
PHYSICAL REVIEW B 106, 104504 (2022)

Fluctuation contribution to spin Hall effect in superconductors
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We theoretically study the contribution of superconducting fluctuation to extrinsic spin Hall effects in two- and
three-dimensional electron gas and intrinsic spin Hall effects in two-dimensional electron gas with Rashba-type
spin-orbit interaction. The Aslamazov-Larkin, density of states, and Maki-Thompson terms have logarithmic
divergence ln ε in the limit ε = (T − Tc )/Tc → +0 in two-dimensional systems for both extrinsic and intrinsic
spin Hall effects except the Maki-Thompson terms in extrinsic effect, which are proportional to (ε − γϕ )−1 ln ε

with a cutoff γϕ in two-dimensional systems. We found that the fluctuation effects on the extrinsic spin Hall
effect have an opposite sign to that in the normal state and thus suppress the spin Hall conductivity. In contrast,
those on the intrinsic spin Hall effect have the same sign and enhance it.
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I. INTRODUCTION

Spin current has opened a venue to manipulate condensed
matter systems. Spin transport experiments were conducted
by Tedrow and Meservey [1], who demonstrated that current
flow across a ferromagnet-superconductor interface was spin
polarized. Subsequently, Aronov discussed that spin injec-
tion from ferromagnet to nonmagnetic metals could be used
to amplify the electron spin resonance signals [2]. Johnson
and Silsbee demonstrated that nonlocal response against the
local charge current injection from a ferromagnetic metal
to nonmagnetic metal could be utilized to measure the spin
relaxation time [3]. In the nonlocal response, a major role
is played by the propagation of nonconserved spin current
over a mesoscopic scale termed a spin diffusion length. In
addition to finding efficient ways for spin injection and the
study of nonlocal response due to spin diffusion, spin-charge
conversion (spin Hall effect [4–17] and spin galvanic effect
[18,19]) is also an important issue in physics of spin transport.
The spin Hall effect is categorized into two groups according
to the origin, viz., extrinsic spin Hall effect [4–6] caused by
the spin-orbit interaction in the disorder potential and intrinsic
spin Hall effect [10,11] that occurs in a perfect crystal with the
electric band structure split by the spin-orbit interaction.

Those issues in spin transport have been addressed not
only in normal metals but in superconductors [20]. A the-
ory of spin current injected into superconductors by taking
account of charge imbalance and spin imbalance of quasi-
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particles was developed in 1995 [21]. In 2012, Hübler et al.
reported spin transport in superconducting Al over distances
of several microns, exceeding the normal-state spin-diffusion
length and the charge-imbalance length [22]. Wakamura et al.
observed spin-relaxation times in superconducting Nb, which
is four times longer than that in the normal state [23]. Waka-
mura et al. [24] reported, in another paper, inverse spin Hall
effect (ISHE), conversion from spin current to charge current
in superconductors NbN. Recently, several efficient ways of
injection of spin current into superconductors near the tran-
sition temperature Tc have been discussed theoretically in
Refs. [25,26] in terms of spin-pumping, spin-Seebeck effect,
and strong coupling between spin and energy in spin-splitting
quasiparticles [27]. Jeon et al. reported that the conversion
efficiency of magnon spin to quasiparticle charge in supercon-
ducting Nb via ISHE is enhanced compared with that in the
normal state near Tc [28,29]. Enhancement of the ISHE signal
was observed even at temperatures up to twice Tc [29]. Those
experimental results imply the importance of superconducting
fluctuation effects on spin transport near Tc. We note that
earlier theoretical studies [7,30,31] but one [32] have focused
on spin Hall effect in superconductors below Tc.

Fluctuation effects on transport properties above the su-
perconducting transition temperature Tc were studied by
Aslamazov and Larkin [33], Maki [34], and Thompson [35]
on electric conductivity [36]. Dominant fluctuation processes
contributing to electric conductivity are the charge transport
by the fluctuating Cooper pairs [33], the reduction of the
density of states (DOS) by the presence of the fluctuating
Cooper pairs, and the scattering of electrons by the fluctuation
of Cooper pairs. These three processes are represented by the
Feynman diagrams, each of which is called the Aslamazov-
Larkin(AL) terms, DOS terms, and Maki-Thompson (MT)
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terms, respectively. The MT terms for electric conductivity
contain the anomalous part, which diverges for all temper-
atures above Tc in one- and two-dimensional systems. This
anomalous part is cut off by the phase-breaking parameter
with various origins such as the paramagnetic impurities,
magnetic fields, inelastic phonon scattering, and nonlinear
fluctuation effects (See Secs. 8.3.3 and 8.3.4 in Ref. [36]).
Depending on the phase-breaking parameter, either the AL
terms or the MT terms dominantly contribute to electric con-
ductivity. The superconducting fluctuation effect on extrinsic
anomalous Hall effects [37], which is closely related to the
spin Hall effect, was studied by Li and Levchenko [38]. In
Ref. [32], the spin Hall effect in the presence of a magnetic
field was studied by consideration of the AL terms cooperat-
ing with the Hartree approximation.

In this paper, we discuss the fluctuation effects on the
spin Hall effect in superconductors above Tc in the absence
of magnetic fields with the lowest order processes of the
fluctuation propagator. We study the extrinsic spin Hall effect
in two and three-dimensional electron gas by incorporating
the superconducting fluctuations in the model used by Tse
and Das Sarma [9]. We also investigate the intrinsic spin Hall
effect by taking account of the superconducting fluctuations in
the model used by Sinova et al. [11], viz., the two-dimensional
electron gas with the Rashba spin-orbit interaction.

The rest of the present paper is organized as follows. In
Sec. II, we address the fluctuation effects on extrinsic spin
Hall effects in the presence of side jump and skew scatter-
ing processes in two- and three-dimensional electron gas. In
Sec. III, we discuss the fluctuation effects on intrinsic spin
Hall effects in two-dimensional electron gas with Rashba
spin-orbit interaction. In Sec. IV, we discuss singularity near
Tc and magnitude of fluctuation contribution in AL, DOS, and
MT terms. We also raise several issues to be addressed in the
future. In Sec. V, we conclude the present paper. We defer
the details of derivation in Secs. II and III to Supplemental
Material [39]. We also list the symbols used in this paper in
Sec. III in the Supplemental Material.

Throughout this paper, we set the Boltzmann constant to be
unity (i.e., kB = 1) and take the electric charge of the carriers
to be negative (−e < 0).

II. FLUCTUATION EFFECTS ON EXTRINSIC SPIN HALL
CONDUCTIVITY

Near and above the superconducting transition temperature
Tc, we take account of the superconducting fluctuation via
three types of the process: the AL term, the MT term, and
the DOS term. Those are known to be the most diverging in
the electric conductivity when T → Tc + 0.

A. Model

We consider the extrinsic spin Hall effect in the system
with the Hamiltonian

H = H0 + HSO + V + Hint,

H0 =
∑
αk

ψ
†
kα

h̄2k2

2m
ψkα,

HSO = − iλ2
E

4V

∑
αβ

∑
kk′

ψ
†
kα

(k × k′) · σαβVk−k′ψk′β,

V = 1

V

∑
α

∑
kk′

Vk−k′ψ
†
kα

ψk′α,

Hint = − g

V

∑
kk′q

ψ
†
k+q,↑ψ

†
−k,↓ψ−k′,↓ψk′+q,↑. (1)

Here V and HSO are, respectively, the potential and the spin-
orbit interaction due to the impurities. m is mass of electron,
V is volume of the system, σ is the Pauli matrices, λE is the
coupling constant of spin-orbit interaction in the extrinsic spin
Hall effect, and ψkα is the Fourier transform of the annihila-
tion operator of the electron with a z component of spin α. We
denote by Hint the BCS-type two-body attraction. The random
average of the impurity potential is given by

〈VkVk′ 〉 = niv
2
0V δk+k′,0

and

〈VkVk′Vk′′ 〉 = niv
3
0V δk+k′+k′′,0,

where ni is the density of impurities and v0 is the uniform
component of the Fourier transform of the potential of the
single impurities.

The charge and spin currents are, respectively, given by

jc = j (1)
c + j (2)

c

≡ −e
∑
αβ

∑
kk′

ψ
†
kα

[
h̄k
m

δαβδkk′− iλ2
E

4h̄V
σαβ×(k−k′)Vk−k′

]
ψk′β,

(2)

js = j (1)
s + j (2)

s

≡− e

2

∑
αβ

∑
kk′

ψ
†
kα

[
h̄k
m

σ z
αβδkk′− iλ2

E

4h̄V
ẑδαβ×(k−k′)Vk−k′

]
ψk′β.

(3)

The spin Hall conductivity is defined as jsμ = ∑
ν σμνEν and

it can be calculated by

σμν (q, ω) = μν (q, h̄ω + iδ) − μν (q, iδ)

i(ω + iδ)
,

μν (q, iων ) = 1

V

∫ β

0
〈Tu[ js,μ,q(u) jc,ν,−q(0)]〉eiωνudu,

where ων = 2νπT is the bosonic Matsubara frequency. From
these expressions with omitting Hint , the spin Hall con-
ductivity in the normal state via the side-jump and the
skew-scattering processes, respectively, were obtained as [9]

σ SJ(normal)
xy = e2h̄

2Dm
λ2

Ek2
FN (0), (4)

σ SS(normal)
xy = πe2h̄2

2D2m2
λ2

Ev0k4
FN (0)2τ. (5)

Here kF is the Fermi wave vector, N (0) is DOS at the Fermi
surface, and D = 2, 3 is spatial dimension. The symbol τ

denotes the mean-free time τ = h̄
2πN (0)niv

2
0
. We take account
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FIG. 1. The diagram for the AL term in the presence of side jump.

of superconducting fluctuations with the fluctuation propaga-
tor following Ref. [36]. The fluctuation propagator, which is
the vertex part of the effective two-body interaction, can be
calculated by taking the infinite sum of series of diagrams of
Hint in the ladder approximation (see Secs. 6.2 and 6.4.2 in
Refs. [36]). It is given by

L(q, i�k ) = − 1

V N (0)

1

ε + ψ
(

1
2 + |�k |

4πT

) − ψ
(

1
2

) + ξ 2
SCq2

,

(6)

where ψ (x) is digamma function, �k = 2kπT is the bosonic
Matsubara frequency, and

ξ 2
SC = −v2

Fτ
2

D

[
ψ

(
1

2
+ h̄

4πT τ

)
− ψ

(
1

2

)
− h̄

4πT τ
ψ (1)

(
1

2

)]
(7)

denotes the squared coherence length.

B. Aslamazov-Larkin terms

The Feynman diagrams [of the charge current-spin current
correlation function AL

xy (0, iων )] for the AL terms in spin-
charge current correlation function with side jump are shown
in Fig. 1 and those for AL terms with skew scattering are
shown in Fig. 2. In the figure, the shaded region represents the
Cooperon (see Secs. 6.4.1 and Fig. 6.3 in Ref. [36]), which is
given by

C(q, ε1, ε2) = |̃ε1 − ε̃2|
|ε1 − ε2| + h̄

τ

(h̄vFq)2/D
|̃ε1−̃ε2|2 θ (−ε1ε2)

.

The wavy lines, the dotted lines, and the cross marks in Fig. 1,
respectively, represent the fluctuation propagator, the random
average of the impurity potentials, and the spin-orbit interac-
tions.

FIG. 2. The diagram for the AL term in the presence of skew
scattering.

We denote Bc(q, ω,�) by the triangular part containing the
charge current vertex (i.e., renormalized charge current ver-
tex) and Bs(q, ω,�) by the renormalized spin current vertex,
respectively. The response function is then given by

xy(0, iων ) = 1

V

∑
q

T
∑
�k

L(q, i�k )L(q, i�k + iων )

× Bs(q, i�k, iων )Bc(q, i�k, iων ). (8)

The O(ω) contributions in Eq. (8) yield the spin Hall con-
ductivity. In the electric conductivity, we can deduce the main
contribution in the AL term by setting ω = 0 and � = 0 in
the charge current vertices Bc(q, ω,�) and retaining the O(ω)
part in the fluctuation propagators. In contrast, in the spin
Hall conductivity, the contribution with Bs(q, 0, 0) vanishes,
and thus we have to maintain the frequencies �,ω to be
finite. Accordingly, the procedure to calculate the spin Hall
conductivity, which is given below, is slightly different from
that for the AL term in electric conductivity,

(1) List the relevant diagrams (Fig. 1 for AL+ side jump
and Fig. 2 for AL + skew scattering) and write the expres-
sions for the charge current-spin current correlation function
AL

xy (0, iων ).
(2) Expand Bc(q, ω,�) and Bs(q, ω,�) with respect to q

up to the first order as Bs(q, ω,�) ≈ −iζsV qyBs(ω,�) and
Bc(q, ω,�) ≈ ζcqyV Bc(ω,�) with coefficients ζs and ζc.

(3) Perform integrals in the expressions for Bc and Bs with
respect to internal wave vectors k1, k2 · · · .

(4) Transform the sum with �k to contour integral.
(5) Expand the resultant expression with respect to ω after

analytic continuation iων → h̄ω.
(6) Retain the most singular terms in the limit of ε → 0.
(7) Perform summation in Bc(q, ω,�), Bs(q, ω,�) with

respect to internal frequencies εn and εm.
(8) Integrate the resultant expression with respect to q.
The details of the calculation along these procedures are

given in Secs. I A and I B in the Supplemental Material [39].
See also the derivation of Eq. (16) in Ref. [40] concerning
step 6.
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FIG. 3. Diagrams for DOS term in the presence of side jump
process.

The resultant expressions for the AL term of the spin Hall
conductivity in the side jump and skew scattering process are
given by

σ AL−SJ
xy

σ
SJ(normal)
xy

=2
T

εF

{
ln 1

ε
(D = 2)

2
πξSC

(D = 3),

σ AL−SS
xy

σ
SS(normal)
xy

= 2T

πDN (0)ξD
SC

(τ

h̄

)2
[

2
h̄

4πT τ
ψ (1)

(
1

2

)
+ h̄

4πT τ
ψ (1)

(
1

2
+ h̄

4πT τ

)
+ 3ψ

(
1

2

)
− 3ψ

(
1

2
+ h̄

4πT τ

)]
×

{
ln 1

ε
(D = 2)

2
π

(D = 3),

where we normalize the results by dividing them by Eqs. (4)
and (5).

C. DOS terms

The DOS terms for the spin Hall conductivity are cal-
culated in a way similar to those for electric conductivity.
The procedure to calculate the spin Hall conductivity is given
below.

(1) List the relevant diagrams (Fig. 3 for DOS + side
jump, and Fig. 4 for DOS + skew scattering) and write the
expressions for the charge current-spin current correlation
function DOS

xy (0, iων ).
(2) Put �k = 0 in all quantities and q = 0 in all but

L(q, i�k ).
(3) Perform integration with respect to internal wave vec-

tors k1, k2 · · · with the use of residue theorem.
(4) Reduce the sum with εn in the polygamma functions.
(5) Expand the resultant expression with respect to ω after

analytic continuation iων → h̄ω.
(6) Perform integration in L(q, 0) with respect to q.

FIG. 4. Diagrams of DOS terms in the presence of skew scattering.

The details of the calculations are given in Secs. I C and
I D in the Supplemental Material [39]. By following the
above steps, we arrive at the expressions for the DOS terms
for extrinsic spin Hall conductivity with the side jump and
skew-scattering process,

σ DOS−SJ
xy

σ
SJ(normal)
xy

= − T

2πN (0)ξD
SC

(τ

h̄

)2

×
[

2ψ

(
1

2

)
− 2ψ

(
1

2
+ h̄

4πT τ

)
+ 3

h̄

4πT τ

× ψ (1)

(
1

2

)
−

(
h̄

4πT τ

)2

ψ (2)

(
1

2

)]
×

{
ln 1

ε
(D = 2)

2
π

(D = 3),

σ DOS−SS
xy

σ
SS(normal)
xy

= − T

πN (0)ξD
SC

(τ

h̄

)2

×
{

−3

[
ψ

(
1

2
+ h̄

4πT τ

)
− ψ

(
1

2

)]

+ h̄

4πT τ

[
ψ (1)

(
1

2
+ h̄

4πT τ

)
+ 3ψ (1)

(
1

2

)]

−
(

h̄

4πT τ

)2

ψ (2)

(
1

2

)}{
ln 1

ε
(D = 2)

2
π

(D = 3).

The opposite sign between the DOS terms and the spin Hall
conductivity in the normal state is consistent with the suppres-
sion of the DOS by the superconducting fluctuation.
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FIG. 5. Diagrams of MT terms in the presence of side jump.

D. Maki-Thompson terms

The MT terms are calculated similarly to those for DOS
terms. The procedure to calculate the MT terms is given
below. We note that the MT terms with the side-jump process
turn out to vanish in a way similar to that for the MT terms in
the extrinsic anomalous Hall effect [38].

(1) List the relevant diagrams (Fig. 5 for MT + side jump
and Fig. 6 for MT + skew scattering) and write the expres-
sions for the charge current-spin current correlation function
MT

xy (0, iων ).
(2) Put i�k = 0 in all quantities.
(3) Perform integration with respect to internal wave vec-

tors k1, k2 · · · with the use of the residue theorem.
(4) Perform summation over εn.
(5) Expand the resultant expression with respect to ω after

analytic continuation iων → h̄ω.
(6) Separate the regular part and anomalous part. All

factors but L(q, 0) in the former are regular in the limit of
q → 0 while the anomalous part contains a singular factor in
addition to L(q, 0).

(7) Integrate the regular part with q after setting q → 0 in
all quantities but L(q, 0).

(8) Integrate the anomalous part with q after introducing a
phase-breaking relaxation time τϕ to cutoff IR divergence.

The diagrams of the MT terms with skew scattering are
shown in Fig. 6.

FIG. 6. Diagrams of MT terms in the presence of skew scattering.

As for the regular part, we can proceed in a way similar to
that in the DOS terms and obtain

σ
MT−SS(reg)
xy

σ
SS(normal)
xy

= 7ζ (3)

16π3N (0)ξD
SCT

{
ln 1

ε
(D = 2)

2
π

(D = 3).

As for the anomalous part, on the other hand, we introduce
the phase-breaking time τϕ to cutoff the IR divergence as in
the case of electric conductivity [35]. We then obtain

σ MT−SS(an)
xy

σ
SS(normal)
xy

= − π

128N (0)ξD
SCT

{
1

ε−γϕ
ln ε

γϕ
(D = 2)

1√
ε+√

γϕ
(D = 3),

with the dimensionless cutoff γϕ = π/8T τϕ . The details of
the calculation are available in Secs. I E and I F in the Supple-
mental Material [39].

III. FLUCTUATION EFFECTS ON INTRINSIC SPIN HALL
CONDUCTIVITY IN TWO-DIMENSIONAL SYSTEMS
WITH RASHBA-TYPE SPIN-ORBIT INTERACTION

A. Model

We consider the intrinsic spin Hall effect in the system,
where the Hamiltonian in the normal state is given by

H = p2

2m
I − λI

h̄
σ · (ẑ×p), (9)

where I and σ are the 2 by 2 unit matrix and the Pauli matrices
in the spin space. The spin Hall conductivity is given by [11]

σ (normal)
xy = e2

8π h̄
(10)

with λI → 0. In the original paper [11], the authors derived
the spin Hall conductivity mainly using the Bloch equation for
the spinor in the momentum space. We present a detailed
derivation using the Green’s function in Sec. II A in the
Supplemental Material [39] as a basis of calculation of the
fluctuation contribution to the intrinsic spin Hall effect, which
will be presented in Sec. III C.

Exceptional simplicity of this model, viz., the combi-
nation of parabolic band dispersion and linear momentum
dependence of the spin-orbit interaction, makes the spin Hall
conductivity vanish in the presence of spin-conserving im-
purities, even in the limit of weak scatterers [16,41–47].
However, this model is of importance in addressing the two-
body interaction effect on the spin Hall effect [45,48]. We will
thus adopt the Rashba model and add the BCS-type attractive
short-range interaction Eqs. (5) to consider the supercon-
ducting fluctuation contribution to the spin Hall effect. The
superconducting property of this model below the transition
temperature was discussed in Refs. [49,50].

B. Fluctuation propagator

In this subsection, we derive the fluctuation propagator in
the presence of the Rashba-type spin-orbit interaction. We
start with the Hamiltonian, which is the sum of the Rashba
model [Eq. (9)] and BCS-type two-body attractive interaction
[Eq. (1)]. Figure 7 shows the diagram of the fluctuation prop-
agator.
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FIG. 7. Feynman diagram for fluctuation propagator.

We first rewrite the two-body interaction with the use of
the creation operator c†

k± and annihilation operator ck± of the

eigenstate |χ±(k)〉 ≡ (±(ky + ikx )/k, 1)/
√

2 of Eq. (9),

Hint = − g

4V

∑
pp′q

∑
α1∼α4

× α2α3ei(θp−θp′ )c†
p+q,α1

c†
−p,α2

c−p′,α3 cp′+q,α4 ,

with

eiθp = px + ipy

p
.

The spin and wave-vector dependent coefficients that ap-
pear in Eq. (7) cancel out but at the left and right ends.

Consequently, the summation over the series of diagrams
can be carried out in a way similar to that for superconductors
without spin-orbit interaction, i.e.,

Lα2α3 (q, p, p′, i�k )

= − 1

4V
α2α3ei(θp−θp′ )[g−1 − �(q,�k )]−1,

where we introduce the notations

�(q,�k )

≡ 1

4

∑
αβ

T

V

∑
εn,p

Gα (p + q, iεn+k )Gβ (−p,−iεn)

≈ N (0)

[
ψ

(
1

2
+ |�k|

4πT
+ h̄ωD

2πT

)
− ψ

(
1

2
+ |�k|

4πT

)
+ A(q)

2(4πT )2
ψ (2)

(
1

2
+ |�k|

4πT

)]
,

where

A(q) ≡2(λIkF)2 +
[(

h̄2

m

)2

+
(

λI

kF

)2
]

(kFq)2

D
.

The transition temperature Tc is determined by the condi-
tion that L(q = 0, i�k = 0) diverges at T → Tc, i.e., g−1 −
�(0, 0) = 0. With the use of this condition, we arrive at the
expression of the fluctuation propagator,

Lα1α2α3α4 (q, p, p′, i�k ) =
(α2

2
e−iθp′

)(α3

2
eiθp

)
L(q, i�k ),

where L(q, i�k ) is the fluctuation propagator without the spin-
orbit interaction, which coincides with Eqs. (6) and (7) in the
clean limit.

C. Intrinsic spin Hall conductivity

The diagrams for the AL terms and DOS terms are shown
in Figs. 8 and 9. The outline of the procedure to calculate
the AL terms and DOS terms for the intrinsic spin Hall effect
are the same as that for the extrinsic spin Hall effect. The
details of the calculation along these procedures are given in
Secs. II C and II D in the Supplemental Material [39]. The
resultant expression for the AL term of the intrinsic spin Hall
conductivity normalized by Eq. (10) is given by

σ AL
xy

σ
(normal)
xy

= π2

98ζ (3)2

T 3

εF(λIkF)2

[
Imψ (1)

(
1

2
+ iλIkF

2πT

)]2

ln
1

ε
,

which reduces, when λIkF � T , to

σ AL
xy

σ
(normal)
xy

= 1

2

T

εF
ln

1

ε
.

The DOS term for intrinsic spin Hall conductivity is given by

σ DOS
xy

σ
(normal)
xy

= − π

28ζ (3)

T 2

εFλIkF

[
−Imψ (1)

(
1

2
+ iλIkF

2πT

)]
ln

1

ε
.

For λIkF � T , we obtain

σ DOS
xy

σ
(normal)
xy

= − 1

4

T

εF
ln

1

ε
.

The MT terms in intrinsic spin Hall effects are calculated
in a way similar to those in extrinsic spin Hall effect, but there
are no anomalous terms in the MT terms for intrinsic spin Hall
effect, and thus the cutoff is not necessary to be introduced.

The diagram for the MT term in the intrinsic spin Hall
effect is shown in Fig. 10. The MT term for intrinsic spin Hall

FIG. 8. Feynman diagram for the AL term for intrinsic spin Hall
effect.
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FIG. 9. Feynman diagram of DOS term in intrinsic spin Hall
conductivity.

conductivity is given by

σ MT
xy

σ
(normal)
xy

= 2π2

7ζ (3)

T 3

εF(λIkF)2

[
Reψ

(
1

2
+ iλIkF

2πT

)
− ψ

(
1

2

)]
ln

1

ε
,

which reduces, when λIkF � T , to

σ MT
xy

σ
(normal)
xy

= 1

2

T

εF
ln

1

ε
.

See Sec. II E in the Supplemental Material [39] for details of
the calculation.

IV. DISCUSSION

A. Summary of the resuls for D = 2

We summarize the results for the D = 2 case, where the
spin Hall conductivity diverges in the limit ε → +0. In
Tables I (extrinsic effects in the dirty limit), II (extrinsic ef-
fects in the clean limit), and III (intrinsic effects), we note
two properties common in extrinsic and intrinsic effects. One
is that the singularity in the AL terms is ln(1/ε), which is
weaker than the power-law singularity in the AL terms in
electric conductivity. The power-counting argument is given
in Sec. IV B. As another point, we notice that all contributions

FIG. 10. Feynman diagram of MT term in intrinsic Hall
conductivity.

TABLE I. Extrinsic spin Hall conductivity for D = 2 in the dirty
limit. The results are normalized by the spin Hall conductivity in the
normal state, σ SJ(normal)

xy or σ SS(normal)
xy .

Side jump Skew scattering

AL/normal 2 T
εF

ln 1
ε

4 T
εF

ln 1
ε

DOS/normal − 7ζ (3)
π3

h̄/τ

εF
ln 1

ε
− 14ζ (3)

π3
h̄/τ

εF
ln 1

ε

MT (reg)/normal 0 7ζ (3)
π3

h̄/τ

εF
ln 1

ε

MT (an)/normal 0 − π

8
h̄/τ

εF

1
ε−γϕ

ln ε

γϕ

contain the factor 1/εF, which weakens the fluctuation effect.
The origin of this factor is discussed in Sec. IV C.

First, we discuss the extrinsic case. We summarize the
dominant contribution in Table IV for the dirty limit and
Table V for the clean limit. In the dirty limit, the DOS terms
with the side jump process are dominant when σ SJ(normal)

xy 
σ SS(normal)

xy . When σ SJ(normal)
xy � σ SS(normal)

xy , either anomalous
MT terms or the sum of the DOS term and the regular part of
the MT terms is dominant, depending on the magnitude of γϕ .
In the clean limit, the DOS terms with the side-jump process is
dominant when σ SJ(normal)

xy  σ SS(normal)
xy . When σ SJ(normal)

xy �
σ SS(normal)

xy , either the anomalous part of the MT term or the
DOS term is dominant, depending on the relative magnitude
of T τ/h̄ and 1/(ε − γϕ ). Both in the dirty and clean limits,
dominant contributions have signs opposite to that in the nor-
mal state. We give an estimate of the dominant contribution
in the fluctuation effect based on the parameters for Nb and
clean Al when γϕ � 1 in Figs. 11 and 12. We have assumed
in these estimations γϕ independent of temperature but, in
reality, importance of temperature dependence in γϕ � 1 has
been pointed out [51,52].

Next, we discuss the intrinsic case. All terms are indepen-
dent of λIkF as in the normal state when λIkF � T , and thus a
tiny Rashba-type spin-orbit interaction makes the contribution
of fluctuations finite.

Fluctuation effects on intrinsic spin Hall conductivity ex-
cept for the DOS term has the same sign as that in the normal
state, in contrast to the extrinsic case. In Ref. [45], the lowest
order correction due to two-body repulsive interactions was
found to suppress the intrinsic spin Hall conductivity in the
two-dimensional Rashba model. The enhancement of spin
Hall conductivity due to two-body attraction in the present
paper and the suppression due to repulsion in Ref. [45] seem
consistent with each other.

TABLE II. Extrinsic spin Hall conductivity for D = 2 in the
clean limit. The results are normalized by the spin Hall conductivity
in the normal state, σ SJ(normal)

xy or σ SS(normal)
xy .

Side jump Skew scattering

AL/normal 2 T
εF

ln 1
ε

2 T
εF

ln 1
ε

DOS/normal − 2π3

7ζ (3)
T
εF

T τ

h̄ ln 1
ε

− 4π3

7ζ (3)
T
εF

T τ

h̄ ln 1
ε

MT (reg)/normal 0 2 T
εF

ln 1
ε

MT (an)/normal 0 − π4

28ζ (3)
T
εF

1
ε−γϕ

ln ε

γϕ
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TABLE III. Intrinsic spin Hall conductivity via Rashba-type
spin-orbit interaction for λIkF � T . The results are normalized by
that in the normal state, σ (normal)

xy = e2/8π h̄ [Eq. (10)].

AL/normal 1
2

T
εF

ln 1
ε

DOS/normal − 1
4

T
εF

ln 1
ε

MT/normal 1
2

T
εF

ln 1
ε

B. Power-counting of singularity in the limit ε → 0

We first consider the origin of the singularity near ε → +0
by a power counting argument. After that, we discuss the
physical implication of this result.

Before considering the singularity of AL terms in the spin
Hall conductivity, we first review the origin of the singularity
in those terms in electric conductivity, which is given by

σ AL
xx ∝ 1

iω

[ ∑
q

q2T
∑
�k

L(q, i�k )L(q, i�k + iων )

× Bc(i�k, iων )2

]
iων→h̄ω≈0

.

The charge current vertex in the zero frequency limit Bc(0, 0)
is nonzero. We can thus replace Bc(i�k, iων ) by Bc(0, 0) and
obtain

σ AL
xx ∝ 1

iω
Bc(0, 0)2

[ ∑
q

q2T
∑
�k

L(q, i�k )

× L(q, i�k + iων )

]
iων→h̄ω≈0

∝ Bc(0, 0)2
∑

q

q2

︸ ︷︷ ︸
ε (D+2)/2

∫
d�︸︷︷︸

ε

coth

(
�

2T

)
︸ ︷︷ ︸

ε−1

d

d�︸︷︷︸
ε−1

[Im LR(q,�)︸ ︷︷ ︸
ε−1

]2

(11)

to extract the most diverging contribution ε → 0. Note that
the ω-linear term comes from the fluctuation part and the �

derivative of the fluctuation part appears in the last line.
We count the power of ε in Eq. (11). From the form of L,

each quantity scales as � ∝ ε and q ∝ ε1/2 and, accordingly,
d

d�
∝ ε−1, L ∝ ε−1, dq qD+1 ∝ ε (D+2)/2. The fluctuation

propagator L is appreciable when �/T � 1, where we can
replace coth(�/2T ) ≈ (�/2T )−1 thus coth(�/2T ) yields a
factor of ε−1. Consequently, we see that σ AL

xx ∝ εD/2−2.

TABLE IV. Dominant contribution in extrinsic spin Hall conduc-
tivity in the dirty limit.

σ SJ(normal)
xy  σ SS(normal)

xy σ SJ(normal)
xy � σ SS(normal)

xy

γϕ � 1 DOS-SJ MT(an)-SS

γϕ  1 DOS-SJ DOS-SS + MT(reg)-SS

TABLE V. Dominant contribution in extrinsic spin Hall conduc-
tivity in the clean limit.

σ SJ(normal)
xy  σ SS(normal)

xy σ SJ(normal)
xy � σ SS(normal)

xy

T τ

h̄ � 1
ε−γϕ

DOS-SJ MT(an)-SS
T τ

h̄  1
ε−γϕ

DOS-SJ DOS-SS

We turn to the AL terms in spin Hall conductivity. In
the zero frequency limit, Bs(0, 0) = 0 and the dominant con-
tribution comes from the ω linear in Bs(i�k, iων ) and we
obtain

σ AL
xy ∝

∑
q

q2

︸ ︷︷ ︸
ε (D+2)/2

L(q, 0)2︸ ︷︷ ︸
ε−2

Bc2(0, 0)

× d

dx
[Bs2(−x, x) + Bs2(0, x)]x=0,

where the derivative of L does not appear but that of Bs does.
Bs is regular in ω and thus the derivative of Bs does not yield
any power of ε−1. As a result, σ AL

xy ∝ ε0. The power-counting
argument does not distinguish ln ε from ε0 and thus this argu-
ment correctly accounts for singularity of σ AL

xy .
Next, we discuss the power of ε in the DOS terms and

the MT terms. It suffices to consider the contribution from
�k = 0 in electric conductivity and spin Hall conductivity.
Consequently, the singularities in both quantities are the same.

The power of ε comes only from
∑

q L(q, 0) in the
DOS terms (for extrinsic and intrinsic cases) and the MT
terms for the intrinsic case and the regular part of the
MT terms for extrinsic case. L ∝ ε−1,

∑
q ∝ ∫

dqqD−1 ∝
εD/2 and thus σ DOS

xy , σ
MT(reg)
xy ∝ ε0, which is consistent with

σ DOS
xy , σ

MT(reg)
xy ∝ ln(1/ε).

The power of ε comes only from
∑

q L(q, 0)(γϕ −
ξ 2

SCq2)−1 in the anomalous part of the MT terms for the ex-
trinsic case. L ∝ ε−1,

∑
q ∝ ∫

dqqD−1 ∝ εD/2, ξ 2
SCq2 ∝ ε and

thus σ MT(an)
xy ∝ (γϕ − ε)−1, which is consistent with σ MT(an)

xy ∝
(γϕ − ε)−1 ln ε.

We have seen that the AL terms in spin Hall conduc-
tivity have weaker singularity than the AL terms in electric
conductivity. The AL terms in electric conductivity represent

FIG. 11. Estimate of fluctuation effect based on the parameters
for Nb.
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FIG. 12. Estimate of fluctuation effect based on the parameters
for clean Al, where skew scattering is considered to be dominant.

the effect of transport carried by the dynamically fluctuat-
ing Cooper pairs [36]; the effects of those terms can also
be described by the time-dependent-Ginzburg-Landau theory,
which is the effective theory for bosons (Cooper pairs) ob-
tained by integrating out the fermionic degrees of freedom. In
the case of s-wave superconductors, however, the Cooper pairs
carry electric charges but do not spin. Accordingly, the AL
terms in the spin Hall conductivity represent a different phys-
ical process from that in electric conductivity. The ω-linear
term in the response function comes from the fluctuation
propagator in the case of the AL terms in electric conductivity,
while the ω-linear term comes from the spin current vertex
in the spin Hall conductivity. We could thus say that the AL
terms in electric conductivity describe the dynamical effect of
Cooper pairs. In contrast, the AL terms in spin Hall conduc-
tivity come from the dynamical part of the spin current vertex
with the static effect of fluctuating Cooper pairs. This kind of
dynamical aspect of the spin current vertex in the spin Hall
effect has been pointed out in an earlier study [32], where the
vortex spin Hall effect in the presence of magnetic field and
spin accumulation is discussed.

Singularity in the DOS terms in spin Hall conductiv-
ity is the same as that in electric conductivity. This can
be understood by recalling that the DOS terms represent
the quasiparticle contribution. In this process, spin/charge
is carried by quasiparticles. The presence of the fluctuating
Cooper-pairs suppresses the DOS of the quasiparticles above
the transition temperature [53,54]. Thereby, electric conduc-
tivity is suppressed. The quasiparticles carry spin as well as
charge and thus those terms for the spin Hall conductivity
diverge in a way similar to electric conductivity.

C. Magnitude of spin Hall conductivity; ε-independent factors

In Tables I–III, we notice the factor ε−1
F in all cases. This

factor reduces the effects of fluctuation on spin Hall conduc-
tivity. You can see that the integral

∑
‖q‖<ξ−1

SC
q2L2(q, 0) or∑

‖q‖<ξ−1
SC

L(q, 0) yields a factor 1/ξSC and reduces the mag-
nitude of the spin Hall conductivity by counting the power of
kF in the expression. The small phase volume of q restricted
by the condition ‖q‖ < ξ−1

SC or the support of L(q, 0) implies
that a limited number of electrons can contribute to the fluc-
tuation part of the spin Hall conductivity. This fact reflects

an additional factor ε−1
F in fluctuation spin Hall conductivity,

compared to spin Hall conductivity in the normal state.

D. Relation to anomalous Hall effect

As mentioned in Sec. I, it is known that there is a connec-
tion between the extrinsic spin Hall effect and the extrinsic
anomalous Hall effect [9,17,37]. In this subsection, we discuss
the relation to Ref. [38], where the superconducting fluctua-
tion on anomalous Hall effect was addressed.

The uniform component of the charge and spin current
density operator can be written as Eqs. (10) and (11), respec-
tively. These equations are identical except that (i) js contains
the factor 1/2 (ii) σ z

αβ and δαβ are swapped. Therefore, the
Feynman diagrams of the spin Hall effect and anomalous Hall
effect become very similar. One of the differences is that dia-
grams of anomalous Hall effect contain an odd number of σ z

αβ .
In a ferromagnetic metal, physical quantities (such as DOS)
for electrons with spin up and down have different values.
Thus, we can incorporate the difference of the quantities into
the coupling constant of spin-orbit interaction αso by taking
an average of spin direction (see Eq. (2.7) in Ref. [38]).

From the above discussion, we can rewrite the results in
this paper to the results in Ref. [38] by replacing the strength
of spin-orbit interaction λ2

E to 8αso/p2
F. However, the pro-

cedures in this paper for extracting the most diverging term
slightly differ from that in Ref. [38]. Because of this, the re-
sults in Ref. [38] are different from our results by a numerical
factor.

Besides, diagrams containing more fluctuation propaga-
tors have more factor of ε−1

F as mentioned in the last of
Sec. IV C. Li and Levchenko calculated the diagrams that con-
tain more fluctuation propagators than diagrams in this paper
and showed that these contributions have the factor of ε−2

F
(see Table 1 in Ref. [38]). The nonlinear fluctuation effects
are more singular in the limit of ε → 0 than the lowest order
contributions of the fluctuation effects and they are dominant
when h̄/(εFτ ) � ε � √

h̄/(εFτ ) in dirty 2D superconductors
[38]. For simplicity, we restrict in this paper the lowest order
contributions of the fluctuation effects. This treatment is valid
when

√
h̄/(εFτ ) � ε � 1 in 2D dirty superconductors.

E. Future issues

As we are motivated in the present paper, the experiments
by Jeon et al. [29] imply important roles of superconducting
fluctuations in spin injection into superconductors or spin-
charge conversion in superconductors above Tc. As future
issues, fluctuation effects on spin-pumping, spin-Seebeck, and
charge-imbalance related to spin injection into superconduc-
tors are worthwhile to address.

Spin injection from magnets to metals can be driven by
electromagnetic field (spin pumping) or thermal gradient at
the interface (spin-Seebeck effect). While both subjects for
superconductors have been addressed within the mean-field
theory [25,26], fluctuation effects on these effects have yet to
be considered. As developed in Refs. [25,26], the spin cur-
rents injected via spin-pumping and the spin-Seebeck effect
depend on local magnetic susceptibility χR

loc(ω). In the limit
ω → 0, the AL process vanishes as it occurs in spin Hall
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conductivity. When the dephasing is weak or moderate, the
MT term becomes dominant [55].

Consideration of fluctuation effects on χR
loc(ω) for finite

ω �= 0 will reveal fluctuation effects on spin-Seebeck and
spin-pumping effects.

Charge imbalance is another issue to be addressed.
The inverse spin Hall voltage measured in experiments in

Ref. [29] is considered to be a consequence of this charge im-
balance caused by a spin-charge conversion of quasiparticles
in the superconductor. Charge-imbalance has been discussed
theoretically in the Boltzmann-type transport theory. It is ap-
propriate to deal with the charge imbalance within the Green
function formalism, to incorporate superconducting fluctua-
tions.

The spin Hall effect in the normal state in Nb has been
attributed to the intrinsic effect [56,57] based on a semi-
quantitative model reflecting the multiorbital electronic band
structure. For a quantitative account of the experiments by
Jeon et al. [29], a theoretical study on the fluctuation effects
based on a realistic model is desirable. In future research
developed in this direction, the fluctuation effects on spin
transport in the simple models used in the present paper will
serve as a basis for understanding the results of realistic mod-
els and experiments.

V. CONCLUSION

In this paper, we theoretically studied the effects of super-
conducting fluctuations on extrinsic spin Hall effects in two-
and three-dimensional electron gas and intrinsic spin Hall
effects in the two-dimensional Rashba model. The AL, DOS,
and MT terms have logarithmic divergence ln ε in the limit
ε = (T − Tc)/Tc → +0 in two-dimensional systems for both
extrinsic and intrinsic spin Hall effects except the MT terms
in extrinsic effect, which are proportional to (ε − γϕ )−1 ln ε

with a cutoff γϕ in two-dimensional systems. The fluctuation
correction to the extrinsic spin Hall effect has an opposite sign
to that in the normal state and suppresses the spin Hall effect.
The correction to the intrinsic spin Hall effect has the same
sign as that in the normal state and thus enhances the spin
Hall effect. The study of fluctuation effects on spin injection
to superconductors based on more realistic models as well as
simple models is an important issue for the future.
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