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One-way quantum steering is of importance for quantum technologies, such as secure quantum teleportation.
In this paper, we study the generation of one-way quantum steering between two distant yttrium iron garnet
(YIG) microspheres in chiral waveguide electromagnonics. We consider that the magnon mode with the Kerr
nonlinearity in each YIG sphere is chirally coupled to left- and right-propagating guided photons in the
waveguide. We find that quantum steering between the magnon modes is absent with nonchirality but is present
merely in the form of one way (i.e., one-way steering) when the chirality occurs. The maximal achievable steering
is obviously improved as the chirality degree increases. We further find that when the waveguide’s outputs are
subjected to continuous homodyne detection, the steering can be considerably enhanced and asymmetric steering
with strong entanglement can also be achieved by tuning the chirality. Our study shows that chirality can be
explored to effectively realize one-way quantum steering. Compared to other studies on achieving asymmetric
steering via controlling intrinsic dissipation, e.g., cavity loss rates, our scheme merely depends on the chirality
enabled via positioning the micromagnets in the waveguide and is continuously adjustable and experimentally
more feasible.
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I. INTRODUCTION

Nonclassical states of macroscopic objects [1] are of
importance for testing fundamental principles of quantum
mechanics [2,3], e.g., the decoherence effect at large mass
scale [4–6]. Recently, the preparation of nonclassical effects in
high-quality ferrimagnetic materials, especially yttrium iron
garnet (YIG) [7], has attracted extensive attention, due to high
spin density and low loss rate of magnons, i.e., the quanta
of collective excitation of spins in YIG samples. Further,
magnons exhibit an excellent ability to interact with a variety
of systems, such as microwave photons [8–16], optical pho-
tons [17–19], phonons [20–23], and superconducting qubits
[24–27], which shows that magnons can be a potential candi-
date for studying quantum effects in macroscopic-size objects.

Quantum steering [28–30] is a kind of quantum nonlocality
which is intermediate between entanglement [31] and Bell
nonlocality [32]. Distinct from entanglement and Bell non-
locality, steering can be asymmetric and even one-way with
respect to two observers involved. One-way steering, which
means that one observer can remotely steer the quantum states
of the other but not vice versa, is of importance for secure
quantum teleportation [33,34], one-sided device-independent
quantum cryptography [35,36], and quantum channel discrim-
ination [37]. Theoretical studies have revealed asymmetric
steering effect in various systems, such as optomechani-
cal systems [38–41] and cavity magnonic systems [42–46],
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mainly achieved with unbalanced intrinsic losses. One-way
Gaussian steering has been experimentally observed by con-
trolling the unequal dissipation of two entangled beams [47].

Recent studies on chiral quantum optics have attracted a lot
of attention, which offer a novel platform for quantum control
of light-matter interactions [48]. In the chiral configurations,
such as spin-waveguide systems [49–55], the emitter-photon
interaction is nonreciprocal, i.e., “chiral coupling”—a mani-
festation of optical spin-orbit coupling [56–58]. That is, the
coupling of emitters to photons in the waveguide depends on
the polarization of the emitter’s transition dipole moment and
the propagation direction of traveling photons. Photon emis-
sion with directionality has been experimentally demonstrated
in chiral waveguides [59–63]. The chirality opens up a new
means of controlling quantum effects and becomes a key in-
gredient for a range of elementary quantum devices based on
chiral quantum effects, such as nonreciprocal single-photon
devices [64,65] and nondestructive photon detectors [66].

In this paper, we propose a chiral route to the generation
of one-way quantum steering between two YIG spheres in
waveguide electromagnonics. The YIG spheres are placed
in special positions in a microwave waveguide and each
magnon mode with the Kerr nonlinearity can be chirally
coupled to left- and right-propagating guided photons in this
waveguide. We reveal how the chirality allows realizing one-
way steering of the two magnon modes, which is unachievable
in the nonchiral coupling situation. Moreover, we further find
that the steering can be enhanced significantly by homodyne
detections applied on the outputs of the waveguide, and asym-
metric steering with strong entanglement can also be achieved
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FIG. 1. (a) Chiral waveguide electromagnonics. Two YIG
spheres with a distance d are placed in a waveguide parallel to the
z direction. The static bias magnetic field Hy j ( j = 1, 2) is along
the y direction. Superconducting microwave coils with a small loop
antenna are attached to the bottom of each YIG sphere to directly
drive magnon modes along the x direction. Microwave photons are
emitted from each sphere into the guided left- and right-propagating
modes of the waveguide, with asymmetric emission rates �L j and
�R j , and the spheres are also damped by other decohering envi-
ronments with the rates κ j . (b) Measurement-based control scheme.
The waveguide’s output bout

λ (λ = L, R) is subjected to continuous
homodyne detection. Based on the detection outcomes IL,R(t ), indi-
rect (state-based) feedbacks with gains Gλ j are employed to achieve
unconditional entanglement between the macroscopic YIG spheres.

by tuning the chirality in this situation. Finally, to verify and
apply the generated steering, state-based feedback is intro-
duced to convert the conditional results into the unconditional
ones with high fidelity. Our study shows the potential of
chirality for realizing one-way quantum steering protocols.
Compared to other studies on manipulating asymmetric steer-
ing via unbalanced dissipation, our scheme is experimentally
more flexible and controllable since it merely depends on
the chirality enabled via positioning the micromagnets in the
waveguide.

This paper is organized as follows. In Sec. II, the chiral
magnon-waveguide system is introduced. In Sec. III, the re-
sults are presented in detail. In Sec. V, the indirect feedback is
introduced to achieve unconditional entanglement and steer-
ing. In the last section, some discussion and the conclusion
are given.

II. CHIRAL MAGNON-WAVEGUIDE SYSTEM

As shown in Fig. 1(a), we consider a chiral magnon-
waveguide system. It consists of a microwave waveguide
whose modes propagating along the z direction and two ferri-
magnetic YIG microspheres, located at the position z j ( j =
1, 2) with a distance d , are placed in the waveguide. The
uniform magnetic field Hyj , biased along the y direction to
saturate the magnetization in the spheres, produces a uniform
magnon mode resonating at frequency ωm j =γ0Hyj , with the
gyromagnetic ratio γ0 = 28 GHz/T. To produce the magnon
entanglement between two spheres, we consider magnon

Kerr nonlinear effects, resulting from the magnetocrystalline
anisotropy in the YIG spheres [67], which has been demon-
strated by recent experimental realization of field bistability
and multistability in cavity electromagnonics [68,69]. To ex-
cite the system, each YIG sphere is considered to be driven
along the x direction, with frequency ωd , strengths E j , and
drive phases φ j , by a superconducting microwave line with a
small loop antenna at its bottom. We also assume the diame-
ters of the YIG spheres are much smaller than the wavelength
of waveguide photons such that the couplings of the Kittel
modes to the waveguide modes are independent of the sizes
of the spheres. In the rotating frame of the driving frequency,
the Hamiltonian of the whole system is of the form (h̄ = 1)

Ĥ = Ĥm + Ĥw + Ĥint, (1)

where

Ĥm =
∑
j=1,2

δ j m̂
†
j m̂ j + Kjm̂

†
j m̂ jm̂

†
j m̂ j

+ iE j
(
m̂†

j e
iφ j − m̂ je

−iφ j
)
,

Ĥw =
∑

λ=L,R

∫
ωb̂†

λ(ω)b̂λ(ω)dω,

Ĥint = i
∑

λ=L,R

∑
j=1,2

∫
dω√
2π

× [
gλ j b̂

†
λ(ω)m̂ je

−i ω
vλ

z j−iωd t − H.c.
]
. (2)

Here the annihilation (creation) operator m̂ j (m̂†
j ) denotes

the jth magnon modes and b̂λ (b̂†
λ) (λ = L, R) the left- and

right-propagating modes with frequency ω and wave num-
ber kλ = ω/vλ for the group velocity vλ. The detuning δ j =
ωm j − ωd , and the Kerr nonlinearity Kj = μ0Kanγ

2
0 /M2Vj ,

where Kan is the first-order anisotropy constant of the
YIG samples, M the saturation magnetization and Vj the
volume of the spheres, and μ0 the vacuum permeability. The

magnon-waveguide coupling gλ j = μ0

√
γ0MV j

2 (−Bλ
z j

+ iBλ
x j

),

with Bλ
z j

(Bλ
x j

) being the magnetic field of the waveguide
modes at the position of YIG spheres. For the TE10 mode,

gλ j =
√

γ0MVj

2ε0ωab [π
a cos( πx j

a ) − kλ sin( πx j

a )] [70,71], with a and b
being the rectangular cross section (a � b) and ε0 the vacuum
permittivity, which depends on the wave vector kλ and thus
can be tuned to be chiral (gL j �= gR j). Essentially, the chirality
roots from the elliptically polarized magnetic components giv-
ing rise to the so-called spin-momentum locking phenomenon
[48,72].

By treating the continua of the modes of the waveguide as
reservoirs of the magnon modes, with the Born-Markovian ap-
proximation [73], the master equation for the density operator
ρ̂ of the magnons can be written as

d

dt
ρ̂ = −i[Ĥm, ρ̂]

− Trw

∫ t

0
dτ [ ˆ̃Hint (t ), [ ˆ̃Hint (τ ), ρ̂(τ ) ⊗ ρ̂w(0)]], (3)

where ˆ̃Hint (t ) = e−iĤwt Ĥint (t )eiĤwt and ρ̂w(0) denotes the ini-
tial states of the waveguide’s modes. By assuming initial
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vacua for ρ̂w(0) and tracing out the reservoir variables, the
final master equation of system is derived as (see Appendix A)

d

dt
ρ̂ = − i[Ĥm + ĤL + ĤR, ρ̂] +

∑
λ=L,R

�λL[M̂λ]ρ̂

+
∑
j=1,2

κ j
{
(n̄ j + 1)L[m̂ j]ρ̂ + n̄ jL[m̂†

j ]ρ̂
}
, (4)

with the notation L[ô]ρ̂ ≡ ôρ̂ô† − {ô†ô, ρ̂}/2. The last line
describes that the magnon modes are intrinsically damped
with the damping rates κ j by thermal environments, with
the mean thermal excitation numbers n̄ j ≡ 1/(eh̄ωm j/kBT − 1)
at temperature T ; kB is the Boltzmann constant. The
Hamiltonians

ĤL ≡ − i�L

2

(
m̂†

1m̂2eikd − H.c.
)
, (5)

ĤR ≡ − i�R

2

(
m̂†

2m̂1eikd − H.c.
)

(6)

describe the coherent coupling of magnons mediated by the
left- and right-moving photons with the wave vectors kR =
−kL = k, respectively. The terms related to collective operator

M̂λ = m̂1 + m̂2e−ikλd (7)

effectively describe the dissipative-driven collective dynamics
of two magnons immersed in the environments, with decay
rate �λ = g2

λ. Note that in deriving the above master equa-
tion, the time delay effect is neglected by assuming that the
timescale �−1

λ of the system’s evolution is much larger than
the photon traveling time between the two spheres.

When the decay rates �L = �R = �, Eq. (4) reduces to

d

dt
ρ̂ = −i

[
Ĥm +

∑
j,l=1,2

� sin(k|z j − zl |)m̂†
j m̂l , ρ̂

]

+
∑

j,l=1,2

2� cos(k|z j − zl |)
(

m̂l ρ̂m̂†
j − 1

2
{m̂†

j m̂l , ρ̂}
)

+
∑
j=1,2

κ j{(n̄ j + 1)L[m̂ j]ρ̂ + n̄ jL[m̂†
j ]ρ̂}, (8)

which describes balanced bidirectional coupling between the
magnon modes in the spheres. When either of the decay rates,
e.g., �L = 0, the master equation (4) becomes

d

dt
ρ̂ = − i[Ĥm, ρ̂] +

∑
j=1,2

�RL[m̂ j]ρ̂

+ �R([m̂2, ρ̂m̂†
1]e−ikd − [m̂†

2, m̂1ρ̂]eikd )

+
∑
j=1,2

κ j{(n̄ j + 1)L[m̂ j]ρ̂ + n̄ jL[m̂†
j ]ρ̂}, (9)

which then describes the cascade coupling between the two
separate magnon modes; i.e., the second magnon mode is
coupled to the first one but not vice versa [74]. Therefore, we
define

D = �R − �L

�R + �L
, (10)

to characterize the chirality of the system, and 0 < D � 1. For
the balanced bidirectional situation in Eq. (8), the chirality

D = 0, i.e., the nonchiral case, while for the cascade coupling
the chirality D = 1, the fully chiral case.

For strong driving of magnon modes, the Hamiltonian
Ĥm can be linearized by replacing the operators m̂ j →
〈m̂ j〉ss + m̂ j with steady-state amplitudes of the magnon
modes 〈m̂ j〉ss, and just keeping the second-order terms, it is
given by

Ĥlin =
∑
j=1,2

 j m̂
†
j m̂ j + K̃ j

(
m̂2

j + m̂†2
j

)
. (11)

It describes a detuned magnon parametric amplifier (MPA),
with the strengths K̃ j = Kj |〈mj〉ss|2 and detuning  j = δ j +
4Kj |〈m̂ j〉ss|2. The amplitudes

〈m̂1〉ss = E1eiφ1 − �L〈m2〉sseikd

�̃1 + i1 − 2iK̃1
,

〈m̂2〉ss = E2eiφ2 − �R〈m1〉sseikd

�̃2 + i2 − 2iK̃2
, (12)

with �̃ j = (κ j + �L + �R)/2. Specifically, when �̃ j = �̃ and
 j = 0, the symmetric MPAs with

K̃1 = K̃2 ≈ (K1
√

K2E1eiφ1 − K2
√

K1E2eiφ2 )2

(K1�L − K2�R)2e2ikd
(13)

and the asymmetric MPAs with

K̃1 = i(�RE1ei(φ1+kd ) − �̃E iφ2
2 )

2E iφ2
2

and K̃2 = 0 (14)

can be achieved. In both cases, the strength K̃ j is adjustable
by changing the driving amplitudes E j .

III. CONTINUOUS HOMODYNE DETECTION ON
WAVEGUIDE’S OUTPUTS

To control the magnon systems, we consider that the
waveguide’s output b̂out

λ is subjected to homodyne detection.
For the waveguide, the input-output relation for the left and
right ends reads (see Appendix B)

b̂out
λ (t ) = b̂in

λ (t ) +
√

�λM̂λ, (15)

where b̂in
λ (t ) is the input vacuum noise which satisfies the

nonzero correlation 〈b̂in
λ (t )b̂in†

λ (t ′)〉 = δ(t − t ′). We see that
the outputs are related to the magnon modes and thus they
can be detected by homodyning the quadratures of the output
fields,

X̂ out
λ = 1√

2
(b̂out

λ eiθλ + b̂out†
λ e−iθλ ), (16)

with the local phases θλ determined by the local reference
fields. The detection currents

Iθλ
dt =

√
ηλ�λ〈M̂λeiθλ + M̂†

λe−iθλ〉dt + dWλ, (17)

where ηλ is the homodyne detection efficiency and dWλ is
the standard Wiener increments with mean zero and variance
dt . Conditioned on the detection outcomes, the stochas-
tic master equation for the density operator ρ̂c is given
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by [75,76]

d ρ̂c = −i[Ĥlin + ĤL + ĤR, ρ̂c]dt +
∑

λ=L,R

�λL[M̂λ]ρ̂cdt

+
∑
j=1,2

κ j{(n̄ j + 1)L[m̂ j]ρ̂cdt + n̄ jL[m̂†
j ]ρ̂cdt}

+
∑

λ=L,R

√
ηλ�λ

2
H[M̂λeiθλ ]ρ̂cdWλ, (18)

with the symbols H[ô]ρ̂ = ôρ̂ + ρ̂ô† − 〈ô + ô†〉. The last
term characterizes the backaction effect originating from con-
tinuously monitoring the waveguide’s outputs, dependent on
the measurement efficiency ηλ. It can be seen that for the case
of full chirality, e.g., �L = 0, the left output carries no infor-
mation about the magnons and thus the homodyne detection
on the left has null effect on the magnon system.

For the Gaussian nature of initial states, the state of
the magnonic system controlled by Eq. (18) is still in
Gaussian states determined by the covariance matrix σc,ii′ =
〈μiμi′ + μi′μi〉/2 − 〈μi〉〈μi′ 〉, where μ = (x̂1, p̂1, x̂2, p̂2) for
the quadrature operators x̂ = (ô + ô†)/

√
2 and p̂ = −i(ô −

ô†)/
√

2 (o = mj ). From Eq. (18), we have

dμ̄T = Aμ̄T dt + (σcC − F )dW, (19a)

dσc

dt
= Aσc + σcAT + D − (σcC − F )(σcC − F )T , (19b)

where μ̄ = 〈μ〉, the drift matrix

A =
(
A1 AL

AR A2

)
, A j =

( −�̃ j  j − 2K̃ j

− j − 2K̃ j −�̃ j

)
,

Aλ =
(−�λ cos kd �λ sin kd

−�λ sin kd −�λ cos kd

)
, (20)

the diffusion matrix

D =
(
D1 D12

DT
12 D2

)
, (21)

where D j = [κ j (n̄ j + 1/2) + (�L + �R)/2]I with I the 2 × 2

identity matrix, and D12 = (
D+ D−

−D− D+
), with D+ = [(�L +

�R) cos kd]/2 and D− = [(�L − �R) sin kd]/2. The vectors

CT = (C1, C2, C3, C4), (22a)

FT = (F1,F2,F3,F4)/
√

2, (22b)

with

C1 = √
ηLγL cos θL + √

ηRγR cos θR,

C2 = −√
ηLγL sin θL − √

ηRγR sin θR,

C3 = √
ηLγL cos(kd + θL ) + √

ηRγR cos(kd − θR),

C4 = −√
ηLγL sin(kd + θL ) + √

ηRγR sin(kd − θR),

F j = C j . We see from Eq. (19) that the first moments are
related to the measurement results and thus stochastic. Nev-
ertheless, these stochastic moments are independent of the
entanglement of the Gaussian states. On the contrary, the
covariance matrix σc is independent of the outcomes and de-
terministic and it completely determines the entanglement of
the system. The effect of continuous homodyne measurement

is embodied by the last nonlinear term of Eq. (19b) [originat-
ing from the last term of Eq. (18)].

The stability of the present system is guaranteed by the fact
that all the eigenvalues (real parts) of the drift matrix A are
negative when the continuous detection does not exist, while
with the detection the stable condition is

Cxξ �= 0 ∀ xξ : Ãxξ = ξxξ (23)

with Re(ξ ) � 0 and Ã = A + FCT . The above stability
condition means that even if the unconditional correlation
matrix, in the absence of the measurement, is unstable or
marginally stable, the conditional correlation matrix deter-
mined by Eq. (19b) can still be stable.

IV. RESULTS

We now investigate in detail the steady-state entangle-
ment and steering between two magnon modes mediated by
the waveguide. When the covariance matrix σ of the sys-
tem is expressed as σ = ( σ1 σ12

σ T
12 σ2

), the entanglement can be
quantified by the logarithmic negativity En [77], which is
defined as

En = max[0,− ln(2e)], (24)

where e = 2−1/2
√

� − √
�2 − 4 det σ and � = det σ1 +

det σ2 − 2 det σ12. From Eq. (24), the Gaussian state is en-
tangled if and only if e < 1/2, which is equivalent to
Simon’s necessary and sufficient entanglement nonpositive
partial transpose criterion for all bipartite Gaussian states [78].
Further, when two magnons are entangled, one intriguing
property is that one magnon may steer the quantum state of the
other by local operations within its own Hilbert space and by
classical communication, i.e., so-called quantum steering. To
quantify the strength of steering, Kogias et al. [79] proposed
a computable measure valid for arbitrary bipartite Gaussian
states based on their covariance matrix. Thus, the steering
between two magnons in two directions is given by

S2|1 = max

[
0,

1

2
ln

det σ1

4 det σ

]
, (25)

S1|2 = max

[
0,

1

2
ln

det σ2

4 det σ

]
. (26)

S2|1 > 0 (S1|2 > 0) demonstrates that the magnonic state is
steerable from the first (second) magnon to the second (first)
one. One-way steering occurs when only S2|1 = 0 or S1|2 =
0 holds.

We first consider the entanglement and steering in the ab-
sence of the measurements (ηL = ηR = 0) for symmetric and
asymmetric MPAs, i.e., K̃1 = K̃2 = K̃ and K̃1 = K̃ and K̃2 =
0. The other parameters are given by ωm j/2π = 10 GHz,
 j = 0, �R/2π = 10 MHz, κ j/2π = 1 MHz, T = 30 mK at
which n̄ j ≈ 0. The dependence of the entanglement on the
distance d is plotted in Fig. 2 for different chirality degrees
of D. It shows that the entanglement appears periodically with
kd . In fact, the entanglement generation is due to the com-
bination of the MPAs and coherent and dissipative couplings
of the magnon modes in Eq. (4) which depend on the phase
kd . When the chirality D = 0, the maximal entanglement
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FIG. 2. The magnonic entanglement En in the steady-state
regime as a function of kd under different degrees of chirality, for
(a) symmetric MPAs with K̃/2π = 0.24 MHz and (b) asymmetric
MPAs with K̃/2π = 0.48 MHz, under the measurements being ab-
sent (ηL = ηR = 0). The other parameters are provided in the text.

occurs for kd = sπ at which the coherent coupling disap-
pears, with s being an integer, whereas it becomes minimal
when kd = (s + 1/2)π at which the coherent coupling ex-
ists, since the dissipative magnon coupling is more efficient
than the coherent coupling for the steady-state entanglement
generation. The minimal entanglement is increased while the
maximal entanglement is decreased as the chirality arises,
since the dissipative mixing is weakened with the increasing
of the chirality. Thus, the oscillation of entanglement almost
ceases with full chirality.

The dependence of the steady-state entanglement and
steering on K̃j is plotted in Fig. 3 with kd = sπ . As expected,
the entanglement increases as K̃j arises in the steady-state
regime. The stability conditions

K̃ <
κ

4
+ (1 − √

1 − D2)�R

2(1 + D)
, (27)

FIG. 3. The steady-state entanglement En and steering S1|2 vary
with K̃ under different degrees of chirality when kd = sπ , for (top)
symmetric and (bottom) asymmetric MPAs. The gray areas in (b) and
(d) correspond to the regions where one-way steering occurs. The
related parameters are the same as Fig. 2. In the plots, the reverse
steering S2|1 is absent and not plotted.

for symmetric MPAs K̃ j = K̃ , and

K̃ <
κ

4
+ �R

2(1 + D)
− (1 − D)�2

R

κ (1 + D) + 2�R
, (28)

for the asymmetric case K̃1 = K̃ and K̃2 = 0. We see from
Eq. (27) that for the chirality D = 0, the stability just depends
on the nonradiation damping rate κ . This is because for the
balanced bidirectional coupling with kd = sπ , a dark mode
of the two magnon modes is generated and thus the stability
of the whole system is determined by the dark-mode MPA
with the dissipation rate κ and independent of the radiation
damping rate �, which in turn limits the value of the MPA
strength K̃ . When D = 1, inequalities (27) and (28) are iden-
tical since the stability is determined by the subsystem of the
first magnon mode with the cascade coupling. Thus, larger K̃
is allowed for achieving steady states as the chirality D arises
for given �R and κ , as shown in Fig. 3. For asymmetric MPAs,
this leads to the increasing of maximal achievable entangle-
ment occurring on the thresholds, as the chirality increases,
while for symmetric MPAs, the maximal entanglement de-
creases with full chirality, since the squeezing produced in
the second MPA blocks the entanglement generation. We see
that the steering is absent with nonchirality for both cases of
MPAs. However, one-way steering from the second magnon
mode to the first one appears when the chirality is present, as
shown in Figs. 3(b) and 3(d). This means that the chirality can
be used for manipulating the asymmetric steerable correla-
tions between the magnon modes. When the distance satisfies
kd = (s + 1/2)π , the stability condition

K̃ <

√
[κ (1 + D) + 2�R]2 + 4(1 − D2)�2

R

4(1 + D)
, (29)

for symmetric MPAs, and

K̃ <
κ

4
+ �R

2(1 + D)
+ (1 − D)�2

R

κ (1 + D) + 2�R
, (30)

and for asymmetric MPAs. In contrast with the case of kd =
sπ , the chirality decreases the stability regions over the MPA
strength K̃ . Nevertheless, the maximal achievable entangle-
ment also increases with the increasing of D, similar to that in
Fig. 3. Moreover, it is shown that the steering is absent with
nonchirality, but is also present in the one way from the first
magnon mode to the second as the chirality occurs, as already
shown in Fig. 3. Likewise, the stronger one-way steering can
be obtained for asymmetric MPAs than the symmetric case.
Therefore, the asymmetric MPA setting is more favorable to
the one-way steering of two magnon modes in the present
system.

We next study the steady-state entanglement and steering
in the presence of the continuous measurement. We consider
that the amplitude quadrature (θR = 0) of the right output field
and phase quadrature (θL = π/2) of the left output field are
simultaneously subjected to homodyne detection. It should
be noted that with full chirality, the detection on the left has
no effect on the system. The entanglement and steering are
plotted in Fig. 5 and Fig. 6, respectively, for the cases of
kd = sπ and kd = (s + 1/2)π . One can see that, compared
to those in Fig. 3 and Fig. 4, the entanglement and steering
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FIG. 4. The steady-state entanglement En and steering S1|2 vary
with K̃ under different degrees of chirality when kd = (s + 1/2)π .
The other settings are the same as Fig. 3.

are considerably enhanced by the measurements no matter
whether the chirality is present or not. Moreover, the reverse
steering from the first magnon mode to the second is also
present in the presence of the measurement. The enhance-
ment is due to the fact that the measurement enlarges the
stability region over the MPA strength and larger values of
K̃ can be allowed for achieving the steady states. Thus, the
maximal achievable entanglement and steering are boosted by
the measurement. On the other hand, the measurements also
suppress the decoherence from the coupling of the magnons
to the continua of the waveguide modes, giving rise to the
enhancement of the entanglement and steering even for the
same MPA strength K̃ given in Fig. 3 and Fig. 5 (Fig. 4

FIG. 5. The conditional entanglement En, steering S1|2 (cyan
thick lines), and S2|1 (magenta thin lines) vary with K̃ under differ-
ent degrees of chirality D when kd = sπ , for (top) symmetric and
(bottom) asymmetric MPAs, with the presence of homodyne detec-
tions (ηL = ηR = 1). The other parameters are the same as in Fig. 3.

FIG. 6. The conditional entanglement En, steering S1|2 (red thick
lines), and S2|1 (blue thin lines) vary with K̃ under different degrees of
chirality D when kd = (s + 1/2)π , for (top) symmetric and (bottom)
asymmetric MPAs, with the presence of homodyne detections (ηL =
ηR = 1). The other parameters are the same as in Fig. 4.

and Fig. 6). This can be partially verified by the purity of
the two-mode magnon states plotted in Fig. 7, which shows
that the purity is obviously enhanced by the measurement.
For symmetric MPAs, asymmetric steerings and even one-
way steering can also be obtained via tuning the chirality, as
demonstrated in Fig. 3(b) and Fig. 4(b). Therefore, with the
measurement asymmetric steering with stronger entanglement
can be achieved.

V. INDIRECT FEEDBACK

As discussed above, although the correlation matrix in
Eq. (19b) is deterministic, the first moments μ̄(t ) depend
on the detection outcomes and thus are stochastic. When an

FIG. 7. The purity of the magnonic states in (a) symmetric and
(b) asymmetric cases, for the measurements being absent (ηL =
ηR = 0; thick lines) and present (ηL = ηR = 1; thin lines). The other
parameters as those in Fig. 5.
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ensemble average is performed over many experimental runs,
incoherent noise resulting from the random walk in phase
space will mask the conditional magnon entanglement and
steering. Therefore, one needs to convert the conditional re-
sults into the unconditional ones, which can be realized by
introducing state-based (indirect) feedback [75,80], different
from the direct feedback in which the detection current is
directly fed back to drive the system [81]. Once the measure-
ments are performed at some time, the values x̄ j (t ) and p̄ j (t )
can be inferred immediately, based on which the Markovian
feedback described by the Hamiltonian

Ĥfb =
∑

λ=L,R

∑
j=1,2

Gp
λ j p̄ j (t )x̂ j − Gx

λ j x̄ j (t ) p̂ j (31)

can be devised, with the feedback gain parameters
Gx,p

λ j . The feedback leads Eq. (19a) to be modified
by substituting A with Ā = A − diag(Gx

L1 + Gx
R1, Gp

L1 +
Gp

R1, Gx
L2 + Gx

R2, Gp
L2 + Gp

R2). Then, the ensemble average
σ̄e ≡ 1

2 〈μ̄i(t )μ̄i′ (t ) + μ̄i′ (t )μ̄i(t )〉e over many realizations of
the system can be derived as

d

dt
σ̄e = Āσ̄e + σ̄eĀT + (σcC − F )(σcC − F )T , (32)

and the ensemble average σe ≡ 1
2 〈〈μi(t )μi′ (t ) + μi′ (t )μi(t )〉〉

is given by

σe = σc + σ̄e, (33)

determining the system’s properties under the feedback. When
σ̄e ≈ 0 through choosing the appropriate feedback gains, the
correlation matrix σe ≈ σc, independent of the measurement
results and thus deterministic. The overlap between the states
with the covariance matrices σc and σe can be quantified by
the fidelity [82]

Fσc,σe =
[√

� +
√

� −
√

(
√

� +
√

�)2 − 

]−1

, (34)

where
√

� = 24det(�σc�σe − 1/4), � = 24det(σc +
i�/2)det(σe + i�/2),  = det(σc + σe), with � =
(

0 1
−1 0) ⊗ 1.

We take the case of the chirality D = 1 as an example to
plot the fidelity Fσc,σe between the unconditional and condi-
tional states of the two-mode magnon states in Fig. 8. Since in
this case only the output field on the right is detected, we just
consider the feedback gains Gx,p

L1 = Gx,p
L2 = 0, Gx

R1 = Gp
R1 =

GR1, and Gx
R2 = Gp

R2 = GR2. We see that the fidelity increases
as the feedback strength GR1 arises. This is because the in-
crease of the feedback strength leads to stronger damping for
the mean values x̄ j and p̄ j , which in turn further suppress
the fluctuations (i.e., σ̄e) of the mean values and even almost
removes them completely in the limit of strong feedback. In
this limit, for the symmetric MPAs, the fidelity Fσc,σe ≈ 0.992,
and the entanglement and steering recover to the conditional
values, En ≈ 0.656, S1|2 ≈ 0.196, and S2|1 = 0 in Fig. 8(c),
and for the asymmetric MPAs, Fσc,σe ≈ 0.995, En ≈ 0.859,
S1|2 ≈ 0.328, and S2|1 ≈ 0.147 in Fig. 8(d).

FIG. 8. The effect of feedback gain parameters GR2/GR1 on
fidelity Fσc,σe for a fixed GR1/2π = 20 MHz, in (a1) symmet-
ric magnons and (b1) asymmetric magnons. (a2) and (b2) The
dependencies of the fidelity Fσc,σe , the unconditional magnon-
magnon entanglement En, and steerings S1|2 and S2|1 on feedback
strength GR1, corresponding to the optimal feedback parameter ra-
tios GR2/GR1 = 2 and GR2/GR1 = 1, respectively. We have chosen
D = 1, and the other parameters are the same as Fig. 5.

VI. DISCUSSION AND CONCLUSION

Before concluding, let us briefly discuss the experimental
feasibility of our scheme. First, a rectangular waveguide in
which only the lowest TE10 mode exists is preferred. The mag-
netic field of TE10 photons is polarization-momentum locked.
By changing the position of the spheres in the x direction x j ,
the magnon-photon coupling can be tuned to be full-chiral,
partial-chiral, or nonchiral, with achievable dissipation rates
�L,R/2π ∈ (0, 20) MHz [71]. Besides, YIG spheres with ap-
propriate size should be selected for two reasons. The first
one is to ensure the validity of the Kittel mode description
for magnetic materials, i.e., the magnon excitation number
should satisfy 〈m̂†

j m̂ j〉  2Njs = 5Nj , and the second one is
to obtain the Kerr nonlinearity inversely proportional to the
volume Vj . So, two submillimeter-sized YIG spheres may
be ideal candidates. Moreover, to enhance the nonlinear ef-
fect, the pumping field is designed to directly drive the YIG
spheres by using a superconducting microwave line with a
small loop antenna [68]. For example, consider using two
YIG spheres with diameters d1 = 0.1 mm and d2 = 0.2 mm,
which produce Kerr coefficients K1/2π ≈ 0.0295 × 10−6 Hz
and K2/2π ≈ 0.0132 × 10−6 Hz, respectively [83]. In the
situation of full chirality, the symmetric MPA setting with
strength K̃1,2/2π ≈ 3 MHz can be achieved by the drive pow-
ers P1 ≈ 0.144 W and P2 ≈ 0.186 W, while the asymmetric
MPA setting with strength K̃1/2π ≈ 3 MHz and K̃2/2π ≈ 0
requires drive powers P1 ≈ 0.305 W and P2 ≈ 0.021 W. Pro-
posed as in Fig. 1 is a possible experimental setup design that
could realize our proposal. What needs to be noted is that the
magnetic fields of the waveguide, the driving fields, and the
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uniform magnetic fields should be orthogonal to each other
at the site of the YIG spheres so that one avoids the mutual
impact among them. Furthermore, as for the verification of the
quantum entanglement and steering, the method widely used
in the field of cavity optomechanics can be adopted [84]. Here,
to read the magnon entanglement and steering, we can weakly
couple each magnon mode to an independent microwave cav-
ity acting as a probe field [85]. Then, the magnon entangled
state is transferred to the probing fields and thus the entangled
state can be read out by homodyning the outputs of the probes.

In summary, we investigate in detail quantum steerable
correlations between two distant YIG spheres in a chi-
ral microwave waveguide. We show that for two magnons
coupled to the waveguide separated by s/2 or (s/2 + 1/4)
wavelengths, one-way steering can be generated using chiral
magnon-photon interaction. We also find that the gener-
ated quantum steering can be enhanced considerably when
the outputs of waveguide are subjected to time-continuous
homodyne detection, and in this situation, the asymmetric
steering with strong entanglement also can be tuned by the
chirality of waveguide. To verify and apply the generated
steering, we also employ optimal state-based feedback to con-
vert the conditional results into unconditional ones with high
fidelity. Our results demonstrate the potential applicability
of chirality for manipulating asymmetric steering and even
one-way quantum steering. Compared to other schemes for
achieving asymmetric steering, our scheme, merely depend-
ing on the chirality enabled via positioning the micromagnets
in the waveguide, is experimentally more feasible.
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APPENDIX A: DERIVATION OF THE GENERAL CHIRAL
MASTER EQUATION

Here we show how to derive a general master equation for
a chain of magnons coupled to a chiral waveguide. We take
the general reservoir theory in quantum optics and treat the
collection of magnons as the system S and the bosonic modes
in the chiral waveguide as a long one-dimensional reservoir
R exhibiting Markovian dynamics. In a rotating frame with
respect to the bath Hamiltonian, the total Hamiltonian reads

Ĥ = ĤS + Ĥint (t ), (A1)

where

Ĥint (t ) = i
∑

λ=L,R

∑
j

∫
dω√
2π

× [
gλ j b̂

†
λ(ω)m̂ j (t )ei(ω−ωd )t−i ω

vλ
z j − H.c.

]
. (A2)

Thus, we can get the master equation of system ρS by tracing
out the reservoir degrees of freedom and making the Markov
approximation as

dρS

dt
= −i[ĤS, ρS (t )] − iTrR[Ĥint (t ), ρS (0) ⊗ ρR(0)]

− TrR

∫ t

0
dτ [Ĥint (t ), [Ĥint (τ ), ρS (τ ) ⊗ ρR(0)]].

(A3)

On inserting the interaction energy Eq. (A2) into Eq. (A3),
we finds

dρS

dt
= −i[ĤS, ρS (t )] +

∑
λ=L,R

∑
j

∫
gλ j√
2π

dω{〈b̂†
λ(ω)〉[̂mj (t ), ρS (0)]ei(ω−ωd )t−i ω

vλ
z j − H.c.} +

∑
λ=L,R

∑
j,l

∫ t

0
dτ

∫∫
gλ jgλl

2π
dωdω′

× {〈b̂†
λ(ω)b̂†

λ(ω′)〉[m̂ j (t )m̂l (τ )ρS (τ ) − m̂l (τ )ρS (τ )m̂ j (t )]ei(ω−ωd )t+i(ω′−ωd )τ−i ω
vλ

z j−i ω′
vλ

zl

+ 〈b̂λ(ω)b̂λ(ω′)〉[m̂†
j (t )m̂†

l (τ )ρS (τ ) − m̂†
l (τ )ρS (τ )m̂†

j (t )]e−i(ω−ωd )t−i(ω′−ωd )τ+i ω
vλ

z j+i ω′
vλ

zl

− 〈b̂†
λ(ω)b̂λ(ω′)〉[m̂ j (t )m̂†

l (τ )ρS (τ ) − m̂†
l (τ )ρS (τ )m̂ j (t )]ei(ω−ωd )t+i(ω′−ωd )τ−i ω

vλ
z j+i ω′

vλ
zl

− 〈b̂λ(ω)b̂†
λ(ω′)〉[m̂†

j (t )m̂l (τ )ρS (τ ) − m̂l (τ )ρS (τ )m̂†
j (t )]e−i(ω−ωd )t+i(ω′−ωd )τ+i ω

vλ
z j−i ω′

vλ
zl − H.c.}, (A4)

where the expectation values refer to the initial state of the
reservoir. For example, we assume that for the waveguide
initially in the vacuum state ρR(0) = |vac〉〈vac|, we have

〈b̂λ(ω)〉 = 0, 〈b̂†
λ(ω)〉 = 0,

〈b̂λ(ω)b̂λ(ω′)〉 = 0, 〈b̂†
λ(ω)b̂†

λ(ω′)〉 = 0,

〈b̂†
λ(ω)b̂λ(ω′)〉 = 0, 〈b̂λ(ω)b̂†

λ(ω′)〉 = δωω′ . (A5)

By substituting Eq. (A5) into Eq. (A4) and introducing kλ ≡
ωd/vλ and �λ = g2

λ, one obtains the master equation for the

evolution of the magnon chain in chiral waveguide as

dρS

dt
= −i[ĤS, ρS (t )] +

∑
λ=L,R

∑
j,l

√
�λ j�λlθ

( z j − zl

vλ

)

×{[m̂ j (t ), ρS (t )m̂l (t )†]e−ikλ(z j−zl )

− [m̂ j (t )†, m̂l (t )ρS (t )]eikλ(z j−zl )}, (A6)

where the function θ (x) is defined as θ (x) = 1 when x > 0,
θ (x) = 0 when x < 0, and θ (x) = 1/2 when x = 0. It reflects
the time ordering of the magnons along the left and right
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propagation directions. Note that from Eq. (A4) to Eq. (A6),
the integral over ω is extended to ±∞ according to the
Weisskopf-Wigner approximation, and the retardation effects
arising from a finite propagation velocity of the traveling pho-
tons are assumed to be neglected, i.e., m̂l (t − z j−zl

vλ
) ≈ m̂l (t ).

APPENDIX B: DERIVATION OF THE INPUT AND OUTPUT
RELATIONS OF WAVEGUIDE

We start with the Heisenberg equation of motion for
waveguide-bath operators b̂λ(ω, t ), which is given by

d

dt
b̂λ(ω, t ) =

∑
j=1,2

√
�λ

2π
m̂ je

i(ω−ωd )t−i ω
vλ

z j . (B1)

The formal solution to this equations depends on whether we
choose to solve in terms of the input conditions at time t = t0
or in terms of the output conditions at time t = t1, which reads

b̂λ(ω, t ) = b̂λ(ω, t0) +
∫ t

t0

∑
l=1,2

√
�λ

2π
m̂l (t )e−i(ω−ωd )s−i ω

vλ
zl ds,

(B2)

with t > t0, or

b̂λ(ω, t ) = b̂λ(ω, t1) −
∫ t1

t

∑
l=1,2

√
�λ

2π
m̂l (t )e−i(ω−ωd )s−i ω

vλ
zl ds,

(B3)

with t < t1. The magnon operator obeys the Heisenberg
equation

d

dt
m̂ j (t ) = −i[m̂ j (t ), Ĥm(t )] − κ j

2
m̂ j (t ) − √

κ j m̂
in
j (t )

−
∑

λ=L,R

∑
l=1,2

∫
dω

√
�λ

2π

× [m̂ j (t ), m̂†
l (t )]b̂λ(ω, t )e−i(ω−ωd )t+i ω

vλ
zl . (B4)

Inserting the solutions (B2) and (B3) into Eq. (B4), respec-
tively, one obtains

d

dt
m̂ j (t ) = − i[m̂ j (t ), Ĥm(t )] − κ j

2
m̂ j (t ) − √

κ j m̂
in
j (t )

−
∑

λ=L,R

∑
l=1,2

√
�λ[m̂ j (t ), m̂†

l (t )]b̂in
λ (t )eikλzl

−
∑

λ=L,R

∑
l=1,2

�λ

2
[m̂ j (t ), m̂†

l (t )]m̂l (t )

− �L[m̂ j (t ), m̂†
1(t )]m̂2(t )eikL (z1−z2 )

− �R[m̂ j (t ), m̂†
2(t )]m̂1(t )eikR (z2−z1 ) (B5)

and
d

dt
m̂ j (t ) = − i[m̂ j (t ), Ĥm(t )] − κ j

2
m̂ j (t ) − √

κ j m̂
in
j (t )

−
∑

λ=L,R

∑
l=1,2

√
�λ[m̂ j (t ), m̂†

l (t )]b̂out
λ (t )eikλzl

+
∑

λ=L,R

∑
l=1,2

�λ

2
[m̂ j (t ), m̂†

l (t )]m̂l (t )

+ �L[m̂ j (t ), m̂†
2(t )]m̂1(t )eikL (z2−z1 )

− �R[m̂ j (t ), m̂†
1(t )]m̂2(t )eikR (z1−z2 ), (B6)

where we have defined the input and output fields as

b̂in
λ = 1√

2π

∫
dωb̂λ(ω, t0)e−i(ω−ωd )t , (B7)

b̂out
λ = 1√

2π

∫
dωb̂λ(ω, t1)e−i(ω−ωd )t . (B8)

Therefore, by subtracting Eq. (B6) from Eq. (B5), the input-
output relations for both ends of the waveguide can be derived
as Eq. (15) in Sec. III.
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