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Designer flat bands: Topology and enhancement of superconductivity
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We construct quasi-one-dimensional topological and nontopological three-band lattices with a tunable band
gap and winding number of the flat band. Using full multiband mean field (MF) and exact density matrix
renormalization group (DMRG) calculations, we show explicitly how the band gap affects pairing and super-
conductivity (SC) in a Hubbard model with attractive interactions. We obtain excellent agreement between MF
and DMRG calculations. The SC weight Ds on the gapped topological, W �= 0, flat band increases linearly with
interaction strength U for low values and with a slope that depends on the details of the compact localized state
at U = 0. As U → 0 for the gapped nontopological flat band (W = 0), Ds decays with a power law faster than
quadratically but slower than exponentially. In the gapless case (flat band touching the band above it), we find at
low U (for both W = 0 and W �= 0) that Ds ∝ U ϕ , with ϕ < 1. In other words, Ds increases faster than linearly
for low U , thus favoring SC at weak interaction more than the gapped case. Our results reestablish that the BCS
mean field and quantum metric alone are insufficient to characterize SC at weak coupling.
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I. INTRODUCTION

Flat band physics has garnered wide interest since the
1990s, but this captivation has become exceptionally pro-
nounced following the experimental realization of uncon-
ventional superconductivity in twisted bilayer graphene at a
magic angle [1–4] where the appearance of a flat band is
suspected to be the driving mechanism. The possibility of
revealing exotic quantum phases, in particular, superconduc-
tivity on topological and nontopological flat bands, can be
attributed to a unique characteristic of these dispersionless
bands, where any finite interaction will be much larger than
the band width, leading to strongly correlated physics at any
value of the interaction.

When a particle is loaded in a flat band, the high degen-
eracy causes it to localize in a compact form within a few
sites whose geometry depends on the details of the Hamil-
tonian; we will refer to this as the compact localized state
(CLS). Studies on topological models have argued that, at
weak coupling, isolated flat bands enhance pair formation and
superconductivity (SC) and raise the BCS transition temper-
ature Tc [5–7]. It was demonstrated, with computational and
mean field methods, that a partially filled isolated flat band
has superfluid weight Ds, linear in the interaction U for U
much smaller than the gap, where transport is dominated by
the topology of the flat band [6,8–11]. Furthermore, the slope
at linearity is not simply given by the quantum metric but
is accounted for, very accurately, by a proper projection on
the flat band taking into account the inequivalent sublattices
[9]. Recently, the quantum metric prediction for the slope was
improved by introducing the notion of a minimal quantum

metric [10]. For the sawtooth lattice at a filling of ρ = 0.5, the
quantum metric predicts the slope of Ds to be 0.6 compared to
the exact density matrix renormalization group (DMRG) cal-
culation, multiband mean field (MF) calculation, and proper
projection on the flat band, all of which yield slopes of 0.40
[9]. The minimal quantum metric [10] gives a slope of 0.45,
which brings it closer to the exact DMRG and MF calculations
found in Ref. [9]. In two and higher dimensions, this linear
behavior of Ds with U was shown to lead to a similar linear
dependence of Tc on the coupling [5,7,12–14]. We recall that
in dispersive bands, Ds and Tc are exponentially small as
U → 0, with Ds ∼ e−a/U and Tc ∼ e−b/U .

Full multiband MF methods can accurately describe the
entire range of superconducting behavior, from weak to very
strong interactions where particles behave effectively like
hard-core bosons on a dispersive band. Despite the changing
transport mechanisms as U is increased, the full multiband
MF method, which accounts for sublattice inequivalence,
faithfully recovers correct results across the entire range of
U [9].

When the lowest-energy flat band just touches the next
dispersive band, any finite interaction will necessarily involve
both bands in transport. It has been suggested, using the BCS
mean field, the quantum metric, and the minimal quantum
metric, that touching bands can be beneficial to superconduc-
tivity [10,15–17] resulting in Ds ∝ U ln(const/U ).

In this work we address two main questions. First, what
is the role played in SC by topology as opposed to band
flatness? In other words, suppose we have two systems with
very similar-looking band structures: The lowest band is flat
and separated from the next band above it, but in one system
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the flat band has nonzero winding number and in the other
W = 0. We examine how superconductivity differs in these
two systems and further consider its dependence on the CLS
of the flat band.

The second question is, how do the answers to the first
question change when the flat band touches the band above
it, i.e., in the gapless case? Both these questions are ad-
dressed in the case where the flat band filling is less than
full.

Such questions have been addressed previously. However,
in the case of comparing topological and nontopological flat
bands, the systems that were compared had different struc-
tures. For example, in Ref. [18], the nontopological Lieb
lattice was compared with the topological π -flux lattice;
the former is a three-band system with the flat band in
between two dispersive bands, whereas the latter is a two-
band system with the flat band in the ground state. So the
systems are quite different; it would be instructive to com-
pare two very similar systems but with different topological
properties.

To this end, we first focus on a quasi-one-dimensional
three-band (i.e., three-orbital) system, where the winding
number W , the filling on the CLS, the flat band energy, and
the band gap can all be tuned by engineering the hopping
parameters. We accomplish this by applying the method of
Ref. [19]. We show how to obtain the Hubbard Hamiltonian
for a general three-band system and the full multiband mean
field required to describe these systems accurately. We outline
the construction of new systems with the desired winding
number, the flat band as the lowest-energy state, and the CLS
on two neighboring unit cells. With the chosen W , CLS, and
flat band energy, we still have the additional freedom to tune
the gap through free parameters controlling the next dispersive
band. We note that flat band systems have been realized ex-
perimentally with photonic lattices in two dimensions [20,21]
and in quasi-one-dimension [22–24].

With these tools in hand, our main results are as follows.
For the gapped topological (W �= 0) system we show that,
as in Ref. [9], the full multiband MF method agrees very
well with exact DMRG calculations in accounting for the
properties of the system over a wide range of coupling pa-
rameter and densities. In particular, we again find that for
U smaller than the band gap, Ds increases linearly with U .
At fixed W , band gap, and flat band energy, the relative
populations of the two unit cells on which the CLS resides
can be tuned and the largest slope (fastest increase) of Ds

as a function of U is achieved with a symmetric population
on the CLS. We also find that the slope of Ds(U ) depends
much more sensitively on the relative populations of the two
unit cells than on the quantum metric. Furthermore, unlike
the Creutz and sawtooth lattices [9], we establish, in general,
the dependence of the phase of the order parameters on the
interaction strength U and band gap. These properties are
qualitatively the same for any W �= 0. For the nontopological
W = 0, we show that a CLS on two neighboring unit cells
cannot be constructed: The CLS now resides in only one cell.
This then implies that transport requires the upper band. This
is confirmed by DMRG and MF calculations which show
that for low U , Ds is suppressed and increases slower than
linearly.

FIG. 1. Lattice with intracell hopping parameters t1, t2, and t3

and intercell hopping parameters labeled from ta to ti. We consider
three sublattice sites A, B, and C per unit cell (shown in the shaded
rectangle) on a quasi-one-dimensional chain.

When the gap is closed and the flat band touches the band
above it, the upper band will be involved in pairing and SC
for any nonzero U . In this case we find that for low U and for
both topological (W = 0) and nontopological (W �= 0) bands,
Ds ∝ U ϕ with ϕ < 1. This means that, for small values of
U , Ds increases faster than linearly. This power-law behavior
is in disagreement with the U ln(const/U ) behavior reported
in the literature [10,15–17]. However, the model we consider
here differs from those studied in Refs. [10,15–17] in several
aspects, which could explain this difference in scaling behav-
ior (see Sec. III B). In this paper we only consider particle
densities below full filling of the flat band. So, in a three-band
system, we only consider total densities below 2

3 .
The paper is organized as follows. In Sec. II we discuss

the model Hamiltonian and how we construct it with the
desired CLS and values of W , flat band energy, and gap.
We also summarize our full multiband mean field method. In
Sec. III we discuss the properties of the gapped and gapless
topological systems W �= 0, while in Sec. IV we examine
the nontopological W = 0 case. A summary is given and our
conclusions are discussed in Sec. V. Additional details and
results are discussed in Appendixes A–E.

II. MODEL AND METHODS

A. Hubbard Hamiltonian: Methods

The Hubbard Hamiltonian with attractive on-site interac-
tion on a general quasi-one-dimensional three-band system is
described by

H =
∑

i, j,α,σ

(tα,α′
i j cα†

i,σ cα′
j,σ + H.c.) − U

∑
j,α

cα†
j,↓cα†

j,↑cα
j,↑cα

j,↓

− μ
∑
j,α,σ

cα†
j,σ cα

j,σ , (1)

where i, j are unit cell labels, α, α′ = A, B,C are sublattice
(orbital) indices, and tα,α′

i j is the hopping parameter between
lattice sites (i, α) and ( j, α′), as shown in Fig. 1. The oper-
ator cα

j,σ (cα†
j,σ ) destroys (creates) a spin σ =↑,↓ fermion on
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site i, α. The on-site Hubbard interaction parameter between
a spin-↑ and spin-↓ fermions is U > 0; μ is the chemical
potential. Choosing the hopping parameters judiciously (dis-
cussed below) yields a highly degenerate flat band. We define
the filling ρ to be the average number of fermions per site,
i.e., ρ = N↑+N↓

3L , where L is the number of unit cells. The
superconducting behavior of these systems is probed by ap-
plying a phase gradient cα

j,σ → cα
j,σ eiφ j , where φ is the phase

gradient �/L and � the phase twist. A defining quantity of
SC, the superfluid density Ds, can then be computed from
the second derivative of the thermodynamic grand potential
or equivalently the ground-state energy at zero temperature
[25–29],

Ds = πL
d2EGS(�)

d�2

∣∣∣∣
�=0

. (2)

Superconducting transport in one-dimensional attractive Hub-
bard systems has also been shown to be purely pair transport
[30] and, consequently, the single-particle Green’s function
decays exponentially while the pair Green’s function decays
as a power

Gαα′
σ (r) = 〈cα

j+r,σ cα′†
j,σ 〉 ∼ e−r/ξ , (3)

Gαα′
pair (r) = 〈cα

j+r,↓cα
j+r,↑cα′†

j,↑cα′†
j,↓〉 ∼ r−ω, (4)

where ξ is the correlation length and ω is the power-law decay
exponent.

To study the ground-state properties of this system, we use
the exact DMRG computation as implemented in the ALPS

library [31,32] and the full multiband MF calculation. To
calculate the Green’s functions with the DMRG method, we
use open boundary conditions up to a system size of L = 100
unit cells. To calculate Ds, we need to apply a phase gradi-
ent to induce superflow which necessitates periodic boundary
conditions (PBCs). To this end, we employ the method of
Ref. [8], where special boundary terms are used which are
effectively equivalent to PBCs. In the MF description of the
Hubbard Hamiltonian, we decompose the quartic operator
term cα†

j,↓cα†
j,↑cα

j,↑cα
j,↓, with the full multiband mean field ex-

pression (Appendix A) yielding the MF Hamiltonian

HMF =
∑

i, j,α,σ

(tα,α′
i j cα†

i,σ cα′
j,σ + H.c.)

− U
∑
j,α

ρα
↑cα†

j,↓cα
j,↓ + ρα

↓cα†
j,↑cα

j,↑

−
∑
j,α

�αcα†
j,↓cα†

j,↑ + �α∗cα
j,↑cα

j,↓

− μ
∑
j,α,σ

cα†
j,σ cα

j,σ

+ L
∑

α

Uρα
↑ρα

↓ + |�α|2
U

. (5)

The order parameter �α/U = 〈cα
j,↑cα

j,↓〉 is complex,
in general, and sublattice dependent. The average
filling on sublattice α is ρα

↑(↓) = 〈cα†
j,↑(↓)c

α
j,↑(↓)〉. Fourier

transforming, we define the Nambu spinor �
†
k =

(cA†
k↑ cB†

k↑ cC†
k↑ cA

−k↓ cB
−k↓ cC

−k↓) and write the

Bogoliubov–de Gennes Hamiltonian

HMF(�) =
∑

k

�
†
kMk (�)�k

+ L
∑

α

(Uρα
↑ρα

↓ + |�α|2
U

− Uρα
↓ − μ), (6)

where the momentum k is summed over the Brillouin zone
(BZ) and Mk (�) is a 6 × 6 Hermitian matrix for the three-
band system (Appendix A). The phase twist � enters the
expression through the intercell hopping terms. Diagonalizing
the MF Hamiltonian (6) and solving the self-consistent equa-
tions for the order parameters and site-dependent fillings, we
find the ground-state energy EGS(�) and obtain the superfluid
density Ds.

We emphasize that the full multiband MF is crucial to
describe accurately the behavior of multiband systems [9].
This means that, in the most general form, (a) the order pa-
rameters are sublattice dependent and complex and (b) the
sublattice-dependent filling must be taken into account as
a mean-field parameter. Without these two ingredients, the
agreement between MF and exact calculations deteriorates, as
shown in Appendix E.

In what follows, all energies are measured in terms of our
energy scale |t3|, the hopping parameter between sublattices A
and C on the same unit cell.

B. Flat band construction

We construct the flat band lattices using the method of
Ref. [19], which we outline in Appendix B. With a choice
of the CLS localized on two adjacent unit cells in a quasi-one-
dimensional three-band lattice, we can obtain lattices with a
flat band as the lowest-energy state. Here we represent the
(not normalized) CLS wave functions on two neighboring unit
cells in their most general form in real space

|�1〉 =
⎛
⎝ a

beiβ

ceiγ

⎞
⎠, |�2〉 =

⎛
⎝xeiχ

yeiτ

zeiζ

⎞
⎠, (7)

where each element is the probability amplitude on the sub-
lattices. We can then compute the winding number W of the
flat band through

W = i

π

∫ 2π

0
dk〈�k||∂k�k〉

= 1

2π

∫ 2π

0
dk

(
1 + x2 + y2 + z2 − a2 − b2 − c2

2 cos(k)+a2+b2+c2+x2+y2+z2

)

= 1 + x2 + y2 + z2 − a2 − b2 − c2√
(a2 + b2 + c2 + x2 + y2 + z2)2 − 4

, (8)

where |�k〉 is the normalized Bloch state corresponding to the
CLS (Appendix B). With the condition in Eq. (8), we have
the freedom to construct lattices with winding numbers of
our choice (Appendix D). We write the kinetic energy part of
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the Hamiltonian as HKE, and H0 and H1 are the intracell and
intercell kinetic energies, respectively (see Fig. 1),

H0 =
⎛
⎝0 t1 t3

t1 0 t2
t3 t2 0

⎞
⎠, (9)

H1 =
⎛
⎝ta tb tc

td te t f

tg th ti

⎞
⎠, (10)

HKE =

⎛
⎜⎜⎜⎝

H0 H1 0 · · · 0 H†
1

H†
1 H0 H1 0 · · · 0

0 H†
1 H0 H1

. . .
...

. . .

⎞
⎟⎟⎟⎠. (11)

Further details are outlined in Appendix B. In the examples
we cover, we only consider (positive and negative) real values
for the probability amplitudes in Eq. (7).

III. TOPOLOGICAL FLAT BANDS: W �= 0

In this section we focus on topological flat bands with
nonzero winding number W �= 0. We propose two lattices,
lattice A and lattice B, both of which have a fixed flat band
energy EFB but variable dispersive bands, allowing us to tune
the band gap.

Here the properties of the system when there is a gap
between the flat lowest-energy band and the dispersive band
above it are analyzed and distinguished from the effects when

these two bands touch. In addition, we study at fixed gap and
W the effect of asymmetry in the populations of the two unit
cells of the CLS and the effect of changing W .

We first choose a CLS with symmetric but nonuniform
populations on the two unit cells. We refer to this as lattice
A and its CLS is given by

|�1〉 =
⎛
⎝

√
2

−√
3

−√
2

⎞
⎠, |�2〉 =

⎛
⎝

√
2√
3

−√
2

⎞
⎠, (12)

where |�1〉 and |�2〉 are the states on the two neighboring
unit cells where the CLS is found. The populations on the
two unit cells are the same, but within a unit cell, sublat-
tice B has a higher population than the equal populations
of sublattices A and C, shown in Fig. 2. Using Eq. (8), we
show that this choice yields a winding of W = 1. The hop-
ping parameters for this CLS are t1 = t2 = √

7, t3 = 1, ta =
ti = 1

8 + κ , tb = t f = 1
2 (

√
7 − √

6), tc = 1
8 (13 − 2

√
42) + κ ,

td = th = 1
2 (

√
7 + √

6), te = 2, and tg = 1
8 (13 + 2

√
42) + κ

(Appendix B). The free parameter κ is used to control the
band gap, as shown in Fig. 2. Fourier transforming HKE, we
obtain the eigenvalues λi which describe the band structure in
Eq. (13).

The flat band energy is fixed at EFB = −4, independent of
κ . For the gapped case we set κ = 0, while for the gapless
cases κ = −0.375, which has the lower two bands touching
at k = 0 ( ∂2λ2

∂k2 |k=0 = 4
5 ), and κ = 0.375 is gapless at k = π

( ∂2λ2
∂k2 |k=π = 3

2 ), depicted in Fig. 2. Here

λ1 = −4,

λ2 = 1
8 {16+18 cos(k)+16κ cos(k) −

√
6[299 + 272 cos(k) + 27 cos(2k)] + 2[128κ2 cos2(k) − 128κ cos(k) + 160κ cos2(k)]},

λ3 = 1
8 {16+18 cos(k)+16κ cos(k) +

√
6[299 + 272 cos(k) + 27 cos(2k)] + 2[128κ2 cos2(k) − 128κ cos(k) + 160κ cos2(k)]}.

(13)

A. Gapped case

We study first the gapped case with Egap ≈ 0.7625 (κ = 0).
Figure 3 shows the superfluid density Ds versus the interaction
strength U computed with the DMRG and MF methods for
two fillings ρ = 1

4 and 1
3 , where ρ = 1

3 gives a half-filled flat
band. The agreement is excellent between the DMRG and
MF calculations for both densities and over the entire wide
range of U values. In addition, the hard-core boson (HCB)
approximation [33] agrees with exact and MF values of Ds at
very large U , when the Cooper pairs are tightly bound. In this
limit, the transport of effective hard-core bosons is governed
by a dispersive model with repulsive nearest-neighbor inter-
action [33]. At low U , Ds rises linearly with U , as has been
established for isolated flat bands. The slope of Ds against U
is 0.538 for ρ = 1

4 and 0.618 for ρ = 1
3 . In addition to Ds, the

order parameters and sublattice fillings also show excellent
agreement between MF and DMRG results at � = 0, as we
show in Appendix C. Furthermore, while the above features
are similar to ones we have observed previously [9], this
system exhibits a property not encountered before. In the

case of the Creutz flat band system we found that �A = �B

and both can be taken to be real; for the sawtooth system,
we found that �A �= �B, so in general one can be taken
to be real but the other complex [9]. In addition, we found
for the sawtooth lattice that when a phase gradient is applied,
the phase difference between the order parameters on the two
sublattices is constant and equal to the phase gradient. In the
present case, we see from Eq. (12) that sublattices A and C
have equal fillings and the MF calculation shows that they
also have the same magnitude of the complex order parameter.
However, they do not have the same phase when a phase twist
is applied, � �= 0. By doing a global gauge transformation, the
phase of �B = |�B|eiθB can be set equal to 0. We then find that
for �A = |�A|eiθA(U ) and �C = |�C |eiθC (U ), the magnitudes
are equal |�A| = |�C | �= |�B| and when θB = 0, θA = −θC .
Therefore, while sublattices A and C appear to be equivalent,
the phases of the order parameters are opposite in sign. This
can be proved as follows. For the lattice we are considering,
both matrices H0 and H1 [Eqs. (9) and (10), respectively] are
real matrices, so one can easily prove that for each sublattice,
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FIG. 2. (a) Compact localized states for lattice A [Eq. (12)],
symmetric on both unit cells. The area of the blue disks is propor-
tional to the density on the site. (b) Band structure for κ = 0.375
(gapless at k = π ), κ = 0 (Egap ≈ 0.7625), and κ = −0.375 (gap-
less at k = 0). The winding number is W = 1.

�α (−φ) = �α∗(φ), a situation similar to a system invariant
under time reversal. In addition, the structure of H0 and H1 is
such that exchanging sublattices A and C amounts to a par-
itylike symmetry, i.e., changing i → −i and φ → −φ, in the
Hamiltonian. When combined with the preceding properties,
this allows us to show that �A∗(φ) = �C (φ) and thereby that
|�A| = |�C | and θA = −θC .

We also find here that, contrary to the sawtooth case, the
phases of the order parameters are not constant but are U
dependent. At constant U , they are proportional to the phase
gradient

θα (U ) = mα (U )φ, (14)

where mα (U ) is a U -dependent proportionality factor. This is
shown in Fig. 4, where we see that at large U , mα (U ) → 1,
exhibiting in that saturated limit behavior similar to that of
the sawtooth lattice where the phases are not U dependent.
Note that mα (U ) changes very rapidly for small U where Ds

is linear in U . This emphasizes yet again the importance of
including three distinct sublattice-dependent complex order
parameters (in addition to the sublattice-dependent fillings)
when describing these systems with mean field methods.

FIG. 3. Lattice A (W = 1) gapped case (κ = 0). The superfluid
density Ds is computed with DMRG and MF calculations for ρ =
1
4 and ρ = 1

3 . The DMRG and MF calculations agree for the entire
range of U for both fillings, approaching the HCB limit at strong
interaction.

At this point we have examined the properties of a specific
choice for the CLS, lattice A [Eq. (12)]. However, as men-
tioned above, there is a great deal of freedom in |�1〉 and |�2〉
while keeping constant EFB, W , and the gap. An interesting
case to consider is a CLS with uniform site densities on all
sublattices and both unit cells. We call this lattice B, and its
CLS is given by

|�1〉 =
⎛
⎝ 1

−1
1

⎞
⎠, |�2〉 =

⎛
⎝1

1
1

⎞
⎠. (15)

FIG. 4. Lattice A (W = 1). The proportionality factor mα (U )
[Eq. (14)] is plotted versus U for the gapped and gapless band
structures of lattice A. At large U , mα → 1 and the U dependence
saturates. The filling is ρ = 1

3 . The same behavior is observed at
other fillings.
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FIG. 5. Lattice B (W = 1). The SC weight Ds is plotted vs U
with ν = − 1

12 (Egap = 1), ν = −0.5 (gapless at k = 0), and ν = 0.5
(gapless at k = π ). We observe a linear relation for the gapped case
and Ds ∼ U ϕ , with ϕ < 1, for the touching bands. The filling is ρ =
1
3 .

This choice has W = 1 and intracell and intercell hopping
Hamiltonians

H0 =
⎛
⎝ 0 −1 −1

−1 0 1
−1 1 0

⎞
⎠, H1 =

⎛
⎝ ν −1 −1 − ν

0 1 1
−ν 0 ν

⎞
⎠,

(16)

where ν is a parameter used to tune the gap. The eigenvalues
describing the three bands are

λ1 = − 2,

λ2 = 1 + cos(k) + 2ν cos(k)

−
√

4ν2 cos2(k) + cos2(k) + 4 cos(k) + 3,

λ3 = 1 + cos(k) + 2ν cos(k)

+
√

4ν2 cos2(k) + cos2(k) + 4 cos(k) + 3. (17)

These bands touch at k = 0 for ν = −0.5 ( ∂2λ2
∂k2 |k=0 = 4

3 ) and

at k = π for ν = 0.5 ( ∂2λ2
∂k2 |k=π = 2) with a flat band energy

EFB = −2, independent of ν. For the gapped case, we choose
ν = − 1

12 for a band gap of Egap = 1.
Figure 5 shows that, in the gapped case (ν = − 1

12 ), Ds

is again linear in U for lattice B and small U with a slope
of 0.619. Naively, one might expect the uniformity of site
fillings to persist when U �= 0. On the contrary, we find that
for any finite U , the uniform density of the CLS of lattice B

FIG. 6. The (a) MF order parameters and (b) fillings on sub-
lattices A and B for isolated topological (lattice B,W = 1) and
nontopological (lattice C,W = 0) flat bands with Egap = 1 and equal
filling on all sites of the CLS. Lattice B with W = 1 has �A �= �B

and ρA �= ρB for any finite U . For lattice C (W = 0), the sublattice-
dependent order parameters and fillings go smoothly to equal values
as U → 0. In both cases, |�A| = |�C | and ρA = ρC , but the order
parameters on all three sublattices have different phases at φ �= 0.
When W = 0, �B (ρB) is smaller than �A = �C (ρA = ρC), in con-
trast to the topological W = 1 cases. The filling is ρ = 1

3 .

[Eq. (15)] is broken and the sublattices again become distinct.
This is seen clearly in Fig. 6, where (for W = 1, the case we
examine here) �A/U �= �B/U and ρA �= ρB for all U > 0.
The phases of the order parameters, �A and �C , behave in the
same way as for lattice A, i.e., they are equal and opposite in
sign when the global gauge is fixed so that �B is real. For
lattices A and B with a symmetric CLS on both unit cells,
we obtain approximately equal slopes of Ds against U for the
gapped case (Figs. 5 and 7) despite the differences in band
gap, hopping potentials, and flat band energy. One might argue
that this should be obvious, as transport is dominated by the
flat band and they have equal winding numbers. However,
with the freedom of constructing asymmetric CLSs with the
same W , Egap, and EFB as the symmetric ones, we demonstrate
the dominant effect of the CLS symmetry on SC properties.
In Appendix D we show in detail that a symmetric CLS on
the flat band is the most favorable in terms of optimizing the
SC, for W = 1. Maintaining a winding of 1, EFB = −4, and
Egap ≈ 0.7625, we find that the more symmetric the CLS is,
the faster Ds increases with U . We attribute this to the overlap
of Wannier functions which increases with the symmetry of
the CLS site densities, thus optimizing Ds. Very interestingly,
as the slope of the linear part of Ds(U ) (which we denote by
S) decreases due to the asymmetry, the value of the integral
over the BZ of the quantum metric remains rather constant: S
is much more sensitive to the CLS than to the quantum metric
(Appendix D). Additionally, the site fillings, order parameters,
and band structures do not vary much across the cases consid-
ered, despite the significant difference in Ds.

As mentioned above, the winding number of the flat band
can be tuned. To illustrate this, we constructed Hamiltonians
with W = 1

2 , for several CLS configurations, and performed
a study similar to that for W = 1 (lattices D1, D2, and D3
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FIG. 7. (a) Low-U behavior of Ds for lattice A for ρ = 1
3 ,

with κ = −0.375 (touching at k = 0), κ = 0 (gapped), and κ =
0.375 (touching at k = π ) showing that touching bands can drasti-
cally improve superconductivity at weak attraction. There is a clear
power-law dependence, with power exponent less than 1 for both
κ = −0.375 and 0.375. (b) Comparison of the power law Ds ∝
U ϕ and Ds ∝ U ln(const/U ) fits. The data are inconsistent with a
U ln(const/U ) behavior.

in Appendix D). When W = 1
2 , Eq. (8) dictates that the CLS

must be asymmetric. Qualitatively, the behavior of Ds is simi-
lar to the W = 1 case in that it exhibits a linear part at low U .
In addition, �A, �B, �C , and their phases are unequal for all
sublattices and dependent on U . As we reduce the filling on
one unit cell of the CLS, increasing the asymmetry, we find
the slope S of Ds(U ) decreases. In other words, for the same
sublattice, the occupation must be comparable on both unit
cells of the CLS to increase Ds.

We thus conclude this section by stating that to optimize Ds

on the isolated topological flat band, one should identify the
case with the most symmetric CLS. Specifically, when W = 1,
the occupation on the optimized CLS will be truly symmetric.

B. Gapless cases

It has been argued that nonisolated flat bands may be ben-
eficial to SC [10,15–17] with Ds increasing as U ln(const/U )
for small U , i.e., faster than linear. Here we study this situation
where a dispersive band touches the flat band below it and
what effect it has on SC. To this end, we consider both our
lattices A and B with W = 1. The former has a symmetric
CLS but with site densities which are not uniform [Eqs. (12)
and (13)]; the latter has a CLS with uniform site densities
[Eqs. (15)–(17)]. For lattice A we take κ = −0.375 (bands
touching at k = 0) and κ = 0.375 (bands touching at k = π );
for lattice B, we take ν = − 1

2 (bands touching at k = 0) and
ν = 1

2 (bands touching at k = π ).
In Figs. 5 and 7 we exhibit the behavior of Ds at low values

of U for both these gapless systems and we also include the
corresponding linear gapped case for comparison. We see that
for all gapless cases (bands touching at k = 0, π ), a power law
fit Ds ∝ U ϕ with ϕ < 1 describes the dependence very well
for both the DMRG and MF calculations. This means that for
small U , Ds increases faster with U when the bands touch than
when there is a gap where the behavior is linear; this favors
SC because the carrier density is higher at low U . However,
in both gapped and gapless cases, the � increase linearly with
U . In the quasi-one-dimensional case we examine here, there
is no finite-temperature transition between SC and a normal
phase: True SC is present at T = 0 only. If the Ds ∝ U ϕ with
ϕ < 1 and �α ∝ U behavior persists in higher dimensions,
that would mean that Tc may not be enhanced when the bands
touch, since �α ∝ U , even though the carrier density itself
is enhanced. In Fig. 7(b) we compare the quality of fits of
the power law and the U ln(const/U ). We find the power
law to be in much better agreement with the MF and DMRG
calculations and over a wider range of U ; we therefore argue
that the power law is more appropriate than the logarithmic
form to describe Ds. We point out two main differences be-
tween our systems and those discussed in Refs. [10,15–17]
where the logarithmic behavior is observed: (a) Our systems
are quasi-one-dimensional whereas those in Refs. [10,15–
17] are two dimensional and (b) in our systems, unlike the
two-dimensional ones, when the gap between the flat band
and the second band shrinks, the CLS remains unchanged and
consequently the quantum metric and its BZ integral remain
constant. In the two-dimensional systems mentioned, the log-
arithmic behavior of Ds has been attributed to a logarithmic
divergence of the BZ integral of the diagonal quantum metric
[10,15–17]. In our case, as we mentioned, the CLS remains
unchanged as the gap shrinks and the bands touch and conse-
quently no such divergence occurs.

We note that the power-law exponents are larger when the
curvature of the dispersive band is larger which, for these two
lattices, happens at k = π . In Fig. 8 we show Ds over a very
wide range of U for two densities when the bands touch at
k = 0. We see again that agreement between our multiband
MF and exact DMRG calculations is excellent over the entire
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FIG. 8. Lattice A (W = 1), gapless at k = 0 (κ = −0.375). The
superfluid density is obtained with the MF and exact DMRG calcu-
lations for two fillings ρ = 1

4 and 1
3 . Even with touching bands, our

MF calculation agrees very well with the DMRG calculation.

range of U , as it was in the gapped case. The order parame-
ters are shown in Appendix C. In addition, we use this case
to illustrate the inaccuracy of the MF calculation when the
site densities are not included as variational MF parameters
(Appendix E).

As a result of pairing, the single-particle Green’s functions
exhibit exponential decay, while the pair Green’s functions
decay with a power law since the system is SC [30] [Eq. (3)].
The correlation length ξ extracted from the decay exponent
of the single-particle Green’s function obtained with our MF
method agrees very well with that obtained with the DMRG
method, which we show for lattice B in Fig. 9(a). Recalling
that the correlation length typically diverges exponentially
for dispersive bands [30] as U → 0, we find here a different
behavior for the correlation length on the gapped and gapless
flat bands. As previously established in Ref. [9] for the Creutz
and sawtooth lattices, the correlation length goes to a constant,
less than one lattice spacing for the isolated flat band as U →
0. We observe here this same behavior in the gapped case.
However, in the gapless case, the single-particle correlation
length ξ diverges as a power law ξ ∼ U −P, as U → 0, i.e.,
much slower than in the dispersive case. The power-law decay
of the pair Green’s function is characterized by the exponent
ω, which we calculate with the DMRG method. We find that
ω increases with U and is larger in the gapped case than in
the gapless case. The lower values of ω in the gapless case
are consistent with the larger values of Ds than for the isolated
flat band in the same range of U (Fig. 5). In other words, the
smaller the ω, the slower the decay of the quasi-long-range
order and the larger the Ds. We point out that the pair Green’s
functions cannot be obtained using the MF method.

IV. NONTOPOLOGICAL FLAT BANDS: W = 0

In this section we study pairing and superconductivity in
a system with a nontopological flat band with zero winding
number W = 0. To this end, we exploit the tunability of the

FIG. 9. Lattice B. (a) Correlation length ξ with fitted functions
for both MF and DMRG calculations (L = 100). For U = 0.2, we
include the extrapolated value ξ (L → ∞) for touching bands, where
finite-size effects result in a slightly increased discrepancy between
the MF and DMRG results at low U . (b) Pair Green’s-function
power-law decay exponent ω obtained from the DMRG calculation,
as a function of U for the cases where Egap = 1 and ν = − 1

12 and the
bands are gapless at k = 0 and ν = −0.5. The filling is ρ = 1

3 .

winding number in the approach we explained above and
tune the CLS to yield a Hamiltonian with W = 0 for the
flat band. We find that to accomplish this, the CLS must be
localized within only one unit cell rather than two neighboring
unit cells as is the case for the topological bands (details in
Appendix B). We call this nontopological case lattice C. We
choose it to have equal sublattice densities on all sites and a
flat band energy EFB = −2. The CLS is given by

|�1〉 =
⎛
⎝1

1
1

⎞
⎠ (18)

and the hopping terms are

H0 =
⎛
⎝ 0 −1 −1

−1 0 −1
−1 −1 0

⎞
⎠,

H1 = QKQ,

Q = 1
3

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠. (19)
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In this case K is an arbitrary nonzero 3 × 3 matrix. To have a
band gap of 1, a possible, but not unique, choice for K is

K =
⎛
⎝0 0 0

0 0 0
2 0 0

⎞
⎠, (20)

which gives the eigenvalues

λ1 = −2,

λ2 = 1
3 [3 − 2 cos(k) −

√
14 + 2 cos(k)],

λ3 = 1
3 [3 − 2 cos(k) +

√
14 + 2 cos(k)]. (21)

For the gapless case, we use the construction

K =
⎛
⎝ 0 0 3

2 + �

0 0 0
3
2 − � 0 0

⎞
⎠ (22)

for the bands touching at k = 0 and

K =
⎛
⎝ 0 0 − 3

2 + �

0 0 0
− 3

2 − � 0 0

⎞
⎠ (23)

for the bands touching at k = π , where � is a parameter which
controls the upper bands and consequently their curvature. We
then arrive at

λ1 = −2,

λ2 = 1 ∓ cos(k) −
√

6

3

√
(3 − �2) cos(2k) + 3 + �2,

λ3 = 1 ∓ cos(k) +
√

6

3

√
(3 − �2) cos(2k) + 3 + �2 (24)

for the gapless case and − (+) for band touching at k = 0 (k =
π ) in λ2 and λ3, and we can calculate exactly the curvature of
the second band.

Before examining the properties arising from filling lattice
C, we point out some apparent differences between the band
structures of the W �= 0 and W = 0 cases. For the W �= 0
lattices, we have the option of having the bands touch at k = 0
or at k = π , but do not have the freedom to tune the curvature
at the point where they touch. Here we can control both the
touching point and the curvature. For a fixed �, the band
curvature is equal where they touch, at k = 0 and k = π .

First, we highlight the differences between lattices B (W =
1 with uniform site densities in the CLS) and C (W = 0
with uniform site densities in the CLS) in terms of sublattice
equivalence. For comparison, we use the isolated bands case.
Figure 6 shows that for any nonzero U , no matter how small,
the order parameters and site densities are no longer uniform
in the W = 1 case, despite supporting a uniform CLS. On
the other hand, for W = 0, we see that as U → 0, the order
parameters on the two sublattices approach each other and
merge at low U . The same behavior is observed for the site
densities. Furthermore, while the magnitudes of the pairing
order parameters on sublattices A and C are equal, their phases
for � �= 0 are not. We thus reiterate that even when the CLS is
uniform, it is prudent always to consider independent complex
order parameters and site densities as variational parameters
when applying the MF method.

Even though the pairing parameters �A,B/U are finite as
U → 0 in the isolated flat band case (Fig. 6), indicating robust
pairing for any U , the superfluid density itself is suppressed:
It decays as a power as U → 0. For Egap = 1, the MF cal-
culation yields Ds = 0.028U 2.32. This power-law decay of
Ds can be understood through projecting the MF onto the
flat band and examining the terms that contribute [9]. The
leading term proportional to U vanishes for W = 0 under this
construction, which has a CLS localized on one unit cell. As a
result, the first nonzero term is of a higher order. The DMRG
convergence becomes increasingly difficult and time consum-
ing at low values of U . The flat nontopological band cannot
contribute to transport through either the band curvature or
topology, resulting in an increased number of DMRG sweeps
and states required at low U where band mixing is highly
suppressed.

When the flat band touches the band above it, we find that
Ds is strongly enhanced and grows as a power Ds ∝ U ϕ with
the exponent ϕ < 1 (Fig. 10). Interestingly, this is exactly
the same behavior we find when the topological flat band
touches the band above it. In addition, as mentioned above,
in this case we also have the freedom to tune the curvature
of the second band. In our construction, the limits of the
curvature are (while avoiding band crossing) at � = 3/

√
2

( ∂2λ2
∂k2 |k=0 = 0) and � = 0 ( ∂2λ2

∂k2 |k=0 = 3). We show in Fig. 10
three examples of curvatures (the aforementioned and � = 1.5
and ∂2λ2

∂k2 |k=0 = 1.5) and their corresponding Ds. Transport is
dominated by the upper band in the nontopological case and
the effective mass of fermions on the upper band decreases
with increasing band curvature. However, with the bands
touching and degenerate states supported by the flat band,
the behavior of Ds as U → 0 is unlike the exponential decay
of a dispersive band. Consequently, increasing the curvature
of the second band decreases the power exponent ϕ, with
Ds ∝ U ϕ , where the steepest curvature of the second band is
most beneficial towards optimizing the superfluid behavior.

In all cases, the phases of the order parameters behave
similarly to Fig. 4, in that they differ for all three sublattices
and are dependent on the interaction strength. We notice that
the isolated band case has significantly smaller SC density
Ds than the gapless case for the entire range of U , unlike the
W �= 0 case where the SC densities are comparable once there
is band mixing, i.e., once U is of the order of the gap energy.

When the bands touch at k = π , we observe identical be-
havior, where for the same � and upper band curvature, the
values of Ds, order parameters, and sublattice fillings are equal
to when the bands touch at k = 0. This highlights the fact that
the superfluid weight on the gapless nontopological flat band
is only controlled by the upper band curvature. Additionally,
the correlation length on nontopological flat bands as U → 0
is identical to that in Fig. 9, with power-law divergence for
touching bands and a constant, less than one lattice spacing
for isolated flat bands.

We remark that while for W = 0 the qualitative agreement
between the MF and DMRG calculations is excellent, the
quantitative agreement for W �= 0 is much better. We believe
this is due to the fact that the CLS for W = 0 is on a single unit
cell with the consequence that hopping between unit cells, i.e.,
transport, requires the participation of the higher band which
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FIG. 10. Plot of Ds vs U for W = 0 isolated and nonisolated flat
bands. (a) The MF calculation shows that when the bands touch, the
curvature and optimization of Ds(U ) depend on the curvature of the
second band, controlled by �. The inset shows the band structure
of lattice C for � = 0, 1.5, 3/

√
2 in the gapless case. Increasing �

decreases the curvature of the second band. (b) Suppressed super-
conductivity in the gapped case behaves as a power law, with the fit
Ds = 0.028U 2.32 at low U for the MF calculation. While the DMRG
and MF calculations differ numerically, the power dependences of
Ds obtained from both methods agree (shown for � = 1.5). For
the DMRG calculation Ds = 0.612U 0.53 and for the MF calculation
Ds = 0.7U 0.55. The filling is ρ = 1

3 .

is a higher-order process. On the other hand, for W �= 0, the
CLS is spread over two unit cells to begin with, which makes
transport easier.

V. CONCLUSION

In this work we have extended the method of Ref. [19] and
shown how to generate flat band Hamiltonians with tunable
winding number for the flat band, as well as a tunable gap and
CLS configuration. We then used our construction to study,
in three-band systems, the effects on pairing and supercon-
ductivity of the winding number, the CLS configuration, and
the gap between the flat band and the first band above it, for
both topological and nontopological flat bands. To this end we
used both full multiband MF and exact DMRG calculations

TABLE I. Dependence of the superfluid density Ds on U (for
small U ) for the cases we study in this work.

Band topology Band gap Behavior of Ds

W �= 0 isolated Ds ∝ U
W �= 0 gapless Ds ∝ U ϕ , ϕ < 1
W = 0 isolated Ds ∝ U χ , χ > 2
W = 0 gapless Ds ∝ U ϕ , ϕ < 1

and found excellent agreement between them especially in the
topological cases. Our results led us to emphasize again that,
in order to get accurate MF results, it is crucial to consider
both the order parameters and the site densities as separate
variational MF parameters on all sublattices.

Specifically, we found for the gapped topological case
W �= 0 that, for low-U values, Ds grows linearly with a slope
which depends sensitively on the choice of the CLS fillings
even when W and the integral over the BZ of the quantum
metric remain fixed. The optimal CLS choice (the one which
gives the largest slope) has symmetric site densities on the two
unit cells because this maximizes the overlap of the Wannier
functions of a distinct CLS. Interestingly, if the CLS is chosen
with uniform site densities on all sites, the uniformity breaks
down for any U �= 0: Sublattices A and C continue to have
the same density but not sublattice B. In the case of a gapped
nontopological flat band, we find that Ds is suppressed for U
smaller than the gap; it grows slowly as a power larger than
2 until U is of the order of the band gap at which point band
mixing helps superconductivity.

In the gapless case, when the bands touch, we showed clear
evidence of a power-law dependence Ds ∼ U ϕ (ϕ < 1), not
the logarithmic form Ds ∼ U ln(const/U ), for both topologi-
cal and nontopological flat bands. Superconductivity at low U
is therefore enhanced when the topological or nontopological
flat band touches the band above it.

The dependence of Ds on U for small values of U is
summarized in Table I. In all cases we studied, the order
parameter �α/U acquires large values for any finite U , as
long as ρα �= 0. The phase difference of the order parame-
ters was found to depend on �, U , and the band structure,
unlike previous two-band cases studied [9]. Furthermore, we
showed that, as U → 0, the single-particle correlation length
(extracted form the single-particle Green’s function), which is
a measure of the pair size, diverges as a power when the bands
touch, but tends to a constant less than one lattice spacing in
the gapped case. The pairs remain very small when the system
is gapped and their size diverges in the gapless case, but the
divergence is slower than in the dispersive band case where it
is exponential.

Since in our three-band model the order parameter �α is
not uniform (i.e., it is sublattice dependent), we find that

[K,D] �= 0. (25)

According to Ref. [34], this interband hybridization induced
by the singlet pairing has a clear signature in the frequency
dependence of the off-diagonal Green’s function F (ω), the
Fourier transform of the time correlator 〈cα

i↓(t )cα′
i↑(0)〉. For

standard single-band BCS superconductors, both S-wave

104514-10



DESIGNER FLAT BANDS: TOPOLOGY AND … PHYSICAL REVIEW B 106, 104514 (2022)

singlet and P-wave triplet pairing exhibit an even behavior of
F (ω) as a function of the frequency ω. On the other hand, in
the present multiband models and for different band indices
α �= α′, the sublattice pairing imbalance leads to an odd be-
havior of F (w), i.e., it exhibits S-wave singlet pairing with an
odd symmetry when exchanging sublattices. See Ref. [34] for
more details.

Our results here offer insight into enhancement of su-
perconductivity in quasi-one dimensional systems and a
methodology to finding optimized Hamiltonians. With the
increasing experimental ability to realize designer systems
governed by model Hamiltonians exhibiting a flat band
[20–24], our results can provide a practical road map.

The Hamiltonians we studied here do not have a chiral
symmetry. It is possible to construct such models [19], but due
to the chiral symmetry, the band structure must be symmetric
about zero energy. This means that if we want a flat band in
the ground state, the system must have an even number of
orbitals. An example of the two-band system (the Creutz lat-
tice) was studied in Ref. [9]. The next step would be to study
the four-band model (four coupled chains). Our multiband
MF method can be easily applied in this situation, but exact
DMRG calculations will be rather challenging due to the large
number of sites.
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APPENDIX A: MULTIBAND MEAN FIELD HAMILTONIAN

The full multiband mean field is derived by decomposing
the quartic interaction term in the Hamiltonian with mean field
parameters �α and ρα

σ for each sublattice. As in Ref. [9], but
with three independent sublattices, we write a trial Hamilto-
nian

Htrial = HK

− U
∑
j,α

ρα
↑cα†

j,↓cα
j,↓ + ρα

↓cα†
j,↑cα

j,↑

−
∑
j,α

�αcα†
j,↓cα†

j,↑ + �α∗cα
j,↑cα

j,↓,

HK =
∑

i, j,α,σ

(
tα,α′
i j cα†

i,σ cα′
j,σ + H.c.

)

− μ
∑
j,α,σ

cα†
j,σ cα

j,σ , (A1)

with mean field parameters �α and ρα
σ . The Gibbs-

Bogoliubov inequality [35] gives

F �Ftrial −
〈

U
∑
j,α

cα†
j,↓cα†

j,↑cα
j,↑cα

j,↓

〉
trial

+
〈

U
∑
j,α

ρα
↑cα†

j,↓cα
j,↓ + ρα

↓cα†
j,↑cα

j,↑

〉
trial

+
〈∑

j,α

�αcα†
j,↓cα†

j,↑ + �α∗cα
j,↑cα

j,↓

〉
trial

, (A2)

where 〈· · · 〉trial denotes expectation values with respect to the
weight e−βHtrial/Ztrial with Ztrial = Tre−βHtrial = e−βFtrial . Mini-
mizing the right-hand side with respect to the MF variational
parameters, we obtain an upper bound on the true free energy,
which we define as the mean field free energy FMF,

FMF = Ftrial + UL
∑

α

(
ρα

↑ρα
↓ +

∣∣∣∣�α

U

∣∣∣∣
2)

, (A3)

where FMF = 〈HMF〉 and Ftrial = 〈Htrial〉 at T = 0. The mean
field parameters can be expressed, following the optimization,
as

ρα
σ = 〈cα†

j,σ cα
j,σ 〉,

�α = U 〈cα
j,↑cα

j,↓〉. (A4)

This defines HMF as

HMF =
∑

i, j,α,σ

(
tα,α′
i j cα†

i,σ cα′
j,σ + H.c.

)

− U
∑
j,α

ρα
↑cα†

j,↓cα
j,↓ + ρα

↓cα†
j,↑cα

j,↑

−
∑
j,α

�αcα†
j,↓cα†

j,↑ + �α∗cα
j,↑cα

j,↓

− μ
∑
j,α,σ

cα†
j,σ cα

j,σ

+ L
∑

α

Uρα
↑ρα

↓ + |�α|2
U

. (A5)

With equal population of ↑- and ↓-spins, we can choose to
replace ρα

↑ = ρα
↓ = ρα . To study the superfluid behavior of

the system, we apply a phase twist � with cα
j,σ → cα

j,σ ei j�/L .
In general, we can write the Fourier transformed mean-field
Hamiltonian with a phase gradient as

HMF(�) =
∑

k

�
†
kMk (�)�k

+ L
∑

α

(
Uρα

↑ρα
↓ + |�α|2

U
− Uρα

↓ − μ

)
, (A6)

with �
†
k = (cA†

k↑ cB†
k↑ cC†

k↑ cA
−k↓ cB

−k↓ cC
−k↓) the

Nambu spinor and the block matrix

Mk (�) =
(
K(φ + k) D

D∗ −KT (φ − k)

)
. (A7)
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The block D simply takes into account the pairing order
parameter

D =
⎛
⎝�A 0 0

0 �B 0
0 0 �C

⎞
⎠. (A8)

The block K(φ ± k) expresses the hopping terms and
sublattice-dependent filling as a modification to the chemical
potential

K(φ + k) =
⎛
⎝K11 − μ̃A K12 K13

K21 K22 − μ̃B K23

K31 K32 K33 − μ̃C

⎞
⎠, (A9)

where the sublattice-dependent chemical potential μ̃α =
μ + ραU is crucial to describe accurately a system with
nonidentical sublattices. Here K11 = 2ta cos(φ + k), K22 =
2te cos(φ + k), and K33 = 2ti cos(φ + k) are intercell hopping
terms on the same sublattice. Further, K12 = t1 + tbei(φ+k) +
td e−i(φ+k) = K∗

21, K23 = t2 + t f ei(φ+k) + the−i(φ+k) = K∗
32, and

K13 = t3 + tcei(φ+k) + tge−i(φ+k) = K∗
31.

APPENDIX B: CONSTRUCTION OF FLAT BAND
HAMILTONIANS

We now outline the method to construct Hamiltonians with
a flat band in the ground state [19] and show how to fix the

winding number. The most general form of the CLS on two
unit cells is

�1 =
⎛
⎝ a

beiβ

ceiγ

⎞
⎠, �2 =

⎛
⎝xeiχ

yeiτ

zeiζ

⎞
⎠. (B1)

The first condition is to have [19]

〈�1||�2〉 = axei(χ ) + byei(τ−β ) + czei(ζ−γ ) = 1. (B2)

We obtain the Bloch state by Fourier transforming, which can
be written as

|�k〉 = 1

R

⎛
⎝ a + xei(χ−k)

beiβ + yei(τ−k)

ceiγ + zei(ζ−k)

⎞
⎠. (B3)

To normalize the Bloch state, the expression which gives R is

R2 = 2 cos(k) + a2 + b2 + c2 + x2 + y2 + z2. (B4)

Differentiating the normalized Bloch state with respect to the
lattice momentum, we obtain

|∂k�k〉 = 1

R3

⎛
⎝ (a + xei(χ−k) ) sin(k) − iR2xei(χ−k)

(beiβ + yei(τ−k) ) sin(k) − iR2yei(τ−k)

(ceiγ + zei(ζ−k) ) sin(k) − iR2zei(ζ−k)

⎞
⎠. (B5)

The winding number is given by

W π = i
∫ 2π

0
dk〈�k||∂k�k〉

= 1

2

∫ 2π

0
dk

(
1 + x2 + y2 + z2 − a2 − b2 − c2

2 cos(k) + a2 + b2 + c2 + x2 + y2 + z2

)

= π + π (x2 + y2 + z2 − a2 − b2 − c2)√
(a2 + b2 + c2 + x2 + y2 + z2)2 − 4

. (B6)

We see that by choosing �1 and �2 appropriately, one can tune to the desired value of W . The integral over the Brillouin zone
of the quantum metric can now be expressed as

Q = 1

2π

∫ 2π

0
Re[g(k)]dk = (a2 + b2 + c2 + x2 + y2 + z2)[(a2 + b2 + c2)2 + (x2 + y2 + z2)2 − 2]

[(a2 + b2 + c2 + x2 + y2 + z2)2 − 4]3/2
, (B7)

with g(k) = 2(〈∂k�k||∂k�k〉 − |(〈�k||∂k�k〉|2) the quantum
geometric tensor and its real part the quantum metric. To find
the hopping potentials, we choose a flat band energy EFB and
satisfy the conditions in Ref. [19].

For a real CLS, the two equations to solve for intracell
hopping terms are

EFB = 〈�2|H0|�1〉
= t1(bx + ay) + t2(cy + bz) + t3(cx + az) (B8)

and

〈�1|EFB − H0|�1〉 = 〈�2|EFB − H0|�2〉. (B9)

The expression for H1 is

H1 = (EFB − H0)|�1〉〈�2|(EFB − H0)

〈�1|EFB − H0|�1〉 + Q12KQ12. (B10)

The term K is arbitrary and Q12 is constructed from the CLS,

Q12 = R12Q1,

Qi = I − |�i〉〈�i|
〈�i||�i〉 ,

R12 = I − Q1|�2〉〈�2|Q1

〈�2|Q1|�2〉 . (B11)

In general, for a chosen winding number, there is thus an
infinite number of flat band lattices that can be constructed.

Equation (B6) shows how to tune the winding number to a
desired value. To obtain W = 0, we obtain the condition

|�1|2|�2|2 = (a2 + b2 + c2)(x2 + y2 + z2) = 1. (B12)
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FIG. 11. Order parameter and sublattice fillings for the isolated
flat band of lattice A (κ = 0) with ρ = 1

3 . (a) Order parameters
acquire a large nonzero value for any finite U , and �A/U = �C/U
for � = 0. (b) Sublattice fillings ρα are shown to be sublattice
dependent, and this can only be properly reproduced with the MF
method when ρα are considered as MF parameters.

This gives the normalization condition

〈�1||�2〉 = 1 = |�1||�2| cos(θ ) = cos(θ ), (B13)

which implies that |�1〉 = M|�2〉, where M is a constant; M
can simply be expressed through

|�1〉 = |�2〉〈�1||�1〉. (B14)

From Eq. (B10) we consider the denominator 〈�1|EFB −
H0|�1〉,
〈�1|EFB − H0|�1〉 = EFB〈�1||�1〉 − 〈�1|H0|�1〉

= EFB〈�1||�1〉 − 〈�1|H0|�2〉〈�1||�1〉

FIG. 12. Order parameter and sublattice fillings for the noniso-
lated flat band of lattice A (κ = −0.375) with ρ = 1

3 . (a) Order
parameters are sublattice dependent with �A/U = �C/U for � = 0.
(b) Sublattice fillings ρα .

FIG. 13. Band structure of lattice B.

= EFB〈�1||�1〉 − EFB〈�1||�1〉
= 0. (B15)

This means that for a finite H1, we have an additional con-
dition that (EFB − H0)|�1〉〈�2|(EFB − H0) = 0. To determine
H1 = Q12KQ12, we can work out that Q1|�2〉 = 0 and R12 =
I. To show that the CLS is localized within one unit cell,

H1|�1〉 = Q1KQ1|�1〉 = 0. (B16)

For a lattice with W = 0 and a chosen real CLS and EFB, there
is a unique solution for the intracell hopping terms, and we can
only have the CLS localized within one unit cell.

FIG. 14. (a) Pairing order parameter and (b) sublattice fillings for
lattice C (W = 0), touching bands with � = 1.5. While the values
of Ds calculated using the MF and DMRG methods agree well
qualitatively and less well quantitatively, the order parameter and
sublattice fillings are accounted for very well by the full mean field
method. The filling is ρ = 1

3 .
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FIG. 15. The CLS is increasingly asymmetrical from lattice A
to A4. The flat band energy is kept constant at −4, the band gap is
Egap ≈ 0.7625, and W = 1.

APPENDIX C: BAND STRUCTURE AND ORDER
PARAMETERS

1. Lattice A
Figures 11 and 12 show the agreement between the DMRG

and full MF calculations for the order parameters and sublat-
tice fillings for both the gapped and gapless cases of lattice
A (W = 1) studied in Sec. III. Note that the order parameters
�α/U acquire a large finite value once U is nonzero, while
�α ∝ U linearly. An important point to note is the sublat-
tice fillings, where sublattices A and C have equal filling but
sublattice B is different. This is only faithfully reproduced in
the MF method that we propose and not when the BCS MF
method is employed (Appendix E).

2. Lattice B
The band structures of lattice B (W = 1) for cases where

we computed Ds (Fig. 5) are shown in Fig. 13. The bands
touch at k = 0 for ν = −0.5 and k = π for ν = 0.5; the
gapped case with Egap = 1 has ν = − 1

12 .

3. Lattice C
In Fig. 14 we show, for lattice C touching bands with � =

1.5, that although the Ds computed with the MF and DMRG

FIG. 16. Parameters Ds, ρα , and �α for lattices A, A2, A3, and
A4 (Fig. 15) obtained through MF computation. The pairing order
parameters, site fillings, and integral over the BZ of the quantum
metric vary slightly, while the superfluid density is evidently distinct
for the cases considered. The filling is ρ = 1

3 .

methods agree well qualitatively but less so quantitatively
for the nontopological flat bands (W = 0), the pairing order
parameter and sublattice fillings are modeled very well by
the full mean field method. The agreement between MF and
DMRG calculations for �α and ρα was also observed for the
isolated nontopological flat band.

APPENDIX D: OTHER LATTICES

Here we show that Ds is strongly dependent on the CLS.
We consider lattice A (W = 1) and tune the CLS while keep-
ing EFB = −4, Egap ≈ 0.7625, t2 = √

7, and t3 = 1 constant,
through the change of H1 and t1. The CLS and band structures
that we consider are shown in Fig. 15, labeled lattices A, A2,
A3, and A4, with increasing asymmetry of the CLS.

We compute Ds, sublattice fillings and order parameters
with the MF method for these lattices and show that while ρα

and �α do not vary significantly [Figs. 16(b) and 16(c)], Ds

changes substantially across the cases considered [Fig. 16(a)].
In general, the slope is largest for the most symmetric CLS,
which also has the fastest exponential decay of the Wannier
function (not shown). Moreover, symmetric occupation of
CLS leads to larger overlap of the Wannier functions. This can
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FIG. 17. Plot of Ds vs U for W = 0.5 and ρ = 1
3 , with corre-

sponding band structures and CLS depicting various asymmetries.
We include DMRG points showing the agreement of the full MF
calculation at finite noninteger winding.

serve as a guide to optimizing superconductivity by engineer-
ing the Hamiltonian which corresponds to the most symmetric
localized state. We emphasize that while the winding number
is constant and the integral over the BZ of the quantum met-
ric does not vary much (QA = 0.505, QA2 = 0.507, QA3 =
0.509, and QA4 = 0.516), the slopes of Ds [Fig. 16(a)] are
evidently distinct. Additionally, for lattice B with symmetric
CLS and equal filling on all CLS sites, the slope at low U is
equal to that of lattice A.

The MF and DMRG agreement extends to lattices with
noninteger finite winding. Again, with equal Egap = 1, EFB =
−4, and similar band structures, we show that Ds is dependent
on the CLS (Fig. 17). For a winding of W = 0.5, we obtain an
asymmetric CLS and give three examples: lattices D1, D2,
and D3. Note that for W = 0.5, the CLS cannot be symmetric
but the degree of the asymmetry can be tuned. To eliminate
the effects contributed through the uppermost band, we focus
on the range 0 < U � 4. We propose that the optimization
of Ds is contingent on occupation of the CLS, where one
should identify the model with filling most symmetric on all
sublattices. This means that if some sublattice occupations of
the CLS are zero, Ds will be significantly reduced.

APPENDIX E: FAILING OF THE MF WITHOUT ρα AS A
MF PARAMETER

We have insisted repeatedly on the importance of including
the site-dependent fillings as MF parameters. Here we show
how the BCS approach fails when taken with the correct

FIG. 18. Lattice A (W = 1) gapless at k = 0 (κ = −0.375). The
BCS MF approach without sublattice densities as mean field param-
eters compared with the full MF and DMRG calculations shows a
clear disagreement. (a) The plot of Ds as a function of U obtained
from the BCS MF calculation agrees for very weak interactions
(inset) but quickly deviates from the full MF and DMRG results. The
discrepancy is especially prominent in (b), which shows the order
parameter, and (c), which shows the site fillings, where the BCS MF
method inaccurately models sublattices with equivalent �α and ρα

at large U . The filling is ρ = 1
3 .

complex order parameters but without the site densities. In
the BCS MF approach, which has been extensively employed
in many studies [10,15–17], the Hubbard interaction term is
simply decomposed as

−Ucα†
j,↓cα†

j,↑cα
j,↑cα

j,↓ = −�αcα†
j,↓cα†

j,↑ + �α∗cα
j,↑cα

j,↓ + |�α|2
U

.

(E1)

In general, for the BCS MF calculations, the site densities
will go to the same value ρα → ρ as U increases. As a result,
the order parameters �α for the sublattices will also tend
to the same value at large U . This is both qualitatively and
quantitatively wrong, as we have presented in Appendix C,
where sublattices continue to be inequivalent even at large U .

As an example, we show in Fig. 18 a comparison of full
multiband MF, BCS MF, and DMRG results for the gapless
case (κ = −0.375) of lattice A (W = 1). At weak coupling,
we find that the BCS MF does not capture the actual behavior
of Ds well, with the inaccurate power dependence evident in

104514-15



CHAN, GRÉMAUD, AND BATROUNI PHYSICAL REVIEW B 106, 104514 (2022)

the inset. As U increases, the disagreement becomes increas-
ingly apparent.

Consequently, while one can focus on the superfluid
weight (and its relation to the quantum metric) calculated

through the BCS MF method and argue that it is in
acceptable agreement, a closer look at the sublattice
equivalence and properties reveals the breakdown of this
approach.
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