[εsc
k ]2 + �2

s . Then the tunneling Hamiltonian Ĥw-sc [Eq. (A3)] is rewritten by the
quasiparticle operators η̂s(k) as

Ĥw-sc = −Js

∫
d3k

(2π )3
{η̂↑(k)[− cos θkϕ̂

†
↑(kx ) + sin θkϕ̂↓(−kx )] + η̂

†
↑(k)[cos θkϕ̂↑(kx ) − sin θkϕ̂

†
↓(−kx)]

+ η̂↓(k)[− cos θkϕ̂
†
↓(kx ) − sin θkϕ̂↑(−kx )] + η̂

†
↓(k)[cos θkϕ̂↓(kx ) + sin θkϕ̂

†
↑(−kx)]}. (A8)

In order to obtain the effective theory for the nanowire, we utilize the Fröhlich-Nakajima transformation to eliminate the
quasiparticle excitation in SC. For the total Hamiltonian Ĥ = [Ĥw + Ĥsc] + Ĥw-sc := Ĥ0 + Ĥ1, we apply a unitary transformation

ĤS = e−ŜĤeŜ = Ĥ0 + (Ĥ1 + [Ĥ0, Ŝ]) + 1
2 [Ĥ1, Ŝ] + 1

2 [(Ĥ1 + [Ĥ0, Ŝ]), Ŝ] + · · · . (A9)

The anti-Hermitian operator Ŝ should be properly set to make sure Ĥ1 + [Ĥ0, Ŝ] ≡ 0, so the effective Hamiltonian becomes
Ĥeff = Ĥ0 + 1

2 [Ĥ1, Ŝ].
Specifically, here we adopt an ansatz that Ŝ has the following form:

Ŝ =
∫

d3k

(2π )3
{η̂↑(k)[Akϕ̂

†
↑(kx ) + Bkϕ̂↓(−kx ) + Ekϕ̂

†
↓(kx ) + Fkϕ̂↑(−kx )]

+ η̂
†
↑(k)[A′

kϕ̂↑(kx ) + B′
kϕ̂

†
↓(−kx ) + E ′

kϕ̂↓(kx ) + F ′
kϕ̂

†
↑(−kx )] + η̂↓(k)[Ckϕ̂

†
↓(kx ) + Dkϕ̂↑(−kx ) + Hkϕ̂

†
↑(kx ) + Lkϕ̂↓(−kx )]

+ η̂
†
↓(k)[C′

kϕ̂↓(kx ) + D′
kϕ̂

†
↑(−kx ) + H ′

kϕ̂↑(kx ) + L′
kϕ̂

†
↓(−kx )]}. (A10)

Then, by using the above Eqs. (A5), (A7), (A8), and (A10), the condition Ĥ1 + [Ĥ0, Ŝ] ≡ 0 gives∫
d3k

(2π )3

{[( − E sc
k + εkx,↓

)
Ek + iαkxAk

]
η̂↑(k)ϕ̂†

↓(kx ) − [(
E sc

k − εkx,↑
)
Ak + iαkxEk − Js cos θk

]
η̂↑(k)ϕ̂†

↑(kx )

+ [(
E sc

k − εkx,↑
)
A′

k − iαkxE ′
k − Js cos θk

]
η̂

†
↑(k)ϕ̂↑(kx ) + [(

E sc
k − εkx,↓

)
E ′

k + iαkxA′
k

]
η̂

†
↑(k)ϕ̂↓(kx )

− [(
E sc

k + εkx,↓
)
Bk + iαkxFk + Js sin θk

]
η̂↑(k)ϕ̂↓(−kx ) + [ − (

E sc
k + εkx,↑

)
Fk + iαkxBk

]
η̂↑(k)ϕ̂↑(−kx )

+ [(
E sc

k + εkx,↓
)
B′

k − iαkxF ′
k + Js sin θk

]
η̂

†
↑(k)ϕ̂†

↓(−kx ) + [(
E sc

k + εkx,↑
)
F ′

k + iαkxB′
k

]
η̂

†
↑(k)ϕ̂↓(kx )

− [(
E sc

k − εkx,↓
)
Ck − iαkxHk − Js cos θk

]
η̂↓(k)ϕ̂†

↓(kx ) + [ − (
E sc

k − εkx,↑
)
Hk − iαkxCk

]
η̂↓(k)ϕ̂†

↓(kx )

+ [(
E sc

k − εkx,↓
)
C′

k + iαkxH ′
k − Js sin θk

]
η̂

†
↓(k)ϕ̂†

↓(kx ) + [(
E sc

k − εkx,↑
)
H ′

k − iαkxC
′
k

]
η̂

†
↓(k)ϕ̂↑(kx )

− [(
E sc

k + εkx,↑
)
Dk − iαkxLk − Js sin θk

]
η̂↓(k)ϕ̂↑(−kx ) + [ − (

E sc
k + εkx,↓

)
Lk − iαkxDk

]
η̂↓(k)ϕ̂↓(kx )

+ [(
E sc

k + εkx,↑
)
D′

k + iαkxL′
k − Js sin θk

]
η̂

†
↓(k)ϕ̂†

↑(−kx ) + [(
E sc

k + εkx,↓
)
L′

k − iαkxD′
k

]
η̂

†
↓(k)ϕ̂†

↓(−kx )
} ≡ 0, (A11)

104517-6



MAGNETIC FIELD CONSTRAINT FOR MAJORANA ZERO … PHYSICAL REVIEW B 106, 104517 (2022)

with εkx,↑(↓) ≡ εkx ± B. The coefficients of each term in the above integral should be zero, and then the undetermined coefficients
in S are solved as

Ak = A′
k = Js cos θk

[
E sc

k − εkx,↓
]

�−(k)
, Bk = B′

k = −Js sin θk
[
E sc

k + εkx,↑
]

�+(k)
, Ck = C′

k = Js cos θk
[
E sc

k − εkx,↑
]

�−(k)
,

Dk = D′
k = Js sin θk

[
E sc

k + εkx,↓
]

�+(k)
, Ek = −E ′

k = −Hk = H ′
k = iαkxJs cos θk

�−(k)
, Fk = −F ′

k = Lk = −L′
k = − iαkxJs sin θk

�+(k)
,

(A12)

with �±(k) = (E sc
k ± εkx )2 − (B2 + α2k2

x ).
When the magnetic field is not too strong and the electron tunneling strength between the nanowire and SC is weak, i.e.,

|�±(k)| � (Jsks
F)2 (ks

F is Fermi momentum of the SC), the effective Hamiltonian of the nanowire is further obtained as Ĥeff =
Ĥ0 + 1

2 [Ĥ1, Ŝ], which is calculated as follows [by using {η̂s(k), η̂†
s′ (k′)}+ = (2π )3δss′δ(k − k′)]:

1

2
[Ĥ1, Ŝ] = Js

2

∫
d3k

(2π )3
{[− cos θkϕ̂

†
↑(kx ) + sin θkϕ̂↓(−kx )][A′

kϕ̂↑(kx) + B′
kϕ̂

†
↓(−kx) + E ′

kϕ↓(kx) + F ′
kϕ

†
↑(−kx)]

+ [cos θkϕ̂↑(kx) − sin θkϕ̂
†
↓(−kx )][Akϕ̂

†
↑(kx) + Bkϕ̂↓(−kx ) + Ekϕ̂

†
↓(kx) + Fkϕ̂↑(−kx)]

+ [− cos θkϕ̂
†
↓(kx) − sin θkϕ̂↑(−kx )][C′

kϕ̂↓(kx) + D′
kϕ̂

†
↑(−kx ) + H ′

kϕ↑(kx) + L′
kϕ̂

†
↓(−kx)]

+ [cos θkϕ̂↓(kx ) + sin θkϕ
†
↑(−kx )][Ckϕ̂

†
↓(kx) + Dkϕ̂↑(−kx ) + Hkϕ̂

†
↑(kx) + Lkϕ̂↓(−kx )]}

= 1

2
Js

∫
d3k

(2π )3
{[−2Ak cos θk + 2Dk sin θk]ϕ̂†

↑(kx)ϕ̂↑(kx) + [−2Bk sin θk − 2Ck cos θk]ϕ̂†
↓(kx)ϕ̂↓(kx) + [2 cos θkEk

− 2 sin θkFk][ϕ̂†
↑(kx )ϕ̂↓(kx ) − ϕ̂

†
↓(kx )ϕ̂↑(kx)] + [Ak sin θk − Bk cos θk + Ck sin θk + Dk cos θk][ϕ̂†

↑(kx)ϕ̂†
↓(−kx)

+ ϕ̂↓(−kx)ϕ̂↑(kx)] + [sin θkEk + cos θkFk][ϕ̂†
↑(kx)ϕ̂†

↑(−kx) − ϕ̂↑(−kx)ϕ̂↑(kx) + ϕ̂
†
↓(kx)ϕ̂†

↓(−kx) − ϕ̂↓(−kx)ϕ̂↓(kx)]}.
(A13)

Finally, by substituting the coefficients obtained in Eq. (A12) here, the effective Hamiltonian is obtained:

Ĥeff =
∫

dk

2π
{ε̃k[ϕ̂†

↑(kx )ϕ̂↑(kx ) + ϕ̂
†
↓(kx )ϕ̂↓(kx )] + iα̃kx[ϕ̂†

↓(kx )ϕ̂↑(kx ) − H.c.]

+ B̃kx [ϕ̂
†
↑(kx )ϕ̂↑(kx ) − ϕ̂

†
↓(kx )ϕ̂↓(kx )] + �̃kx [ϕ̂

†
↑(kx )ϕ̂†

↓(−kx ) + H.c.] + �̃kx [ϕ̂
†
↓(kx )ϕ̂†

↓(−kx ) + ϕ̂
†
↑(kx )ϕ̂†

↑(−kx ) − H.c.]}.
(A14)

The electron tunneling between the nanowire and the s-wave SC modifies the kinetic energy ε̃kx , Zeeman splitting B̃kx , and
spin-orbit coupling α̃kx , and these parameters are

B̃kx =
[

1 − J2
s

∫
dkydkz

(2π )2

(
cos2 θk

�−(k)
+ sin2 θk

�+(k)

)]
B, α̃kx =

[
1 − J2

s

∫
dkydkz

(2π )2

(
cos2 θk

�−(k)
+ sin2 θk

�+(k)

)]
α,

ε̃kx = εkx − J2
s

∫
dkydkz

(2π )2

[
cos2 θkEs

−(k)

�−(k)
− sin2 θkEs

+(k)

�+(k)

]
, �̃kx = J2

s

∫
dkydkz

(2π )2

sin 2θk

2

[
Es

−(k)

�−(k)
+ Es

+(k)

�+(k)

]
,

�̃kx = J2
s

∫
dkydkz

(2π )2

iαkx sin 2θk

4

(
1

�−(k)
− 1

�+(k)

)
, (A15)

where Es
±(k) ≡ E sc

k ± εkx , and �±(k), sin θk, cos θk have been given in Eqs. (A6) and (A12), respectively.
To further calculate the integrals in the above result, we consider that the Zeeman splitting B and spin-orbital coupling α

of the nanowire are much smaller than the s-wave SC gap, thus |E sc
k − √

B2 + α2k2
x | � |εkx |. Then in the above integrals we

omit the second and higher-order terms of |αkx|/[E sc
k + √

B2 + α2k2
x ] and |εkx |/[E sc

k − √
B2 + α2k2

x ], and the above parameters
in Eq. (A15) are simplified as

�̃kx = ϒs

(
1 − α2k2

x + B2

�2
s

)− 1
2

, �̃kx = 0,
B̃kx

B
= α̃kx

α
= ε̃kx

εkx

= μ̃kx

μ
= 1 − �̃kx

�s
. (A16)
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Here ϒs = J2
s ρs describes the coupling strength between the s-wave SC and the nanowire, where ρs is the two-dimensional

superconducting density of states. Now we have obtained the effective Hamiltonian of the nanowire in the main text, i.e.,

Ĥeff =
∫

dkx

2π

{
ε̃kx [ϕ̂

†
↑(kx )ϕ̂↑(kx ) + ϕ̂

†
↓(kx )ϕ̂↓(kx )] + iα̃kx kx[ϕ̂†

↓(kx )ϕ̂↑(kx ) − H.c.]

+ B̃kx [ϕ̂
†
↑(kx )ϕ̂↑(kx ) − ϕ̂

†
↓(kx )ϕ̂↓(kx )] + �̃kx [ϕ̂

†
↑(kx )ϕ̂†

↓(−kx ) + H.c.]
}
. (A17)

Clearly, �̃kx is the pairing potential induced by the SC proximity effect, and all these parameters ε̃kx , α̃kx , B̃kx , �̃kx exhibit
significant dependence on the magnetic field. In addition, when the SC gap is so large that |E sc

k | � B, ϒs, in the low energy
regime (k 	 0), the induced pairing strength can be approximated as a constant �̃ 	 ϒs, and the kinetic energy, spin-orbital
coupling and Zeeman splitting of the nanowire are corrected by the constant factor 1 − ϒs/�s according to (A16).

Then the quasiparticle energy spectrum determined by the effective Hamiltonian in Eq. (A17) is

E±(kx ) =
√

�̃2
kx

+ ε̃2
kx,+ + ε̃2

kx,−
2

± (ε̃kx,+ − ε̃kx,−)
√[

�̃
(s)
kx

]2 + ε̃2
kx
, (A18)

with ε̃kx,± = ε̃kx ±
√

B̃2
kx

+ α̃2
kx

k2
x and �̃

(s)
kx

= B�̃kx /
√

B2 + α2k2
x . The energy level crossing point of the quasiparticle energy

spectrum is E−(kx = 0) = 0, which gives the critical condition of topological phase: B̃kx=0 =
√

μ̃2
kx=0 + �̃2

kx=0. When the
corrected magnetic field satisfies

B̃kx=0(B, ϒs) >

√
μ̃2

kx=0(B, ϒs) + �̃2
kx=0(B, ϒs), (A19)

the energy gap reopens, and the topological phase with Majorana zero modes emerges in the region [3,41]. However, when
the magnetic field gets stronger, the corrected magnetic field decreases significantly according to Eq. (A16), which makes the
corrected magnetic field become B̃kx=0 <

√
μ̃2

kx=0 + �̃2
kx=0. Then the topological phase disappear. Therefore, the topological

phase only emerges at proper magnetic field strength.

APPENDIX B: MAJORANA ZERO MODES DETERMINED BY THE EFFECTIVE HAMILTONIAN OF THE NANOWIRE

Here, based on the effective Hamiltonian of the nanowire, we give the region of the existence of Majorana zero modes in the
μ-B diagram, which is consistent with the topological phase region given by Eq. (A19). In the continuous limit, the effective
Hamiltonian (A17) of the nanowire in the low energy regime (kx 	 0) becomes

Ĥeff =
∫

dx ψ̂
†
(x)[1 − Z (B)]

[
− ∂2

x

2mw
− μ − iασ y∂x + Bσ z

]
ψ̂(x) + Z (B)�s[ψ̂

†
↑(x)ψ̂†

↓(x) + ψ̂↓(x)ψ̂↑(x)], (B1)

where the corrected factor is defined as Z (B) ≡ ϒs
�s

(1 − B2

�2
s
)−

1
2 . In the Nambu representation, the above Hamiltonian becomes

Ĥeff = 1

2

∫
dx �̂†(x) · Hx · �̂(x), (B2)

with �̂(x) = [ψ̂(x), ψ̂
†
(x)]T as the four-component operator and

Hx =
[

[1 − Z (B)]
(− ∂2

x
2mw

− μ − iασ y∂x + Bσ z
)

iσ yZ (B)�s

−iσ yZ (B)�s [1 − Z (B)]
( ∂2

x
2mw

+ μ + iασ y∂x − Bσ z
)
]
. (B3)

Considering the Bogoliubov–de Gennes (BdG) equation

Hx�E (x) = E�E (x), (B4)

the corresponding wave function is �E (x) = [u↑,E (x), u↓,E (x), v↑,E (x), v↓,E (x)]T . Then the effective Hamiltonian (B1) is
diagonalized as Heff = 1

2

∑
E E γ̂

†
E γ̂E , where

γ̂E =
∫

dx
∑

s

[u∗
s,E (x)ψ̂s(x) + v∗

s,E (x)ψ̂†
s (x)]. (B5)

For the Majorana fermion, the antiparticle is itself, which means the quasiparticle operator is self-Hermitian γ̂E = γ̂
†
E , that is,

us,E (x) = v∗
s,E (x). (B6)
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And due to the particle-hole symmetry of the system, the single-particle Hamiltonian satisfies σ xHT
x σ x = −Hx. So σ x�∗

E (x) is
the eigenstate of the single-particle Hamiltonian for the energy −E :

Hx[σ x�∗
E (x)] = −E [σ x�∗

E (x)]. (B7)

Correspondingly, the quasiparticle operator is

γ̂−E =
∫

dx
∑

s

[vs,E ψ̂s(x) + us,E (x)ψ̂†
s (x)]. (B8)

If the wave function �E (x) is nondegenerate, we obtain relation of us,E (x) and vs,E (x) by Eqs. (B5) and (B8) again, i.e.,

us,E (x) = v∗
s,−E (x). (B9)

Due to the self-Hermitian relation of the Majorana fermion (B6) and the particle-hole symmetry of the system (B9), the
components of the wave function us,E (x) and vs,E (x) satisfy

us,E (x) = us,−E (x). (B10)

Thus, only the zero mode quasiparticle could be self-Hermitian, i.e., the Majorana zero mode.
For E = 0, considering that the Majorana fermion requires us,E (x) = v∗

s,E (x), the BdG equation (B4) is reduced to

[1 − Z (B)]

(
− ∂2

x

2mw
− μ − iασ y∂x + Bσ z

)
u(x) + iσ yZ (B)�su∗(x) = 0, (B11)

with the two-component wave function u(x) ≡ [u↑(x), u↓(x)]T . Here we consider the length of the nanowire is L, and x ∈ [0, L].
Then u(x) can be decomposed into the real and imaginary parts u(x) = u(r)(x) + iu(i)(x), and we assume they have the following
forms:

u(r)(x) = e−ξr x[u(r)
↑ , u(r)

↓ ]T , u(i)(x) = e−ξix[u(i)
↑ , u(i)

↓ ]T , (B12)

where ξr and ξi are real numbers. Taking the ansatz (B12) into the reduced BdG equation (B11), we get the equations of the real
and imaginary parts respectively,[

− ξ 2
r

2mw
− μ + B

(−αξr + Z (B)
1−Z (B)�s

)
(
αξr − Z (B)

1−Z (B)�s
) − ξ 2

r
2mw

− μ − B

]
u(r)(x) = 0,

[
− ξ 2

i
2mw

− μ + B
(−αξi − Z (B)

1−Z (B)�s
)

(
αξi + Z (B)

1−Z (B)�s
) − ξ 2

i
2mw

− μ − B

]
u(i)(x) = 0. (B13)

If the above two equations have solutions, the determinants of the coefficient matrices in Eq. (B13) are zero:

0 =
[
− 1

2mw
ξ 2

r − μ

]2

+
(

αξr − Z (B)

1 − Z (B)
�s

)2

− B2 ≡ f (ξr ), (B14)

0 =
[
− 1

2mw
ξ 2

i − μ

]2

+
(

αξi + Z (B)

1 − Z (B)
�s

)2

− B2 ≡ g(ξi ). (B15)

Here the parameters μ, mw, α, and B are all positive, and the corrected factor satisfies 0 < Z (B) < 1, and thus
Z (B)/[1 − Z (B)] > 0.

(a) If the equation f (ξ ) = 0 has a positive root ξr > 0, the real part u(r)(x) has a solution localized around the end x = 0. The
existence condition for ξr can be given by examining the monotonicity f (ξ ). Notice that the quartic function f (ξ ) satisfies

f ′′(ξ ) = 1

mw

[
3

mw
ξ 2 + 2μ

]
+ 2α2 > 0, (B16)

thus f ′(ξ ) is monotonically increasing. Thus, in the interval ξ ∈ [0,∞), the minimum of f ′(ξ ) appears at ξ = 0, which is
f ′(0) = −2αZ (B)�s/[1 − Z (B)] < 0. Therefore, there must exist a certain ξ0 > 0 satisfying f ′(ξ0) = 0, that means, when 0 �
ξ < ξ0, f (ξ ) is monotonically decreasing, and when ξ > ξ0, f (ξ ) is monotonically increasing. Namely, the minimum of f (ξ )
appears at ξ0. To make sure Eq. (B14) have one solution or two solutions, we must have min f (ξ ) = f (ξ0) < 0.

(b) If the equation g(ξ ) = 0 has a positive root ξi > 0, the imaginary part u(i)(x) has a solution localized around the end x = 0.
In the interval ξ ∈ [0,∞), g′(ξ ) is always positive, i.e.,

g′(ξ ) = 2ξ

mw

[
1

2mw
ξ 2 + μ

]
+ 2α

(
αξ + Z (B)

1 − Z (B)
�s

)
> 0, (B17)

thus g(ξ ) is monotonically increasing. Therefore, to make sure Eq. (B15) has a solution, we must have min g(ξ ) = g(0) < 0.
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Now combining the two existence conditions from (a) and (b), since min g(ξ ) = g(0) = f (0) > min f (ξ ), to make sure both
u(r)(x) and u(i)(x) have solutions, we must have min g(ξ ) = g(0) < 0, and that gives

B >

√
μ2 +

[
Z (B)

1 − Z (B)
�s

]2

. (B18)

Similarly, it is also proved that there is an edge state around the other end (x = L) if Eq. (B18) is satisfied, which means the
existence of the Majorana zero modes localized at the two ends. Notice that this condition is just the same with the topological
phase criterion (A19) obtained from the crossing point of the quasiparticle energy spectrum.

APPENDIX C: HAMILTONIAN DESCRIPTION FOR THE NANOWIRE SYSTEM

Now we study the transport behavior of the nanowire system. We consider the nanowire is contacted with two electron leads at
the two ends, and then derive a quantum Langevin equation to describe the dynamics of the nanowire. First, the Hamiltonian (A1)
of the nanowire is discretized as N sites, that is

Ĥw =
∑
n,s

−J

2
(d̂†

n,sd̂n+1,s+ d̂†
n+1,sd̂n,s)− (μ− J )d̂†

n,sd̂n,s+
∑

n

αR

2
(d̂†

n,↓d̂n+1,↑ − d̂†
n,↑d̂n+1,↓+ H.c.)+

∑
n

B(d̂†
n,↑d̂n,↑ − d̂†

n,↓d̂n,↓).

(C1)

Here s =↑,↓ indexes the electron spin, αR indicates the spin-orbit coupling strength, J is the hopping amplitude, μ is the
chemical potential of the nanowire, and B is the Zeeman splitting from the external magnetic field.

All the N sites are contacted with an s-wave SC independently, and two electron leads are contacted with site 1 and site N .
The s-wave SC and the two leads are treated as the fermion baths of the nanowire, and they are described by

Ĥsc =
∑

k

εsc
k (ĉ†

k↑ĉk↑ − ĉ−k↓ĉ†
−k↓) + �s(ĉ

†
k↑ĉ†

−k↓ + H.c.), Ĥe-x =
∑

ks

εx,kb̂†
x,ksb̂x,ks (x = 1, N ). (C2)

Both the leads and the s-wave SC are coupled with the nanowire through the tunneling interaction [see also Eq. (A3)],

Ĥw-sc = −
∑
n,ks

(Jn,k d̂†
n,sĉks + H.c.), Ĥw-x = −

∑
ks

(gx,k d̂†
x,sb̂x,ks + H.c.). (C3)

Denoting [d̂(t )]1×4N := (d̂1, . . . , d̂N )T with blocks [d̂n]1×4 := (d̂n↑, d̂n↓, d̂†
n↑, d̂†

n↓)T , ĉk(t ) := (ĉk↑, ĉ−k↓, ĉ†
k↑, ĉ†

−k↓)T , and

b̂x,k(t ) := (b̂x,k↑, b̂x,k↓, b̂†
x,k↑, b̂†

x,k↓)T , the above Hamiltonians (C1) and (C2) can be rewritten as

Ĥw = 1

2
d̂† · Hw · d̂, Ĥsc = 1

2

∑
k

ĉ†
k · Hsc

k · ĉk, Ĥe-x = 1

2
b̂†

x,k · He-x
k · b̂x,k,

Hsc
k :=

⎡
⎢⎢⎣

εsc
k �s

εsc
k −�s

−�s −εsc
k

�s −εsc
k

⎤
⎥⎥⎦, He-x

k :=

⎡
⎢⎣

εx,k
εx,k

−εx,k
−εx,k

⎤
⎥⎦. (C4)

The system dynamics can be given by the Heisenberg equation. Here we consider all the dynamical observables are corrected
as ô(t ) = ô(t )�(t )e−εt := ô(t )�(ε)(t ) with ε → 0, namely, the dynamical evolution starts from t = 0. The infinitesimal ε

guarantees the convergence of the evolution, and would naturally lead to the causality in the dynamical propagator. Then the
equations of motions becomes ∂t [ô(t )�(ε)(t )] = δ(t )ô(0) − i�(ε)(t )[ô, Ĥ], with ô(0) as the initial state. Then the dynamics for
the nanowire d̂n,s, s-wave SC ĉks, and electron leads b̂x,ks are given as

∂t d̂n,s = δ(t )d̂n,s(0) − i[d̂n,s, Ĥw] + i
∑

k

Jn,kĉk,s + i
∑

x=1,N

∑
k

gx,kb̂x,ks, ∂t ĉk,s = δ(t )ĉk,s(0) − i[ĉk,s, Ĥsc] + i
∑

n

J∗
n,kd̂n,s,

∂t b̂x,ks = δ(t )b̂x,ks(0) − iεx,kb̂x,ks + ig∗
x,kd̂x,s. (C5)

These dynamical equations can be solved in the Fourier space. We adopt the following Fourier transform:

d̂ (t ) =
∫ ∞

−∞

dω

2π
d̃ (ω)e−iωt , d̃ (ω) =

∫ ∞

−∞
dt d̂ (t )e+iωt , d̂†(t ) =

∫ ∞

−∞

dω

2π
[d̃ (ω)]†e+iωt =

∫ ∞

−∞

dω̄

2π
d̃†(−ω̄)e−iω̄t . (C6)

Under this convention, the Fourier images for the vectors d̂n(t ), ĉk(t ), b̂x,k(t ) read

d̃n(ω) = (d̃n↑(ω), d̃n↓(ω), d̃†
n↑(−ω), d̃†

n↓(−ω))T , c̃k(ω) = (c̃k↑(ω), c̃−k↓(ω), c̃†
k↑(−ω), c̃†

−k↓(−ω))T ,

b̃x,k(ω) = (b̃x,k↑(ω), b̃x,k↓(ω), b̃†
x,k↑(−ω), b̃†

x,k↓(−ω))T . (C7)
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Then the Fourier images of the dynamical equations (C5) become (ω+ := ω + iε)

−iω+d̃(ω) = d̂(0) − iHw · d̃(ω) + i
∑

k

[Tk]4N×4 · c̃k(ω) + i
∑

x=1,N

∑
k

[Yx,k]4N×4 · b̃x,k(ω),

−iω+c̃k(ω) = ĉk(0) − iHsc(k) · c̃k(ω) + i[T†
k]4×4N · d̃(ω), −iω+b̃x,k(ω) = b̂x,k(0)− iHe-x(k) · b̃x,k(ω)+ i[Y†

x,k]4×4N · d̃(ω).
(C8)

Here Tk and Yx,k are the the 4N × 4 tunneling matrices indicating the coupling with the s-wave SC and lead-x respectively, and
they are defined by

Tk := [T1,k, T2,k, . . . , TN,k]T , Y1,k := [Y1,k, 0, . . . , 0]T , YN,k := [0, . . . , 0, YN,k]T , (C9)

with 4 × 4 blocks Tn,k := diag{Jn,k, Jn,k,−J∗
n,−k,−J∗

n,−k} and Yx,k := diag{gx,k, gx,k,−g∗
x,k,−g∗

x,k}.
The dynamics for the s-wave SC and the two electron leads can be formally obtained with the help of Green functions

c̃k(ω) = Gsc(ω, k) · [ĉk(0) + iT†
k · d̃(ω)], Gsc(ω, k) := i

[
ω+ − Hsc

k

]−1

4×4,

b̃x,k(ω) = Ge-x(ω, k) · [b̂x,k(0) + iY†
x,k · d̃(ω)], Ge-x(ω, k) := i[ω+ − He-x

k ]−1
4×4. (C10)

The Green function of lead x is Ge-x(ω) = i diag{(ω+ − εx,k )−1, (ω+ − εx,k )−1, (ω+ + εx,k )−1, (ω+ + εx,k )−1}, while Gsc(ω) for
the s-wave SC requires calculating the inverse of the Hamiltonian matrix Hsc

k . Taking c̃k(ω), b̃x,k(ω) back into the equation of
d̃(ω), the dynamics of the nanowire becomes

−iω+d̃(ω) = d̂(0) − iHw · d̃(ω) − [D̃sc(ω) + D̃e(ω)] · d̃(ω) + iξ̃sc(ω) + iξ̃e(ω). (C11)

where ξ̃sc(ω), ξ̃e(ω) are the random forces, D̃sc(ω), D̃e(ω) are the dissipation kernels, and they are given by

ξ̃sc(ω) :=
∑

k

Tk · Gsc(ω, k) · ĉk(0), ξ̃e(ω) := ξ̃1 + ξ̃N :=
∑

x=1,N

∑
k

Yx,k · Ge-x(ω, k) · b̂x,k(0),

D̃sc(ω) :=
∑

k

Tk · Gsc(ω, k) · T†
k, D̃e(ω) := D̃e-1 + D̃e-N :=

∑
x=1,N

∑
k

Yx,k · Ge-x(ω, k) · Y†
x,k. (C12)

In the time domain, Eq. (C11) gives the quantum Langevin equation in the main text

∂t d̂ = d̂(0)δ(t ) − iHw · d̂(t ) −
∫ t

0
dτ D(t − τ ) · d̂(τ ) + iξ̂sc(t ) + iξ̂e(t ), (C13)

where D(t ) := Dsc(t ) + De(t ), and d̂(0)δ(t ) brings in the initial condition (omitted in the main text). Then the nanowire dynamics
can be obtained from the Langevin equation (C11), i.e.,

d̃(ω) = G(ω) · [d̂(0) + iξ̃sc(ω) + iξ̃e(ω)], G(ω) := i[ω+ − Hw + iD̃sc(ω) + iD̃e(ω)]−1, (C14)

where [G(ω)]4N×4N is the Green function for the nanowire.

APPENDIX D: THE DISSIPATION KERNEL AND EFFECTIVE INTERACTION

The dissipation kernels in Eq. (C12) provide both dissipation effect and effective interaction to the nanowire system. For
the two electron leads, with the help of the Green functions (C10) and tunneling matrices (C9), the dissipation kernel D̃e(ω) =
[D̃e-1 + D̃e-N ](ω) is given by

D̃e-1(ω) =
∑

k

Y1,k · Ge-1(ω, k) · Y†
1,k = diag{D̃e-1(ω), 0, . . . , 0}, D̃e-N = diag{0, . . . , 0, D̃e-N },

D̃e-x(ω) :=
∑

k

Yx,k · Ge-x(ω, k) · Y†
x,k =

∑
k

|gx,k|2 diag

{
i

ω+ − εx,k
,

i

ω+ − εx,k
,

i

ω+ + εx,k
,

i

ω+ + εx,k

}
. (D1)

The above summation over the electron modes k can be turned into an integral by introducing ϒx(ω) as the spectral density of
the coupling strength between the nanowire and lead x, i.e.,

ϒx(ω) := 2π
∑

k

|gx,k|2δ(ω − εx,k )
∑

k

i|gx,k|2
ω+ ± εx,k

−→ i
∫ +∞

−∞

dε

2π

ϒx(ε)

ω + iε ± ε
= iP

∫
dε

2π

ϒx(ε)

ω ± ε
+ 1

2
ϒx(±ω). (D2)

The first term of the principle integral provides an energy correction to the system Hamiltonian Hw in the Green func-
tion (C14), and the second term provides the dissipation effect. In transport measurements, the coupling spectral density is
usually approximated as a constant ϒx(ω) ≡ ϒx, which is also known as the wide band limit. Thus, the above energy correction
gives zero, only left D̃e-x(ω) 	 1

2ϒxdiag{1, 1, 1, 1} := 1
2 Γx. As a result, the dissipation kernel of the two electron leads only
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provides the dissipation effect, i.e., D̃e(ω) 	 1
2 �̃e(ω) := 1

2 (�1 + �N ), where �1 := diag{Γ1, . . . , 0, 0}, �N := diag{0, . . . , 0, ΓN }
are 4N × 4N dissipation matrices.

Similarly, the dissipation kernel from the s-wave SC [Eq. (C12)] is treated in the same way, which gives

D̃sc(ω) =
∑

k

Tk · Gsc(ω, k) · T†
k 	 diag

{
D̃s

1(ω), . . . , D̃s
N (ω)

}
, D̃s

n(ω) :=
∑

k

Tn,k · i

ω+ − Hsc(k)
· T†

n,k ≡ D̃s(ω). (D3)

Here the off-diagonal blocks in [D̃sc(ω)]4N×4N are omitted for the local tunneling approximation, which means the tunneling
processes from different sites of the nanowire to the s-wave SC do not have any interferences or correlations with each other.
Besides, since the coupling strengths between different sites and the s-wave SC have the same amplitude, |Jm,k| = |Jn,k| := Jk
for m �= n, all the N diagonal blocks in D̃sc(ω) are equal to each other, and they are given by

D̃s(ω) =
∑

k

Tk · i

ω+ − Hsc(k)
· T†

k =
∑

k

i|Jk|2
(ω+)2 − (

εsc
k

)2 − �2
s

⎡
⎢⎢⎣

ω+ + εsc
k −�s

ω+ + εsc
k �s

�s ω+ − εsc
k

−�s ω+ − εsc
k

⎤
⎥⎥⎦,

1

(ω+)2 − E2
= 1

2E

[
1

ω+ − E
− 1

ω+ + E

]
= 1

2E

[
P 1

ω − E
− iπδ(ω − E ) − P 1

ω + E
+ iπδ(ω + E )

]
, (D4)

where Tk := |Jk| diag{1, 1,−1,−1}. Similarly like Eq. (D2), the summation over k can be turned into an integral by introducing
ϒs(ω) as the the spectral density of the coupling strength between the nanowire and the s-wave SC, i.e.,

ϒs(ω) := π
∑

k

|Jk|2δ
(
ω − εsc

k

) ∼ π |Js(ω)|2ρs(ω). (D5)

Here ρs(ω) is the density of state from the s-wave SC, and approximately ϒs(ω) 	 ϒs is a constant. Then the dissipation kernel
D̃s(ω) from the s-wave SC is obtained as

D̃s(ω) = 1

2
Γ̃s(ω) + iṼs(ω) := 1

2
[Γ̃+

s (ω) + Γ̃−
s (ω)] + iṼs(ω), Ṽs(ω) = −�(�s − |ω|)ϒs√

�2
s − ω2

⎡
⎢⎣

ω −�s

ω �s

�s ω

−�s ω

⎤
⎥⎦,

Γ̃±
s (ω) = ±2�(±ω − �)ϒs√

ω2 − �2

⎡
⎢⎣

ω −�s

ω �s

�s ω

−�s ω

⎤
⎥⎦, (D6)

where Γ̃s(ω) indicates the dissipation effect, while Ṽs(ω) can be regarded as an effective interaction in the Green function (C14).
Correspondingly, the full dissipation kernel (D3) can be written as D̃sc(ω) := 1

2 �̃s(ω) + iṼs(ω), with Ṽs(ω) := diag{Ṽs, . . . , Ṽs}
and �̃s(ω) := diag{Γ̃s, . . . , Γ̃s}.

It is worth noticing that the Heaviside function appears in both Γ̃s(ω) and Ṽs(ω). That means, when the system energy lies
within the SC gap |ω| < �s, the s-wave SC only provides the effective pairing (the SC proximity) without any dissipation effect;
for the high energy modes outside the SC gap |ω| > �s, the s-wave SC only gives the dissipation effect but does not induce the
SC proximity.

APPENDIX E: STEADY STATE CURRENT

Here we consider the electric current flowing from lead 1 to the nanowire, and the differential conductance measurement.
Generally, the electric current can be calculated by the changing rate of the electron number in lead 1, that is,

〈Î1(t )〉 = −e
∑

ks

∂t 〈b̂†
1,ksb̂1,ks〉 = ie

h̄

∑
ks

[g1,k〈d̂†
1s(t )b̂1,ks(t )〉 − g∗

1,k〈b̂†
1,ks(t )d̂1s(t )〉] := I1(t ) + c.c. (E1)

In particular, we focus on the steady state current after a long enough time relaxation t → ∞. This can be obtained
from the Fourier image Ĩ1(ω) based on the final value theorem, which gives I1(t → +∞) = limω→0[−iωĨ1(ω)]. With the
help of the tunneling matrix Y1,k and a projector operator P+ defined below, Ĩ1(ω) can be rewritten as the following
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matrix form:

Ĩ1(ω) = ie

h̄

∑
k

∫
dν

2π
〈[d̃(ν)]† · P+ · Y1,k · b̃1,k(ν + ω)〉

= ie

h

∫
dν 〈[−iξ̃

†
sc(ν) − iξ̃

†
e (ν)] · G†(ν) · P+ · [ξ̃1(ν + ω) + iD̃e-1(ν + ω) · d̃(ν + ω)]〉

= e

h

∫
dν 〈{[ξ̃†

sc + ξ̃
†
1 + ξ̃

†
N ] · G†}(ν) · P+ · {ξ̃1 − D̃e-1 · G · [ξ̃sc + ξ̃1 + ξ̃N ]}(ν+ω)〉. (E2)

Here the projector P+ is defined as P+ := diag{P+, P+, . . . , P+}, with blocks P+ := diag{1, 1, 0, 0}. The dynamics of b̃1,k(ν +
ω), [d̃(ν)]† has been given in Eqs. (C10) and (C14), and the initial states of the nanowire like d̂(0) do not appear here since their
contributions would decay to zero in the steady state t → ∞.

The quantum expectations in Eq. (E2) are calculated from the random forces ξ̃sc, ξ̃e based on the initial states of lead 1, N
and the s-wave SC, and they can be expressed by the correlation matrices for these three fermionic baths, [C1(ω̄, ω)]mn :=
〈[ξ̃†

1(ω̄)]n[ξ̃1(ω)]m〉, [Cs(ω̄, ω)]mn := 〈[ξ̃†
sc(ω̄)]n[ξ̃sc(ω)]m〉, which further give

Ĩ1(ω) = e

h

∫
dνtr[C1(ν, ω + ν) · G†(ν) · P+] −

∑
y=1,N

tr[Cy(ν, ω + ν) · G†(ν) · P+ · D̃e-1(ν + ω) · G(ν + ω)]

− tr[Cs(ν, ω + ν) · G†(ν) · P+ · D̃e-x(ν + ω) · G(ν + ω)]. (E3)

According to the final value theorem, with the help of the correlation matrices Cx,s(ω̄, ω) calculated in Appendix F, in the steady
state t → ∞, the electric current is obtained as [40]

〈Î1〉∞ = e

h

∫
dνtr[G†�+

1 G�+
N ](ν) [ f1(ν) − fN (ν)] + tr[G†�+

1 G�−
N ](ν) [ f1(ν) − f̄N (−ν)]

+ tr[G†�+
1 G�−

1 ](ν) [ f1(ν) − f̄1(−ν)] + tr[G†�+
1 G�̃s](ν) f1(ν) − tr[G†�+

1 G�̃
+
s ](ν) fs(ν) − tr[G†�+

1 G�̃
−
s ](ν) f̄s(−ν).

(E4)

Here the dot symbols for the matrix product “·” are omitted for short. fx(ν), fs(ν) are the Fermi distributions of lead x and the
s-wave SC, and f̄x,s(ω) := 1 − fx,s(ω). The dissipation matrices �̃s(ν), �x have been given in Eqs. (D1), (D2), and (D6). �±

x

and �̃
±
s (ν) are dissipation matrices of lead x and the s-wave SC, which are given in Eqs. (F4) and (F7). The following relation is

needed when deriving the above result:

G + G† = G† · [i(ω − H − iD̃) − i(ω − H + iD̃)] · G = G† · (�1 + �N + �̃s) · G. (E5)

For a transport measurement, we set the chemical potentials as μN = 0, μ1 = eV , with V as the voltage bias. At the zero
temperature, the chemical potential of lead 1 is f1(ν) = �(eV − ν), thus the above electric current (E4) gives the differential
conductance σ ≡ dI1/dV as

σ = e2

h
{tr[G†�+

1 G�N ](eV ) + tr[G†�+
1 G�̃s](eV ) + tr[G†�+

1 G�−
1 ](eV ) + tr[G†�+

1 G�−
1 ](−eV )}. (E6)

The first two terms indicate the contributions from the electron exchange from lead 1 to lead N and the s-wave SC. The
last two terms come from the Andreev reflection between lead 1 and the nanowire. In the above derivations, except the local
tunneling approximation and the constant coupling spectrum, no other approximations are made. Thus, in principle this result
also applies for the situations when the magnetic field or coupling strength is strong.

APPENDIX F: CORRELATION MATRICES OF THE BATHS

Here we calculate the correlation matrices in the above current (E3). From the random force (C12), Green function (C10),
and the tunneling matrix (C9), the 4N × 4N correlation matrix [Cx(ω̄, ω)]mn := 〈[ξ̃†

x (ω̄)]n[ξ̃x(ω)]m〉 for lead x is

C1(ω̄, ω) = diag{C1(ω̄, ω), 0, . . . , 0}, CN (ω̄, ω) = diag{0, . . . , 0, CN (ω̄, ω)},

[Cx(ω̄, ω)]4×4 =
∑

k

diag

{ |gx,k|2 fx(εk )

(ω̄− − εk )(ω+ − εk )
,

|gx,k|2 fx(εk )

(ω̄− − εk )(ω+ − εk )
,

|gx,k|2 f̄x(εk )

(ω̄− + εk )(ω+ + εk )
,

|gx,k|2 f̄x(εk )

(ω̄− + εk )(ω+ + εk )

}

= diag

{
iϒx(ω) fx(ω)

(ω − ω̄) + 2iε
,

iϒx(ω) fx(ω)

(ω − ω̄) + 2iε
,

iϒx(−ω̄) f̄x(−ω̄)

(ω − ω̄) + 2iε
,

iϒx(−ω̄) f̄x(−ω̄)

(ω − ω̄) + 2iε

}
. (F1)

Here fx(ω) is the Fermi distribution from the initial equilibrium state of lead x, i.e.,

fx(ω) = 〈b̂†
x,k(0)b̂x,k(0)〉 = 1

e(ω−μx )/Tx + 1
Tx→0−→ �(μx − ω), f̄x(ω) := 1 − fx(ω). (F2)
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The above summations of k are turned into integrals by using the coupling spectral density ϒx(ω) ≡ ϒx, i.e.,

∑
k

|gx,k|2 fx(εk )

(ω̄− − εk )(ω+ − εk )
→

∫
dν

2π

ϒx(ν) fx(ν)

(ν − ω̄ + iε)(ν − ω − iε)
= iϒx(ω) fx(ω)

(ω − ω̄) + 2iε
,

∑
k

|gx(k)|2 f̄x(εk )

(ω̄− + εk )(ω+ + εk )
→

∫
dν

2π

ϒx(ν) f̄x(ν)

(ν + ω̄ − iε)(ν + ω + iε)
= iϒx(−ω̄) f̄x(−ω̄)

(ω − ω̄) + 2iε
. (F3)

Therefore, when calculating the steady state current from the final value theorem, the correlation matrix in Eq. (E3) gives

lim
ω→0

[(−iω)Cx(ν, ω + ν)] = ϒx diag{ fx(ν), fx(ν), f̄x(−ν), f̄x(−ν)} := fx(ν) Γ+
x + f̄x(−ν) Γ−

x ,

lim
ω→0

[(−iω)Cx(ν, ω + ν)] = fx(ν) �+
x + f̄x(−ν) �−

x , (F4)

where Γ+
x := ϒx diag{1, 1, 0, 0} and Γ−

x := ϒx diag{0, 0, 1, 1} are upper and lower parts of the dissipation matrix Γx ≡ Γ+
x + Γ−

x ,
respectively, and correspondingly �±

1 := diag{Γ±
1 , 0, . . . , 0}, �±

N := diag{0, . . . , 0, Γ±
N }.

On the other hand, to calculated the correlation matrix for the s-wave SC, we need to use the Bogoliubov eigenmodes, which
determine the initial Fermi distribution of the s-wave SC. The s-wave SC Hamiltonian is diagonalized as Ĥsc = 1

2

∑
k ĉ†

k · Hsc
k ·

ĉk ≡ 1
2

∑
k η̂†

k · Esc
k · η̂k, with η̂k := Uk · ĉk and

Esc
k :=

⎡
⎢⎣

E sc
k

E sc
k −E sc

k −E sc
k

⎤
⎥⎦ = Uk · Hsc

k · U†
k, Uk =

⎡
⎢⎣

cos θk sin θk
cos θk − sin θk
sin θk cos θk

− sin θk cos θk

⎤
⎥⎦, (F5)

where E sc
k ≡ [(εsc

k )2 + �2
s ]1/2 and tan 2θk ≡ �s/ε

sc
k [see also Eq. (A6)].

From the random force (C12), the correlation matrix of the s-wave SC gives [Cs(ω̄, ω)]mn := 〈[ξ̃†
sc(ω̄)]n[ξ̃sc(ω)]m〉 	

diag{Cs(ω̄, ω), . . . , Cs(ω̄, ω)}, which is block diagonal. Similarly, as the treatment to the dissipation kernel (D3), the off-
diagonal blocks are omitted for the local tunneling approximation. And the diagonal blocks Cs(ω̄, ω) are calculated as

[Cs(ω̄, ω)]mn =
∑
k,i j

〈[ĉ†
k(0)]i[G†

sc(ω̄)T†
k]in · [TkGsc(ω)]m j[ĉk(0)] j〉

=
∑

k

Tk · Gsc(ω) · [1 − 〈ĉk(0)ĉ†
k(0)〉]· G†

sc(ω̄) · T†
k =

∑
k

Tk · Gsc(ω) · U†
k · [1 − 〈η̂k(0)η̂†

k(0)〉] · Uk · G†
sc(ω̄) · T†

k

=
∑

k

Tk · U†
k · i

ω+ − Esc
k

· diag
{

fs
(
E sc

k

)
, fs

(
E sc

k

)
, f̄s

(
E sc

k

)
, f̄s

(
E sc

k

)} · −i

ω̄− − Esc
k

· Uk · T†
k

=
∑

k

|Jk|2 fs
(
E sc

k

)/
2(

ω+ − E sc
k

)(
ω̄− − E sc

k

)
⎡
⎢⎣

1 + cos 2θk − sin 2θk
1 + cos 2θk sin 2θk

sin 2θk 1 − cos 2θk
− sin 2θk 1 − cos 2θk

⎤
⎥⎦

+ |Jk|2 f̄s
(
E sc

k

)
/2(

ω+ + E sc
k

)(
ω̄− + E sc

k

)
⎡
⎢⎣

1 − cos 2θk sin 2θk
1 − cos 2θk − sin 2θk
− sin 2θk 1 + cos 2θk

sin 2θk 1 + cos 2θk

⎤
⎥⎦, (F6)

where fs(E sc
k ) is the Fermi distribution for the Bogoliubov eigenmodes in the initial state. The summation over the fermion modes

k can be turned into an integral with the help of the coupling spectral density ϒs(ω) ≡ ϒs. Furthermore, when calculating the
steady state current from the final value theorem, the correlation matrix Cs(ω̄, ω) gives

lim
ω→0

[(−iω)Cs(ν, ω + ν)] = 2ϒs√
ν2 − �2

s

[�(ν − �s) fs(ν) − �(−�s − ν) f̄s(−ν)]

⎡
⎢⎣

ν −�s

ν �s

�s ν

−�s ν

⎤
⎥⎦

= fs(ν) Γ̃+
s (ν) + f̄s(−ν) Γ̃−

s (ν), lim
ω→0

[(−iω)Cs(ν, ω + ν)] := fs(ν) �̃
+
s (ν) + f̄s(−ν) �̃

−
s (ν), (F7)
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where �̃
±
s (ν) := diag{Γ̃±

s (ν), Γ̃±
s (ν), . . . , Γ̃±

s (ν)}. To obtain this result, the following derivation is adopted [F (x) is an arbitrary
function]:

lim
ω̄→ω

[
−i(ω − ω̄)

∫ ∞

−∞

dε

2π

F
(√

ε2 + �2
s

)
(
ω+ ± √

ε2 + �2
s

)(
ω̄− ± √

ε2 + �2
s

)
]

= lim
ω̄→ω

∫ ∞

−∞

dε

2π
i(ω̄− − ω+)

[
1

ω+ ± √
ε2 + �2

s

− 1

ω̄− ± √
ε2 + �2

s

]
F

(√
ε2 + �2

s

)
ω̄− − ω+

=
∫ ∞

−∞
dε F

(√
ε2 + �2

s

)
δ
(
ω ±

√
ε2 + �2

s

) = 2
∫ ∞

0
dE

EF (E ) δ(ω ± E )√
E2 − �2

s

= ∓�(∓ω − �s)√
ω2 − �2

s

· 2ωF (∓ω). (F8)
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