
PHYSICAL REVIEW B 106, 104428 (2022)

Walker breakdown of Brownian domain wall dynamics
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The Brownian motion of domain walls in uniaxial and biaxial ferromagnetic nanowires is studied, comparing
spin dynamics simulations with analytical calculations within the framework of a collective coordinate approach.
Our results demonstrate that the interplay between spatial and angular dynamics gives rise to a complex time
dependence of the MSD in biaxial nanowires and to a drastically reduced diffusion coefficient in uniaxial
nanowires, analogous to magnetic skyrmions. This diffusion suppression is also responsible for the peculiar
temperature dependence of the diffusion coefficient in biaxial systems: while it is found to scale linearly with
temperature up to a certain threshold, the emergence of a Walker breakdown of Brownian motion is responsible
for a reduction of the diffusion coefficient with increasing temperature above this threshold.
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I. INTRODUCTION

The motion of topologically protected textures in mag-
netically ordered materials has been the subject of intense
research over the last decades owing to its potential for
promising recording and processing technologies for magnet-
ically stored information, e.g., via their usage in a racetrack
memory [1,2]. Most of the effort has been focused on their
unidirectional motion induced by external driving forces. It
has been demonstrated that they can be moved using electric
currents [3–8] and temperature gradients [9–11].

For domain walls (DWs), experimental investigations have
revealed that their field-driven motion is ultimately hindered
by a drastic slowing down for higher fields [12]. This phe-
nomenon is the so-called Walker breakdown, which had
already been predicted by Schryer and Walker [13] in the
1970s based on an effective, one-dimensional model for the
DW dynamics in biaxial nanowires. The emergence of a
Walker breakdown in nanowires is fundamentally linked to the
coupling between the spatial and angular dynamics of DWs
and the presence of a broken rotational symmetry in the plane
perpendicular to the easy axis [14,15]. Due to the coupling
between the spatial and angular dynamics, a moving DW is
tilted from the equilibrium angle. As long as the fields are
low, the restoring force due to the angular potential induced
by the broken rotational symmetry balances this tilt and the
DW moves with constant velocity. However, above a critical
field (the Walker field [13]) the DW can overcome the po-
tential energy barrier and the constant motion gives way to
an oscillating motion, which leads to a considerable decrease
in the DW velocity. In a similar fashion, a Walker break-
down emerges for the current-driven dynamics [16,17] and the
temperature-gradient-driven dynamics of DWs [18–20].

While the deterministic motion of DWs has been investi-
gated in numerous theoretical and experimental studies, the
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impact of thermal fluctuations on their dynamics has attracted
less attention. It was shown that thermal fluctuations play a
key role in the depinning behavior of DWs driven by fields
[21] and currents [22]. Purely thermal motion, i.e., their ther-
mal diffusion (Brownian motion), has been studied based on
an effective quasiparticle description considering only spa-
tial dynamics [23–25], using micromagnetic simulations for
nanowires with high perpendicular anisotropy [26] and spin
dynamics simulations for chiral DWs in ultrathin films [27].
This lack of studies on DW diffusion can be explained by
the fact that in experimental situations the diffusive mo-
tion of DWs tends to be suppressed by pinning. However,
recent progress in the fabrication of ultralow-pinning mate-
rials, which also lead to the experimental demonstration of
Brownian motion of magnetic skyrmions [28], might ren-
der the diffusion of DWs relevant, possibly even obstructing
their potential application in proposed magnetic recording and
processing devices. Instead, the emergence of DW diffusion
might also fuel the proposal of novel, nonconventional com-
puting devices exploiting the stochastic nature of Brownian
motion, in analogy to what has been proposed for magnetic
skyrmions [28–31]. Henceforth, we conclude that more thor-
ough investigations of DW diffusion are needed in order to
gain a deeper understanding of its fundamentals, possibly
paving the way for its efficient control and manipulation.

Here we study the Brownian motion of DWs in uniaxial
and biaxial ferromagnetic nanowires. First, we derive expres-
sions for the sMSD and the diffusion coefficients based on the
description of DW dynamics within a collective coordinate
approach, taking into account both the spatial and angular
dynamics. As such, this goes beyond what is done in Ref. [27],
where the authors considered an effective description for only
the spatial dynamics of DWs. Then we compare the analyt-
ical formulas with results from spin dynamics simulations
based on the stochastic LLG equation for an atomistic spin
model. The interplay between spatial and angular dynamics
of the DWs gives rise to a drastically reduced diffusion coeffi-
cient in uniaxial nanowires as compared to biaxial nanowires.
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In addition, we find a peculiar dependence of the diffusion
coefficient in biaxial systems on temperature: while it is found
to scale linearly with temperature up to a certain threshold
temperature, the emergence of a Walker breakdown of Brow-
nian motion is responsible for a reduction of the diffusion
coefficient with increasing temperature above this threshold.
Our calculations suggest that this novel type of Walker break-
down also occurs in systems where the rotational symmetry
is broken by other means, such as a perpendicularly applied
magnetic field or a Dzyaloshinsky-Moriya interaction (DMI)
[32,33].

II. THEORY

In this section we discuss the Brownian motion of ferro-
magnetic DWs within a one-dimensional continuum model
using a collective coordinate approach. We start by deriving
coupled Langevin-type effective equations of motion for the
two relevant degrees of freedom, the DW position Z and
DW angle �, from a Lagrangian approach. Subsequently, we
use these coupled stochastic differential equations (SDEs) to
calculate the mean squared displacements (MSDs) and the
diffusion coefficients of DWs in uniaxial (easy axis along the
nanowire) and biaxial nanowires (additional intermediate axis
perpendicular to the nanowire).

A. Derivation of effective Langevin-type equations of motion

It is well established to describe the motion of DWs
within a one-dimensional continuum model [15], where
the discrete spins are replaced by a continuous vector
field via Si → S(z). Here, without loss of generality, the
system is assumed to be extended in z direction. By in-
troducing spherical variables �(z) and �(z), the spatial
dependence of the spin vector field can be expressed as
S(z) = ( cos �(z) sin �(z), sin �(z) sin �(z), cos �(z))T. For
the sake of readability, the dependence on z is omitted
hereinafter. The Lagrangian and the Rayleigh dissipation
functional describing ferromagnetic dynamics are given by
[34]

L[�,�] = −
∫ (M

γ
�̇ cos �

)
dz − E [�,�], (1)

R[�,�] = αM
2γ

∫
(�̇2 + sin2 ��̇2) dz, (2)

where M is the magnetization per unit length, E = ∫
ε dz

is the total energy, γ is the absolute value of the gyromag-
netic ratio, and α is the Gilbert damping parameter. Note
that by calculating the Euler-Lagrange equations with respect
to � and � one obtains the Landau-Lifshitz-Gilbert (LLG)
equation in spherical coordinates [35]. Instead of dealing
with (�,�) as continuously varying functions, we simplify
the problem by making the ansatz �(z, t ) = �[z − Z (t )] and
�(z, t ) = �(t ), i.e., we assume rigid body motion and a spa-
tially homogeneous polar angle. This way we introduce two
collective coordinates, the position Z and the global tilt angle
� of the DW. Calculating the Euler-Lagrange equations for
Z and � with the boundary conditions limz→−∞ � = 0 and
limz→∞ � = π (which describes a head-to-head DW) yields

the following coupled SDEs:(
F�

FZ

)
=
(

α	� −2M/γ

2M/γ α	Z

)(
�̇

Ż

)
, (3)

where we introduce the abbreviations 	� =
M/γ

∫
sin2 � dz and 	Z = M/γ

∫
(∂�/∂z)2 dz. Note

that for a tail-to-tail DW, the sign of the off-diagonal elements
of the matrix on the right-hand side (r.h.s.) of Eq. (3) switches.
This, however, leaves the MSDs in Z and � unchanged and
thus we restrict the following discussion to head-to-head
DWs. Furthermore, it is important to note that inertia terms
that would depend on �̈ or Z̈ are absent in Eq. (3).

The forces Fλ, with λ ∈ {�, Z}, in Eq. (3) can be separated
into a deterministic part F det

λ = −∂E/∂λ and a stochastic part
F th

λ , where the latter results from thermal fluctuations. For our
study of Brownian motion we assume translational symmetry
of the energy and consequently F det

Z = 0. The deterministic
force acting on the DW angle F det

� depends on the details of
the energy density ε. This is discussed in detail in Secs. II B
and II C for uniaxial and biaxial systems, respectively.

Following Refs. [27,36], the stochastic forces are cal-
culated via F th

λ = −M∂/∂λ[
∫

S · hth dz], where hth de-
scribes the stochastic field within the continuum model with
〈hth(z, t )〉 = 0 and 〈hth(z, t )(hth )T(z′, t ′)〉 = 2kBT α1δ(z −
z′)δ(t − t ′)/(γM). Within the rigid body approximation, it
follows immediately that 〈F th

λ 〉 = 0 and the force autocorrela-
tions is obtained as〈

F th
λ (t )F th

λ (t ′)
〉 = 2αkBT 	λδ(t − t ′). (4)

Note that the cross-correlation term vanishes, i.e.,
〈F th

Z (t )F th
� (t ′)〉 = 0. Inserting these stochastic forces into

Eq. (3) yields a set of coupled Langevin-type equations of
motion for the DW position and angle. Both the fluctuations
as well the dissipation in these equations depend on α	λ, in
agreement with the fluctuation-dissipation theorem [37].

B. Brownian motion in uniaxial systems

For a uniaxial system the energy of the spin configuration
is independent of � and, as a consequence, the determinis-
tic force acting on the DW angle F det

� vanishes. Henceforth,
Eq. (3) becomes a two-dimensional first order linear SDE,
which can be solved exactly using stochastic calculus. With-
out loss of generality we assume the initial condition λ(0) =
0, with λ ∈ {�, Z} as above.

The velocities λ̇ can be expressed in terms of the stochastic
forces by inverting the matrix on the r.h.s. of Eq. (3). It imme-
diately follows that 〈λ(t )〉 = 〈λ(t ) − λ(0)〉 = 〈λ(t )〉 ≡ 0, as
expected for Brownian motion, due to vanishing mean values
of the stochastic forces.

In order to calculate the MSDs from Eq. (4), we first calcu-
late the velocity autocorrelations 〈λ̇(t ′)λ̇(t ′′)〉, where the force
autocorrelation (4) is used. Performing two time integrations∫ t

0 (· · · ) dt ′ and
∫ t

0 (· · · ) dt ′′ of the velocity autocorrelations
yield the MSDs as 〈�2(t )〉 = 2Duni

� t , 〈Z2(t )〉 = 2Duni
Z t ,

and 〈�(t )Z (t )〉 = 0 with the diffusion coefficients

Duni
� = kBT

α	Z

α2	�	Z + (2M/γ )2
, (5)
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Duni
Z = kBT

α	�

α2	�	Z + (2M/γ )2
. (6)

The above expressions predict a peculiar dependence of the
Brownian motion on the Gilbert damping α. Usually, the
diffusion coefficient of a particle is enhanced if the friction
is lowered. For DWs in uniaxial nanowires the situation is
drastically different: the diffusion coefficients show a gradual
drop to zero with decreasing α. This observation has its origin
in the off-diagonal elements in Eq. (3) and is very similar
to what was reported for the Brownian motion of skyrmions
[38]. This similarity follows from the fact that Eq. (3) in the
absence of external forces is analogous to the stochastic Thiele
equation for the description of Brownian motion of skyrmions
[27,36,38–40]. As such, Eq. (3) describes Brownian gyromo-
tion [41] of the DW in � and Z . We also want to emphasize
the fact that our analytical calculations predict that the MSDs
of DWs in uniaxial systems do not show inertia effects, i.e.,
they are linear in t at all times.

C. Brownian motion in biaxial systems

When the rotational symmetry with respect to the easy axis
is broken, the energy of the spin configuration depends on the
DW angle �. A simple example for a system with broken
rotational symmetry is a biaxial nanowire. There, the presence
of an intermediate axis gives rise to an angular potential that
can be written as E (�) = −E cos(2�)/2, with E being
the height of the energy barrier preventing a flip of the mag-
netization of the domain wall (see Sec. II D for details). The
deterministic force induced by this potential is calculated as
F det

� = E sin(2�). Consequently, Eq. (3) is a nonlinear SDE
and an exact calculation of the MSDs is impossible.

Hence, we restrict the following calculations to the case
kBT 	 E , i.e., the energy barrier is much larger than the
thermal energy. In this regime, E (�) can be well approxi-
mated by a Taylor expansion up to second order. This way,
an exact solution of Eq. (3) is possible and the approximation
is often justified, since E scales with the number of spins
within the DW. It fails, however, for high temperatures, small
anisotropy constants along the intermediate axis, or narrow
DWs in thin wires. This regime is studied in this work within
atomistic spin dynamics simulations, which reveal the emer-
gence of a diffusive Walker breakdown that is discussed in
detail in Sec. III C.

Expanding E (�) up to second order in � around �eq and
inserting into Eq. (3) yields(

F th
�

F th
Z

)
=
(

α	� −2M/γ

2M/γ α	Z

)(
�̇

Ż

)
+
(

κ 0
0 0

)(
�

Z

)
, (7)

where we introduced the spring constant κ = ∂2E/∂�2|�eq .
Without loss of generality we assume �eq = 0. Note that the
approximative description of DWs via Eq. (7) is not only valid
for biaxial systems, but for any system with broken rotational
symmetry (e.g., due to the presence of DMI or a perpendicular
magnetic field, see Appendix B).

Equation (7) describes an Ornstein-Uhlenbeck stochastic
process for which the solution can be found in literature (e.g.,
in Ref. [42]). The time evolution of the mean values of DW
position and angle as well as the MSDs can be calculated from

this solution. A detailed discussion of this calculation can be
found in Appendix A. We obtain

〈�(t )〉 =
(

e−κβDuni
� t − 1

)
〈�(0)〉 , (8)

〈Z (t )〉 = −2M/γ

α	Z

(
e−κβDuni

� t − 1
)

〈�(0)〉 , (9)

where we introduced β = 1/(kBT ). Equation (8) describes a
relaxation of � to its equilibrium value, which, due to the
coupling between �̇ and Ż via the off-diagonal elements in
Eq. (7), gives rise to the time dependence in Eq. (9). In the
following, however, we assume that 〈�(0)〉 = 0, which leads
to vanishing mean values for 〈�(t )〉 and 〈Z (t )〉 at all
times.

For the MSDs we then obtain (see Appendix A)

〈�2(t )〉 = kBT

κ

(
1 − e−2κβDuni

� t
)
, (10)

〈Z2(t )〉 = 2
kBT

α	z

{
t + (2M/γ )2

2α	Zκ

×
[

1 −
(

2 − e−κβDuni
� t
)2
]}

. (11)

In the limit κ → 0, the above expressions reduce to those
obtained for the uniaxial case, with the diffusion coefficients
as given by Eqs. (5) and (6).

The nontrivial time dependence in Eqs. (10) and (11)
can be understood by introducing a transition time t trans =
kBT/(Duni

� κ ) with distinct behavior for t 	 t trans or t 
 t trans:

〈�2(t )〉 =
{

2Duni
� t, for t 	 t trans,

kBT/κ, for t 
 t trans,
(12)

〈Z2(t )〉 =
{

2Duni
Z t, for t 	 t trans,

2Dbi,harm
Z t, for t 
 t trans.

(13)

In the short term limit, the diffusive motion is the same as
in the uniaxial case. This is because the angle does not ex-
perience the impact of the potential as long as it is in the
vicinity of the equilibrium value. Hence, the DW moves as
if the potential was absent. In the long term limit, 〈�2(t )〉
converges to its equilibrium value kBT/κ . This result can
be calculated straightforwardly via the equipartition theorem:
since we treat the potential in harmonic approximation, it
follows that 〈E〉eq = κ 〈�2〉eq /2 = kBT/2. Once the angu-
lar MSD is converged, the exponential function in Eq. (11)
vanishes. 〈Z2(t )〉 then grows linearly with t and we can
identify the diffusion coefficient for DWs in a biaxial system
in harmonic approximation of the angular potential as

Dbi,harm
Z = kBT

α	z
. (14)

Equation (14) reproduces the usual dependence on friction:
diffusive motion is enhanced when friction is lowered. Note
though that this is in contrast to uniaxial systems, see Eq. (6).
Thus, for typical values of the Gilbert damping (10−1 to 10−4)
we expect that Brownian motion of DWs in systems with
broken rotational symmetry is at least 2 orders of magnitude
higher than for uniaxial systems.
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Note that Eq. (14) was already derived in an earlier work
[27], where the authors neglected the dynamics of the DW
angle. In that case, the effective equation of motion for ferro-
magnetic DWs, Eq. (3), reduces to the overdamped Langevin
equation α	Z Ż = F th

Z , from which Eq. (14) follows directly.
However, in that approximative single-variable approach, the
complex time dependence of MSDs in the inertial regime
is missing. In addition, that approach is not suited for the
description of the dynamics of uniaxial DWs. We also want
to point out that the results of a single-variable approach
including a Döring-mass term [15,43], which was discussed
in Ref. [27] as well, also differs from the two-variable descrip-
tion of the DW dynamics established here. This is examined
in detail in Appendix C.

We again want to emphasize that the calculations in this
subsection are only valid as long as the fluctuations of the DW
angle are small. However, if kBT is comparable to E , the
harmonic approximation of the angular potential breaks down,
giving rise to a Walker breakdown of DW Brownian motion
(see Sec. III C).

D. Prototypical uni- and biaxial systems

So far our results were independent of the specific energy
density ε in the Lagrangian (1), apart from the fact that an easy
axis along the nanowire was assumed. Hereinafter we derive
analytical expressions for 	� , 	Z , κ , and the diffusion coeffi-
cients based on the standard energy density for the description
of one-dimensional uni- and biaxial ferromagnets [15],

ε(�,�) = A

[(∂�

∂z

)2
+ sin2 �

(∂�

∂z

)2
]

− Kz cos2 � − Kx cos2 � sin2 �, (15)

with the exchange constant A, the anisotropies along the easy
axis Kz, and along the intermediate axis Kx with Kz > Kx � 0.

The above energy density is minimized by the usual
ansatz for a head-to-head DW with �(z) = � and �(z) =
arccos[− tanh(z/)], where  is the DW width [15]. Insert-
ing this ansatz into Eq. (15) and spatial integration yields the
energy of a domain wall as

E (�,) = 2
A


+ 2(Kz − Kx cos2 �) + E0, (16)

where E0 is the irrelevant energy of the homogeneous state.
The above expression is minimized by �/π ∈ Z and  =√

A/(Kz − Kx ). Harmonic expansion around this minimum
yields for the spring constant κ = 4Kx. In addition, it fol-
lows from Eq. (16) that the angular energy barrier for a biaxial
system introduced in Sec. II C is given by

E = 2Kx. (17)

This DW profile can be used to evaluate the expressions de-
rived in Secs. II B and II C. The diagonal parameters of the
matrix on the r.h.s. of Eq. (3) are then

	� = 2M
γ

 and 	Z = 2M
γ

1


. (18)

Inserting these expressions into Eqs. (5) and (6) for the uni-
axial diffusion coefficient and into Eq. (14) for the biaxial
diffusion coefficient in harmonic approximation yields

Duni
λ = kBT

γ

2M
α

1 + α2

{ 1


, for λ = �,

, for λ = Z,
(19)

Dbi,harm
Z = kBT

γ

2M
1

α
. (20)

Apart from temperature and Gilbert damping, the diffusion
coefficients depend only on the DW width. While the diffusion
coefficient for Z is proportional to the width of the DW, that
of � is inversely proportional to it. For uniaxial systems the
ratio between both coefficients is given by 2 = A/Kz with
typically A 
 Kz. Hence, very broad DWs will show strong
Brownian motion in the position Z but only small Brownian
motion in the angle �. The transition time for biaxial systems
in harmonic approximation follows as

t trans = 2M
γ

1 + α2

α

1

4Kx
(21)

and is found to be independent of the DW width.
The calculations presented here can be straightforwardly

generalized to systems with additional contributions to the
energy density given by Eq. (15). This is done for DMI and
perpendicular magnetic fields in Appendix B.

III. ATOMISTIC SPIN DYNAMICS SIMULATIONS

For our numerical study we simulate the Brownian motion
of a DW based on a model of normalized classical spins
Si = μi/μs located on a simple cubic lattice, with μs being the
atomic magnetic moment. We consider isotropic Heisenberg
exchange interactions for nearest neighbors and a uni- or
biaxial anisotropy. The Hamiltonian reads

H = −J

2

∑
i, j

Si · S j − dz

∑
i

(
Sz

i

)2 − dx

∑
i

(
Sx

i

)2
, (22)

with J > 0 for ferromagnetic order and dz > dx � 0. We use
J = 10 meV and dz = 1 meV. When describing a uniaxial
system, the anisotropy along the intermediate axis is dx = 0.
Biaxial systems are characterized by a finite dx and we use a
value of dx = 0.1 meV to simulate a system with large angular
energy barrier and dx = 0.01 meV for a system with small
angular energy barrier as compared to thermal fluctuations.

The dynamics of the spins is calculated using the stochastic
LLG equation [35]

(1 + α2)
∂Si

∂t
= − γ

μs
Si × (

Heff
i + αSi × Heff

i

)
, (23)

with the effective field Heff
i = −∂H/∂Si + ζi containing both

the deterministic contribution from the Hamiltonian (22) as
well as a stochastic field ζi with the properties 〈ζi〉 = 0 and

〈
ζi(t )ζT

j (t ′)
〉 = 2αμskBT

γ
δi jδ(t − t ′). (24)

For our simulations we use μs = 2μBohr and γ = 1.76 ×
1011 s−1 T−1. We simulate an elongated system with 128 spins
along the z axis and a cross section of 16 × 16 spins for the
uniaxial system and the biaxial system with large angular
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energy barrier and a cross section of 6 × 6 spins for the biaxial
system with a small angular energy barrier. Unless stated oth-
erwise, the temperature has a fixed value of kBT = 0.1 meV.
Furthermore, we apply periodic boundary conditions along x
and y axis and open boundary conditions along z axis.

The simulations are performed via a GPU-accelerated im-
plementation of Heun’s method [35] with a fixed time step of
0.1 fs. Initially, a tail-to-tail DW is placed in the center of the
system and thermalized at finite temperature. Subsequently, its
position and angle are calculated from the spin configuration
every 0.1 ps over 1.5 ns via

Z (t ) =
∑

i ρ(Si )zi∑
i ρ(Si )

, (25)

�(t ) =
∑

i ρ(Si ) arctan
(
Sy

i /Sx
i

)
∑

i ρ(Si )
, (26)

with ρ(Si ) = 1 − (Sz
i )2, yielding the trajectory of a DW.

The MSDs are obtained by averaging over multiple tra-
jectories via 〈Z2(t )〉 = 1/N

∑N
n=1 Z2

n (t ) and 〈�2(t )〉 =
1/N

∑N
n=1 �2

n (t ), with N being the number of trajectories.
The diffusion coefficients are obtained by performing linear
fits to the MSDs in the interval between 0.5 ns (to eliminate
nonlinear inertia effects) and 1.5 ns (simulation time). Within
this interval, DWs exhibit normal diffusion for all parameters
sets used in this work.

For the conversion between atomistic and continuum
approach parameters introduced in Sec. II D, the following re-
lations apply: A = Jtxty/(2a), Kz = dztxty/a3, Kx = dxtxty/a3,
and M = μstxty/a3, where a is the lattice constant and tx, ty
are the dimensions in the cross section.

A. Uniaxial systems

The results of the simulations of a uniaxial system and
the corresponding analytical predictions obtained within the
collective coordinate approach are compared in Fig. 1. We find
very good agreement for a wide range of values for the Gilbert
damping parameter. The results also confirm a ratio of 2 ≈
5a2 between the Brownian motion of the DW position and the
DW angle. Figure 1(a) shows the MSDs of DW position and
angle. At the timescale of this figure, no nonlinear behavior
is visible, demonstrating the absence of inertia for the mo-
tion of DWs in uniaxial ferromagnets. Figure 1(b) shows the
diffusion coefficients versus Gilbert damping parameter. Our
numerical results verify the theoretically predicted peculiar
dependence of the diffusion coefficients in uniaxial systems
on damping: with decreasing dissipation, the diffusive motion
is lowered. This is analogous to what was demonstrated in
simulations of the diffusion of skyrmions [27,36], and has
its origin in the presence of the antisymmetric off-diagonal
components of the matrix on the r.h.s. of Eq. (3).

B. Biaxial systems with large angular potential

In this subsection we compare the numerical results for
the Brownian motion of a DW in a biaxial system with a
large angular potential with the theoretical predictions ob-
tained in harmonic approximation of this potential (for details
see Sec. II C). For the simulation parameters used here (cf.
Sec. III), the angular energy barrier can be estimated as E ≈

FIG. 1. Simulation results (solid lines and symbols) and theoreti-
cal predictions (dotted lines) based on Eq. (19) for Brownian motion
of a uniaxial DW. (a) Mean squared displacements 〈�2(t )〉 and
〈Z2(t )〉 /a2 for α = 1.0. (b) Diffusion coefficients versus Gilbert
damping parameter α.

120 meV using Eq. (17), which is three orders of magnitude
larger than the thermal energy (and nearly one order of mag-
nitude larger than the Curie temperature).

The validity of the harmonic approximation of the angular
potential is demonstrated in Fig. 2. Again we find perfect
agreement between our numerical results and the analytical
predictions. Figures 2(a) and 2(b) show the MSDs of DW
position and angle and clearly demonstrate the emergence of
a transition from the short term quasi-uniaxial to the long
term regime, where the angular MSD is converged to 〈�〉eq =
kBT/κ , as predicted by the equipartition theorem. In addition,
we want to emphasize the drastically enhanced diffusion in
Z as compared to the uniaxial case, due to the inverse pro-
portionality to α. As demonstrated in Fig. 2(c), the diffusion
coefficient of a biaxial DW is orders of magnitude larger than
that of a uniaxial one for typical values of the Gilbert damping
parameter.

C. Walker breakdown of Brownian motion

For our simulations of the diffusive Walker breakdown, we
use a value of dx = 0.01 meV and a cross section of 6 × 6
spins, yielding an energy barrier of E ≈ 1.62 meV based on
Eq. (17). In terms of thermal energy, this energy barrier can be
used to define a temperature, hereinafter referred to as Walker
temperature, via T Walker = E/kB.
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FIG. 2. Simulation results (solid lines and symbols) for Brown-
ian motion of DWs in biaxial systems with large angular potential
in comparison with theoretical predictions (dotted lines as labeled).
(a) and (b) Mean squared displacements 〈�2(t )〉 normalized to the
equilibrium value 〈�2〉eq = kBT/κ and 〈Z2(t )〉 /a2 for α = 0.01.
The dotted lines are Eqs. (10) and (11) evaluated using the results
from Sec. II D. (c) Diffusion coefficient of DWs in uniaxial systems
and biaxial systems with large angular potential versus α in compar-
ison with analytical predictions based on Eqs. (19) (blue) and (20)
(green).

Figure 3 shows the diffusion coefficients of the DW po-
sition for temperatures ranging from 0 to approximately
2T Walker and for α = 0.1. Initially, the simulation results in-
crease linearly with temperature following our prediction for
the diffusion coefficient obtained in harmonic approximation
of the angular potential Dbi,harm

Z . At intermediate temperatures,
however, the behavior changes completely. Surprisingly, we
find a maximum for the diffusion coefficient at roughly one
third of T Walker with a subsequent decay for increasing tem-
perature. Finally, the diffusion coefficient appears to converge
towards the value for a uniaxial system Duni

Z .
Qualitatively, this observation can be understood as fol-

lows. As long as the thermal energy is small compared to
E , the DW angle is restricted to values close to equilibrium
and the harmonic approximation for the potential is valid.
Thus, the diffusion coefficient of the DW position is inversely
proportional to the Gilbert damping parameter (see Sec. III B),
giving rise to the steep initial slope in Fig. 3. If the thermal en-
ergy is very large in comparison with the angular potential, the
DW angle can easily overcome the energy barrier. Hence, the
impact of the angular potential can be neglected and the DW
is expected to exhibit quasi-uniaxial behavior. In the uniaxial
case, the diffusion coefficient is proportional to α/(1 + α2)
(see Sec. III A) and therefore drastically reduced (here it
is roughly two orders of magnitude lower, since α = 0.1).

FIG. 3. Walker breakdown of Brownian DW motion. Simulation
results (symbols) for diffusion coefficients of the DW position are
compared with theoretical predictions based on Eqs. (19) (blue)
and (20) (green) and (27) using constant (red dotted line) and
temperature-dependent parameters (red solid line) for α = 0.1. The
gray dashed line marks the Walker temperature kBT Walker = E .

Therefore, although the higher temperature would normally
lead to an enhancement of the diffusion coefficient, this is
overcompensated by a transition from a regime where the
dynamics are dominated by the angular potential to a regime
with quasi-uniaxial behavior. Note that we expect this effect
to be even more pronounced for smaller values of the Gilbert
damping parameter. In analogy to what is well established for
the dynamics of DWs driven by external fields, currents, or
temperature gradients [13,17,18], this phenomena can be in-
terpreted as the Walker breakdown of Brownian DW motion.
In contrast to the Walker breakdown induced by deterministic
driving forces, this Walker breakdown is not a sharp transition,
due to the finite probability of overcoming the angular energy
barrier, even at temperatures way below T Walker.

Even though an exact calculation of the diffusive Walker
breakdown via Eq. (3) for the full cosine potential is im-
possible (cf. Sec. II C), a quantitative approximation can be
obtained by the following ad-hoc approach. As argued above,
for low and high temperatures the DW diffusion coefficients
follow Dbi,harm

Z and Duni
Z , respectively. We make the following

ansatz for the transition between these two regimes:

DWb
Z = η[βE (�)]Duni

Z + {1 − η[βE (�)]}Dbi,harm
Z , (27)

DWb
� = η[βE (�)]Duni

� , (28)

where η[βE (�)] ∈ [0, 1] is a yet-to-be-determined weighting
factor that depends on temperature and on the angular poten-
tial. Note that for very low/high temperatures, η[βE (�)] must
go to zero/one, in order to describe the observed transition. As
such, Eq. (28) can be interpreted as the reduction of the effec-
tive diffusion coefficient in the presence of a periodic potential
[44]. To a first approximation we estimate η[βE (�)] using the
Lifson-Jackson formula η[βE (�)] = (〈eβE (�)〉 〈e−βE (�)〉)−1,
where 〈· · ·〉 is the average over one period of the poten-
tial [45]. In a biaxial system, the angular potential has a
cosine form, E (�) = −E cos(2�)/2, for which the Lifson-
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Jackson formula yields η[βE (�)] = [I0(βE/2)]−2, with
In(x) being the modified Bessel function of the first kind.

Inserting this expression into Eq. (27), we obtain a formula
describing the diffusive Walker breakdown that is represented
by the red dotted line in Fig. 3. Even better quantitative agree-
ment can be achieved by assuming temperature-dependent
exchange parameters (red solid line). For that, following
Refs. [46,47], we assume A(T ) ∼ m(T )2 and Kx/z(T ) ∼
m(T )3, with m(T ) being the temperature-dependent mag-
netization. By comparison with simulation data, we find
that m(T ) ≈ [1.0 − kBT/(1.44J )]0.32. Using the temperature-
dependent exchange parameters introduced above, together
with the formulas in Sec. II D, the scaling of the diffusion
coefficients of the DW position and the angular potential
barrier with temperature can be estimated as

Duni/bi,harm
Z (T ) ∼ m(T )−3/2, (29)

E (T ) ∼ m(T )5/2, (30)

indicating that both effects are competing: while the former
leads to higher Brownian motion, since the magnetization
goes down with increasing temperature, the latter leads to
lower Brownian motion, because the angular energy barrier
becomes lower, which facilitates the transition to the quasi-
uniaxial regime. As demonstrated in Fig. 3, we find that the
reduction of the angular energy barrier is the dominating
factor of including temperature-dependent exchange param-
eters. The resulting curve (red solid line) agrees well with the
simulation results, although it still slightly overestimates the
diffusion coefficients, especially at high temperatures.

IV. CONCLUSION

We studied the Brownian motion of DWs in uni- and
biaxial nanowires using analytical calculations based on a
collective coordinate approach and large-scale atomistic spin
dynamics simulations based on the stochastic LLG equation.

We revealed that both the position and the angle of a DW
in uniaxial ferromagnets show Brownian motion and that the
ratio between the respective diffusion coefficients is given
by the squared DW width. These diffusion coefficients were
found to exhibit a peculiar dependence on damping: Brownian
motion is reduced for low damping. This behavior is very
similar to what was observed for skyrmions and has its origin
in the antisymmetric off-diagonal components in the effective
equation of motion. In addition, we found that the Brownian
motion of uniaxial DWs is inertia free, i.e., the MSDs scale
linearly with time for all times. This is due the absence of a
mass term in the effective equation of motion.

The situation in biaxial systems is more complex. As long
as thermal energy is small compared to the angular poten-
tial, the translational Brownian motion is greatly enhanced as
compared to the uniaxial case and the corresponding diffusion
coefficient was found to be inversely proportional to damping.
This is in quantitative agreement with our theoretical predic-
tions obtained in a harmonic approximation of the angular
potential. If thermal energies are comparable to the angular
potential, we found a peculiar behavior of the diffusion coef-
ficient of the DW position: at low temperatures, the diffusion
coefficient scales linearly with temperature, following the pre-

diction for large angular potentials, up to a certain threshold
temperature, where the chance that the DW overcomes the
angular potential barrier due to thermal fluctuations becomes
relevant. In the vicinity of this threshold, the diffusion coeffi-
cient has a maximum, followed by a subsequent decrease upon
further increase of temperature. This can be understood by the
fact that for very large temperatures the angular potential be-
comes irrelevant and the DW shows quasi-uniaxial dynamics,
with a greatly reduced diffusion coefficient. We termed this
behavior Walker breakdown of Brownian motion, in analogy
to the Walker breakdown of deterministic motion [13].

The threshold temperature for this type of Walker break-
down depends on the leading term that breaks the rotational
symmetry as well as the activation volume. As such, it is
highly material and geometry specific and can vary between,
e.g., more than 105K for a permalloy nanowire with fairly
relevant cubic anisotropy [48] to values that are certainly
below the critical temperature for permalloy on GaAs(001)
with vanishingly small anisotropy at an iron concentration of
about 25% [49].

The emergence of a diffusive Walker breakdown also opens
up a new pathway for the efficient control of DW diffusion.
Based on the fact that the diffusion coefficient crucially de-
pends on the ratio between thermal energy and the angular
potential and that the latter can be induced by a perpendicular
magnetic field (see Appendix B), we propose that varying
the perpendicular field can change the diffusion coefficient of
DWs by orders magnitude at fixed temperatures.
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APPENDIX A: DERIVATION OF MEAN SQUARED
DISPLACEMENTS IN BIAXIAL SYSTEMS

IN HARMONIC APPROXIMATION

The dynamics of DWs in biaxial ferromagnets can be
described in terms of a collective coordinate approach. In
harmonic approximation we obtain (see Sec. II C)(
F th

�

F th
Z

)
=
(

α	� −2M/γ

2M/γ α	Z

)(
�̇

Ż

)
+
(

κ 0
0 0

)(
�

Z

)
, (A1)

where the force correlation with λ ∈ {�, Z} is given by〈
F th

λ (t )F th
λ (t ′)

〉 = 2αkBT 	λδ(t − t ′). (A2)

Equation (A1) is a first order linear SDE equation that de-
scribes a two-dimensional Ornstein-Uhlenbeck process [42].
Equivalently, it can be rewritten as

dxt = −�xt dt + σdW t , (A3)

where xt = (�(t ), Z (t ))T and W t denotes the Wiener process
[50]. � and σ are 2 × 2 matrices that can be obtained by
comparison with Eq. (A1) and read

� = κ

α2	�	Z + (2M/γ )2

(
α	Z 0

−2M/γ 0

)
, (A4)
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σ=
√

2αkBT

α2	�	Z+(2M/γ )2

(
α	Z

√
	� (2M/γ )

√
	Z

−2M/γ
√

	� α	�

√
	Z

)
.

(A5)

Following Ref. [42], the solution of Eq. (A3) is given by

xt = e−�t x0 +
∫ t

0
e−�(t−t ′ )σdW t ′ (A6)

and the mean of the above expression and the corresponding
second moment matrix can be calculated as

〈xt 〉 = e−�t 〈x0〉 , (A7)〈
xt xT

t

〉 = e−�t 〈x0〉 (e−�t 〈x0〉)T

+
〈 ∫ t

0
e−�(t−t ′ )σdW t ′

(∫ t

0
e−�(t−t ′′ )σdW t ′′

)T〉
.

(A8)

Using the rules for matrix exponentials we obtain

e−�t =
⎛
⎝ e−κβDuni

� t 0
2M/γ

α	Z

(
1 − e−κβDuni

� t
)

1

⎞
⎠. (A9)

Inserting the above expression into Eqs. (A7) and (A8) and
using stochastic calculus yields

〈�(t )〉 =
(

e−κβDuni
� t − 1

)
〈�(0)〉 , (A10)

〈Z (t )〉 = −2M/γ

α	Z

(
e−κβDuni

� t − 1
)

〈�(0)〉 , (A11)

〈�2(t )〉 = 〈�(t )〉2 + kBT

κ

(
1 − e−2κβDuni

� t
)
, (A12)

〈Z2(t )〉 = 〈Z (t )〉2 + 2
kBT

α	z

{
t + (2M/γ )2

2α	Zκ

×
[

1 −
(

2 − e−κβDuni
� t
)2
]}

. (A13)

If we assume that 〈�(0)〉 = 0, Eqs. (A12) and (A13) reduce
to Eqs. (10) and (11), respectively.

APPENDIX B: ANGULAR POTENTIALS INDUCED BY
PERPENDICULAR MAGNETIC FIELDS AND BY DMI

In Secs. III B and III C we have demonstrated for biax-
ial systems that the emergence of the drastically enhanced
diffusion coefficient, as compared to uniaxial systems, and
the diffusive Walker breakdown are linked to the presence
of an angular potential. Such a potential can also be induced
by other symmetry-breaking contributions to the energy. Al-
though the explicit form of the respective angular potentials
might differ from the one obtained for a biaxial system,
we expect that the features found for the Brownian motion
of DWs are very similar. We also want to emphasize that
the analytical formulas for the MSDs and the diffusion co-
efficient derived in harmonic approximation of the angular
potential in Sec. II C are valid for any potential and therefore

also applicable to systems with perpendicular magnetic fields
or DMI.

Hereinafter we derive analytical expressions for the do-
main wall width, the angular potential, and the spring constant
for uniaxial systems with a perpendicular magnetic field and
with DMI, respectively. In doing so, we again use the usual
ansatz for a head-to-head DW (see Sec. II D) with

�(z) = �,

�(z) = arccos[− tanh(z/)]
(B1)

to the respective energy densities. Note that this implies that
Eqs. (18) to (20) are also valid, because these equations di-
rectly follow from the ansatz for the head-to-head DW. The
only difference is that they have to be evaluated using the
respective DW widths, which are calculated in the following.

1. Perpendicular magnetic fields

The energy density for a uniaxial system with a magnetic
field perpendicular to the nanowire is obtained by supplement-
ing Eq. (15) with a Zeeman term and assuming that Kx = 0,
which yields

ε(�,�) = A

[(
∂�

∂z

)2

+ sin2 �

(
∂�

∂z

)2]

− Kz cos2 � − MB cos � sin �. (B2)

Without loss of generality we assume that the external field
is in x direction and that B > 0. Note that magnetic fields
parallel to the nanowire could also be included in the energy
density. However, they lead to a constant drift of DWs [13] and
since here we are only interested in their Brownian motion, we
restrict the calculations to perpendicular fields. Inserting the
ansatz for the head-to-head DW (B1) into the above energy
density and spatial integration yields the energy of a domain
wall in the presence of a perpendicular magnetic field as

E (�,) = 2
A


+ (2Kz − πMB cos �) + E0, (B3)

where E0 is the irrelevant energy of the homogeneous
state. The above expression is minimized by � = 0 and
 = √

A/(Kz − πMB/2). Harmonic expansion around
this minimum yields the spring constant κ = πMB.
The angular potential energy barrier follows as E =
πMB[

√
A/(Kz + πMB/2) + √

A/(Kz − πMB/2)] which
reduces to E ≈ 2πMB

√
A/Kz for low perpendicular

magnetic fields. As such, it can be easily manipulated by
varying the applied field. Recalling that the ratio between
thermal energy and the angular energy barrier has a crucial
impact on the Brownian motion of DWs, as it determines if the
dynamics are above or below the thermal Walker breakdown
(see Sec. III C), we conclude that varying the perpendicular
magnetic field allows for an efficient manipulation of the
diffusion of DWs at a fixed temperature.
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2. DMI

The energy density for a uniaxial nanowire oriented along
the z axis with DMI reads [51,52]

ε(�,�) = A

[(
∂�

∂z

)2

+ sin2 �

(
∂�

∂z

)2]
− Kz cos2 �

+

⎛
⎜⎝
Dx

Dy

Dz

⎞
⎟⎠
⎡
⎢⎣∂�

∂z

⎛
⎜⎝

− sin �

cos �

0

⎞
⎟⎠

− sin �
∂�

∂z

⎛
⎜⎝

cos � cos �

sin � cos �

− sin �

⎞
⎟⎠
⎤
⎥⎦, (B4)

with D = (Dx,Dy,Dz )T being the DM vector. It is con-
venient to choose a reference frame where one of the
components of the DM vector perpendicular to the nanowire
is zero. Without loss of generality we assume that Dy = 0.

Under said assumption, the energy of a head-to-head DW
described by Eq. (B1) in a uniaxial system with DMI follows
from the above energy density as

E (�,) = 2
A


+ 2Kz − πDx sin � + E0. (B5)

The contribution of the DMI to this energy only depends on
the total rotation of the spins in the DW and is independent
of the DW width. Since here we are considering head-to-head
DWs, this total rotation amounts to π . The energy given by
Eq. (B5) is minimal for  = √

A/Kz and � = sgn(Dx )π/2.
Harmonic expansion around this minimum yields for the
spring constant κ = π |Dx|. The energy barrier is given by
E = 2π |Dx|.

Note that above a critical value of Dx
c = 4

√
A/Kz/π the

energy of the DW becomes negative and the formation of a
spin spiral state [53] becomes favorable.

APPENDIX C: THE CONCEPT OF DW MASS

Our expression for the diffusion coefficient in biaxial sys-
tems with a large angular potential, Eq. (14), is in agreement
with a previous study [27]. There, however, the coupling be-
tween � and Z was neglected. Instead, the authors considered
the following massive Langevin equation

mZ̈ + α	Z Ż = F th
Z (C1)

for the spatial dynamics of the DW. This equation can be
derived from Eq. (7) by reducing the two coupled first order
differential equations into one second order differential equa-
tion [15]. Note that in doing so, any time dependence of the
forces is neglected. In addition, this approach fails if κ = 0. In
this description the DW appears as a one-dimensional object
with mass m. For 	� and 	Z as given by Eq. (18), this mass
corresponds to the so-called Döring mass [43] which reads

m =
(2M

γ

)2 1 + α2

κ
. (C2)

The massive Langevin equation (C1) is a first order differen-
tial equation of Ż and hence it can be solved analogous to what
is laid out in Appendix A, specifically by using Eq. (A6). The

FIG. 4. Comparison of simulation results for the MSD of DWs
in a biaxial system with dx = 0.1 meV and for α = 0.01 with predic-
tions based on the full two-variable calculation (11) and the massive
single-variable model (C6).

solution to Eq. (C1) is given by

Ż (t ) = e− α	Z
m t Ż (0) +

∫ t

0
e− α	Z

m (t−t ′ )F th
z (t ′) dt ′ (C3)

from which it follows that

〈Ż (t )〉 = e− α	Z
m t 〈Ż (0)〉 , (C4)

〈Ż2(t )〉 =
[

〈Ż2(0)〉 − kBT

m

]
e−2 α	Z

m t + kBT

m
. (C5)

The above expressions describe the convergence to thermal
equilibrium, where 〈Ż (t )〉 = 0 and where 〈Ż2(t )〉 = kBT/m,
in agreement with the equipartition theorem. Since we are
interested in the Brownian motion of DWs, we can assume
thermal equilibrium at all times.

The displacement can be calculated by time integration of
Eq. (C3), Z (t ) = ∫ t

0 Ż (t ′) dt ′. In thermal equilibrium we get
that 〈Z (t )〉 = 0 and the MSD for a DW as a massive object
reads

〈Z (t )2〉 = 2
kBT

α	Z

[
t − m

α	Z

(
1 − e− α	Z

m t
)]

. (C6)

The nontrivial time dependence of the massive MSD can be
understood in terms of a transition time t trans = m/(α	Z ) with
a distinct behavior for t 	 t trans and t 
 t trans:

〈Z2(t )〉 =
⎧⎨
⎩

kBT
m t2, t 	 t trans,

2
kBT

α	Z
t, t 
 t trans.

(C7)

Note that the transition time as defined here coincides with
the one defined in Sec. II C, since m/(α	Z ) = kBT/(Duni

� κ ).
The result for short times describes the ballistic dynamics
of a free particle, where for short times Z (t ) = Ż (0)t and
〈Ż (0)2〉 = kBT/m in thermal equilibrium. This is different
from what is obtained by the full two-variable calculation, see
Eq. (11), where we obtained a linear increase of the MSD with
the slope being two times the uniaxial diffusion coefficient.
The long term dependence on time, however, is the same for
both calculations. This is shown in Fig. 4. The MSD obtained
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from a full two-variable calculation agrees perfectly with the
simulation data, whereas the MSD obtained by the massive
single-variable calculation fails to correctly describe the short
term behavior, which leads to a constant offset from the sim-
ulation data in the long term limit.

While Eq. (C7) exhibits similar features as Eq. (11) (ac-
celeration phase, linear regime in long term limit) and is in
reasonable agreement with simulation results for finite κ , it
is unable to capture the dynamics in uniaxial systems for
which κ = 0: for κ → 0 the mass diverges in Eq. (C6) and the

acceleration phase extends to infinity. Consequently, the MSD
of a massive DW in uniaxial systems is zero at all times. This
is in strong contrast to our derivations in Sec. II B, which pre-
dict a small but finite diffusion coefficient (6) and the absence
of an acceleration phase, in agreement with our simulations
in Sec. III A. Hence we conclude that, whenever possible, the
dynamics of DWs should be described by the two-dimensional
equation of motion for the collective coordinates � and Z ,
instead of the massive one-dimensional equation of motion
for Z .
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