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Thin ferromagnetic films can possess unconventional magnetic properties, opening a new road for using them
in spintronic technologies. In the present work exploiting three different methods, we comprehensively analyze
phason excitations of a skyrmion lattice in synthetic antiferromagnets. To analyze phason excitations of the
skyrmion lattice, we have constructed an analytical model based on three coupled helices and found a linear
gapless mode. Micromagnetic simulations also support this result. Moreover, a similar result has been achieved
within the rigid skyrmion lattice model based on the coupled Thiele’s equations, when the coupling between
skyrmions in different layers of the synthetic antiferromagnetic is comparable to or larger than the intralayer
coupling. In addition, we also consider the orbital angular momentum and spin pumping current associated with
phason excitations. Due to the gapless excitations in the case of skyrmion lattice, the pumping current is nonzero
for the arbitrary frequency of pumping microwaves. In the case of individual skyrmions, no current is pumped
when microwave frequency is inside the gap of the spectrum of individual skyrmions.

DOI: 10.1103/PhysRevB.106.104424

I. INTRODUCTION

There is currently a great interest in two-dimensional topo-
logical solitons (skyrmions) and in ordered skyrmion lattices,
known also as skyrmion crystals (SkX) [1–15]. It is well
established that the dominant interaction leading to skyrmion
formation is the Dzyaloshinskii-Moriya (DM) coupling that
occurs in magnets with no spacial inversion symmetry. This
coupling lowers the ground-state energy of the system and
thus stabilizes the skyrmion magnetic textures. Formation of
SkXs in thin films is energetically more favorable than forma-
tion of individual skyrmions. A key problem is a search for
materials hosting SkXs. In what follows, we will explore the
formation of SkXs and also their dynamical properties in a
synthetic antiferromagnet (SAF), i.e., in a system consisting
of two ferromagnetic layers coupled antiferromagnetically.
Individual skyrmions in such materials were investigated very
recently [16].

Before proceeding to the main objectives of this paper, we
briefly recall the key features of the magnonic spectrum of
ferromagnets with individual skyrmions and with SkXs. The
dynamical properties of individual skyrmions are studied in
Refs. [17–19]. It was shown that the spectrum of low-energy
excitations in a ferromagnetic layer hosting a single static
skyrmion includes a magnon mode with an energy gap [17].
The dispersion of this mode is ω(p) = ω0(a/R)2 + ω0a2 p2,

where ω0 is the stiffness frequency related to the exchange
interaction, R is the skyrmion radius, a the lattice parameter,
and p is the radial momentum. Inside the frequency gap,
ω0(a/R)2, there appear two localized states, related to the
bound skyrmion-magnon breathing and quadrupole modes
[17]. Since the energy of a system with a single skyrmion does
not depend on the position of the skyrmion, there is also a zero
energy mode associated with the skyrmion drift: a skyrmion
can move as a massless particle in a gauge field.

In the case of an SkX, the continuous symmetry of the
system is broken. Nevertheless, in-plane translations of the
SkX lattice as a whole do not change the system’s energy,
which leads to a gapless magnon mode corresponding to the
deformation waves in the SkX lattice. Naturally, these magnon
modes can be associated with the gapless Nambu-Goldstone
excitations [20], which appear at the phase transition breaking
the initial symmetry of Lagrangian. This problem has been
discussed in a number of publications [21–34].

A central problem in the magnonic spintronics is the rec-
tification and control of the magnonic spin current [35–37].
Direction of this current can be switched by an external
magnetic field [37]. However, the magnetic field increases
the gap in the magnon spectrum and thus reduces the num-
ber of magnons contributing to the magnonic spin current.
In the present work, we show that the gapless spectrum of
SkX allows switching of the spin current without reducing its
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magnitude. Apart from this, due to swirling of the magneti-
zation texture in the SkX, the net spin current in both layers
of a SAF is nonzero, while it vanishes in the SAF without
SkX. Thus, SkX in a SAF may serve as a unique platform for
manipulating spin currents in spintronic devices.

Generally, the free energy of a ferromagnetic system, as a
function of the unit vector m pointing along the magnetiza-
tion, can be written in the form [21]

FSkX [m(r)] =
∫

[Aex(∇m(r))2 − μ0MsmzHz

+ amm2(r) + bmm4(r) + EDM]d2r, (1)

where the first and second terms correspond to the exchange
and Zeeman energy, respectively, where Ms is the saturation
magnetization and Aex is the exchange stiffness parame-
ter. The last term, EDM = D[(mz

dmx
dx − mx

dmz

dx ) + (mz
dmy

dy −
my

dmz

dy )], stands for the interfacial DM energy and breaks
symmetry in the z direction. The free energy of an SkX also
includes the Ginzburg-Landau terms, amm2(r) and bmm4(r),
that generally are essential for stabilization of the magneti-
zation. The Ginzburg-Landau energy, Eq. (1), is valid close
to the Curie temperature, Tc, and was used to argue stabi-
lization of the skyrmion lattice structure by a quartic term
∼m4 [21]. Thus this approach accounts for the emergence of
SkX near Tc . Until recently, SkX has been shown to appear
in various temperature regimes due to different stabilization
mechanisms. In this paper, however, we will not deal with
the stabilization mechanisms of the SkX, so we assume that
the three-helix state [see Eq. (3) in the following section] is a
good approximation.

It has been shown that a SkX can be considered as a
superposition of three coupled helices [38–40]. At tempera-
tures below a critical temperature of transition to the trivial
magnetic phase and for intermediate magnetic fields, the de-
scription based on three magnetic helices is well justified [40].
A ferromagnetic layer with a single helix and with coupled he-
lices was studied in [25]. It was shown there that the quadratic
part of the free energy for a single helix can be diagonalized
exactly, and below the critical value of am, am < D2/(4Aex ),
the ground state is a single helix with the energy ε(k) =
am + Aexk2 − Dk, which is minimized for k = D/2Aex ≡ Q.
Small excitations from the ground state have been considered
in terms of the Euler-Lagrange equations for the Lagrangian
function L = LB − U , where LB stands for the relevant Berry
phase term, which plays the role of kinetic energy, while U
takes into account energy due to magnetization deviations
from the ground state. A simple analytical formula was found
for spin-wave propagation along the helix, with the corre-
sponding dispersion relation ω(p) = (2Aexγ Ms)

√
Q2 p2 + p4,

where γ is the gyromagnetic ratio. The spectrum is gap-
less and linear in the low-energy limit, i.e., for p � Q. To
study coupled helices, an external magnetic field was as-
sumed, that induces a finite uniform magnetization. Owing
to this, the quartic term in the free energy could be rewritten
as an effective cubic term, which couples the three helices
[25]. Two types of modes were discovered: (i) longitudi-

nal waves, ωl = Aexγ Ms

√
3Q2 p2

in + 2p4
out , associated with the

displacement of the SkX parallel to the in-plane component of

the wave vector pin = (px, py, 0), and (ii) transverse waves,

ωt = Aexγ Ms

√
Q2 p2

in + 2p4
out , with the displacement along

ẑ × pin = (−py, px, 0), where ẑ is a unit vector along the axis
z, and pout is the out-of-plane (z) component of the wave
vector. For details see Ref. [25].

In the present work we explore the phason excitation
spectrum in the SAF (see Fig. 1). Phasons are excitations
corresponding to a phase degree of freedom of the collective
structures, proposed originally in [41]. In-plane translations
of the SkX lattice conserve the system’s energy, while con-
tinuous symmetry within the SkX is broken. The gapless
sliding phason modes in the SkX lattice are equivalent to
the gapless Nambu-Goldstone excitations mentioned above.
The idea is general for any structure with periodicity. In fact,
for a periodic structure ∼ sin(kx) along the x direction and
with a wavelength k, shifting the coordinate center by a time-
dependent position X (t ) leads to a dynamic phase ϕ(t ) ≡
kX (t ), as sin[k(x − X (t )] = sin[kx − ϕ(t )]. The phason ex-
citations can also be described by a standard perturbative
expansion of fluctuations [25]. However, the approach used in
[22] for description of the phason modes is useful for physical
interpretation of the structure dynamics, and also for compar-
ison of analytical results and experimental observations. We
note that the nontrivial magnetic texture of antiferromagnetic
skyrmions promotes a nonvanishing topological spin Hall
effect [42]. The SAF is composed of nanometer-thick fer-
romagnetic layers, which are coupled antiferromagnetically
through a nonmagnetic spacer layer. The coupling mechanism
arises from the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction. The heavy-metal-ferromagnet interfaces lead to the
DM interaction in the SAF. Skyrmions in SAFs are stabilized
by the DM interaction and bias magnetic fields from other
neighboring layers. We analyze the magnetic dynamics using
different approaches.

The work is organized as follows: In Sec. II we gener-
alize the method based on coupled helices to study phason
excitation in the SAF case. In Sec. III we present results
of micromagnetic simulations. The obtained results are con-
sistent with those based on the coupled helices model. In
turn, in Sec. IV we present a Thiele’s equation approach
for a single ferromagnetic layer and for two layers coupled
antiferromagnetically (SAF system). We also discuss the dif-
ferences between the methods. The Thiele’s equations treat
skyrmions as rigid objects, thereby neglecting magnetization
dynamics inside the skyrmion magnetic texture. The SkX in
a SAF is modeled in this approach as a lattice of interact-
ing individual skyrmions. In comparison, the coupled helices
model is relevant for the strongly interacting and correlated
phase, where the concept of individual skyrmions is irrelevant.
Despite this, we show that the approach based on Thiele’s
equation leads to results which are consistent with those ob-
tained by other techniques. A summary and final conclusions
are presented in Sec. V.

II. SPECTRUM OF PHASON EXCITATIONS IN A SAF

It is known that ferromagnetic or antiferromagnetic or-
dering is not possible in one- or two-dimensional Heisen-
berg systems with finite-range interaction [43] (see also
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FIG. 1. (a) Schematic of antiferromagnetic skyrmions in a SAF, where two ferromagnetic layers, FM1 and FM2, are coupled via an
antiferromagnetic interlayer exchange coupling JAF . The DM interaction stabilizes the skyrmion structure. Each layer exerts a bias field on
the neighboring layer. Skyrmions form a regular triangular lattice (b) with the SkX lattice vectors a1 and a2. The SkX lattice parameter is
aSkX = |a1| = |a2| ≡ r, where r is the interskyrmion distance. (c) Corresponding Brillouin zone.

generalization of this statement to some long-range inter-
action models [44]). The system considered in this paper
consists of two ferromagnetic layers of a finite (though small)
thickness that are coupled antiferromagnetically across a thin
nonmagnetic spacing layer. Accordingly, the Mermin-Wagner
theorem is not applicable to the system under consideration,
and we assume that magnetic order is not destroyed by ther-
mal fluctuations. One should also note that even in the pure 2D
case, fluctuations of the order parameter are growing logarith-
mically at large distances, which makes it possible to neglect
this effect in real finite samples.

Based on the free energy given by Eq. (1), one can describe
the skyrmion lattice in a ferromagnetic layer as a superpo-
sition of three helices [21]. The corresponding low-energy
excitations were studied in Refs. [22,25], and a gapless mode
of phason excitations with the dispersion quadratic in the wave
vector was identified in the absence of pinning. In this repre-
sentation, the magnetization vector can be parameterized as
m = mzẑ + ∑

μ=a,b,c mμ, where mz is a uniform component
induced by an external magnetic field, while mμ is the spatial
profile of the three helices,

mμ = mh
(
βμk̂μ +

√
1 − β2

μ nμ

)
, (2)

for μ = a, b, c. Here mh is the helix amplitude and nμ repre-
sent the helices with wave vectors kμ,

nμ = ẑ cos(kμ · r + ϕμ) + (k̂μ × ẑ) sin(kμ · r + ϕμ), (3)

and k̂μ is a unit vector along kμ. One choice of the vec-

tors kμ is ka = k (1, 0, 0), kb = k (− 1
2 ,

√
3

2 , 0), and kc =
k (− 1

2 ,−
√

3
2 , 0). In turn, the three variables ϕμ describe phases

of the helices, while βμ represent massive excitations. The
low-energy excitations are described by the phason variables
defined as ϕ+ ≡ 1

2 (ϕa + ϕb) − ϕc and ϕ− ≡ 1
2
√

3
(ϕa − ϕb),

and the corresponding low-energy Lagrangian was shown to
have the form [22]

L =
∫

d2r
{

g (ϕ+ϕ̇− − ϕ−ϕ̇+) + mϕ

2
(ϕ̇2

+ + ϕ̇2
−)

− Ãex[(∇ϕ+)2 + (∇ϕ−)2]

}
, (4)

where g is a constant proportional to the topological charge of
the skyrmion, Ãex is a constant proportional to the exchange
parameter Aex, and mϕ ∝ 1/(ÃexD) is a mass term arising from

the βμ modes. Equation (4) leads to the excitation mode which
is quadratic in the wave vector p, ω(p) ∝ Ãex p2. We note that
the description based on Eq. (2) is the simplest approxima-
tion, validity of which, however, is confirmed numerically.
More general and accurate descriptions are based on elliptical
(deformed) spirals and also include higher order harmonics.
In this paper, however, we limit the description to helices
described by Eq. (2).

The excitation mode becomes significantly changed in
the case of two ferromagnetic layers coupled antiferromag-
netically. This change appears due to the dynamics of the
dominant antiferromagnetic component of the two-layer mag-
netization. This component experiences fluctuations of the
ferromagnetic component of the two layers. We note that this
effect is well known for antiferromagnets in general. Let us
consider the antiferromagnetic coupling between the two fer-
romagnetic layers, labeled with the index i = 1 (FM1 layer)
and i = 2 (FM2 layer), see Fig. 1:

HAF = JAF

∫
d2r (m1 · m2), (5)

where JAF is the interlayer coupling constant. Defining the
antiferromagnetic moment n and the ferromagnetic moment
� as

m1/Ms = n + �, m2/Ms = −n + �, (6)

the antiferromagnetic coupling can be rewritten as HAF =
JAF

∫
d2r (−n2 + �2). The spin dynamics of the system is

described by the spin Berry’s phase term in the Lagrangian,
LB = Ms

∫
d2r

∑
i=1,2 cos θi φ̇i, written in terms of polar coor-

dinates. Defining m̃2 ≡ −m2 (with polar coordinates θ̃2, φ̃2),
this term may be written as LB = Ms

∫
d2r (cos θ1 φ̇1 −

cos θ̃2
˙̃φ2), which reduces to LB = Ms

∫
d2r δm · (m1 × ṁ1)

in the lowest order in δm ≡ m1 − m̃2. The spin Berry’s phase
term, expressed by n and � (assuming small 
, i.e., large JAF ),
then reads

LB = −2Ms

∫
d2r � · (n × ṅ), (7)

instead of the topological term for the case of a single layer
(Eq. (22) of Ref. [22]). By integrating out the � variable and
neglecting the spatial derivatives of �, one obtains the kinetic
term for n:

LB = M2
s

JAF

∫
d2r ṅ2. (8)
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Using
∫

d2r ṅ2 = ∫
d2r

∑
μ(ϕ̇2

μ + β̇2
μ), the phason kinetic

part of the Lagrangian is

LB = M2
s

3JAF

∫
d2r (ϕ̇2

+ + ϕ̇2
−), (9)

and the total phason Lagrangian for the SAF, without the
topological term of a single layer [Eq. (4)], can be written as

L =
∫

d2r
{ m̃ϕ

2
(ϕ̇2

+ + ϕ̇2
−) − Ãex[(∇ϕ+)2 + (∇ϕ−)2]

}
,

(10)

where m̃ϕ ≡ mϕ + 2M2
s

3JAF
. The phason dispersion derived from

this Lagrangian is massless and linear, ω(p) ∝ Ãex p, in the
absence of pinning. Micromagnetic simulations (Sec. III) sup-
port the result of the gapless linear mode.

Applying an ac magnetic field along the in-plane direc-
tion, one can pump spin current into the substrate layer. The
pumped current is proportional to m × ṁ in the phason pic-
ture. As discussed in Ref. [22] [Eq. (65)], the in-plane field
couples to the massive excitation modes, βμ, and not directly
to the phason variables. Thus one can write ṁμ = mhβ̇μk̂μ.
After averaging over space, the oscillating components vanish
and one obtains m × ṁ = ∑

μμ′ mμ × ṁμ′ = m2
h

∑
μμ′ (k̂μ ×

k̂μ′ )βμβ̇μ′ . As (k̂μ × k̂μ′ ) ‖ ẑ for μ 
= μ′, the pumped spin
current is polarized along the z direction. The spatial correla-
tion of the β modes is determined by both gapless and gapful
modes, ω±(p), with the energies ω−(p) ∝ p2 and ω+(p) �
AexQ2 + O(p2) (Eq. (66) of Ref. [22]). The correlation
length of the pumping is determined by the Gilbert damping
constant.

III. MICROMAGNETIC SIMULATIONS

The skyrmion generation and its collective dynamics in
a SAF is governed by the Landau-Lifshitz-Gilbert (LLG)
equation,

∂Mi

∂t
= −γ Mi × Heff,i + α

Ms,i
Mi × ∂Mi

∂t
, (11)

for the top (i = 1) and bottom (i = 2) ferromagnetic layers in
the SAF. Here, Mi = MsMi (Ms denotes the saturation mag-
netization), and α is the phenomenological Gilbert damping
constant. The total effective field He f f ,i exerted on the ith
layer reads He f f ,i = − δFSkX

δmi
− Hcouple,i, where FSkX is given

by Eq. (1), Hcouple,i = JAF
μ0Ms,iti

M j is the bias field exerted by
the second layer, ti is the ith-layer thickness, and j 
= i. The
influence of the out-of-plane magnetic anisotropy and dipole-
dipole interaction is not taken into account in the present
description.

In numerical calculations we assume the following pa-
rameters: Aex = 10 pJ/m, Dm = 0.2 mJ/m2, Ms = 1.2 A/m,
JAF = 0.23 mJ/m2, and ferromagnetic layer thickness tp =
3 nm. The bias magnetic field Hz = 100 mT is used for
stabilization of the skyrmion structure. The size of the ferro-
magnetic layers is 6000 × 120 × 3 nm3, which is discretized
by the cell size 3 × 3 × 3 nm3.

FIG. 2. (a) Low-temperature spectrum of magnetic oscillations
in the single ferromagnetic layer with one-dimensional skyrmion
lattice. (b) The corresponding spectrum in the absence of skyrmions.
(c) The same as in (a) for the external magnetic field field −20 mT
applied near the skyrmion center (radius of this range is 15 nm).
(d) The same as in (a) but for nonzero Ginzburg-Landau parame-
ters, am = 1 × 105 J/m3 and bm = 5 × 104 J/m3. These parameters
describe the spin-wave spectrum in the vicinity of Curie tempera-
ture. General features of the spectrum are similar to those in (a),
except the frequencies are in general slightly smaller. The frequency
f = ω/(2π ) is shown as a function of px , and the period of 1D SkX
is r = 61.8 nm. The Brillouin zone boundaries in (a), (c), (d) are
given by px = ±nπ/r.

A. Single ferromagnetic layer

For clarity reasons, we analyze first the skyrmion dy-
namics in a single magnetic layer, where the theory based
on the model of coupled helices predicts gapless excita-
tions. For simplicity we focus here on the excitations in a
one-dimensional SkX. The corresponding low-temperature
spectrum of magnetization dynamics is presented in Fig. 2(a),
where the frequency ω/(2π ) is shown as a function of px. The
periodicity of the SkX, with the period r (r is the distance be-
tween skyrmions), is clearly visible in the corresponding band
structure, see Fig. 2(a). The gapless excitations near px = 0
correspond to the collective SkX mode, already discussed
above. To emphasize the gapless character of the collective
phason excitations, we also calculated the excitation spectrum
in the magnetic layer without the SkX, where the excita-
tions are gapped, see Fig. 2(b). The spectrum of magnetic
excitations for temperatures close to the Curie temperature is
described by specific nonzero values of the Ginzburg-Landau
parameters, see Fig. 2(d). These parameters are related to
the system’s temperature and Curie temperature; for details
see Ref. [21] and the corresponding Supplemental Material.
The corresponding spectrum is qualitatively similar to that in
Fig. 2(a), except the corresponding frequencies are slightly
smaller; compare Figs. 2(a) and 2(d). However, when con-
fining the skyrmions through a pinning potential, this mode
shifts upward, see Fig. 2(c). All these results show that the
micromagnetic calculations lead to the results, which are
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FIG. 3. Micromagnetic simulation for a single layer with 1D
skyrmion lattice, stabilized by an applied external magnetic field
Hz = 100 mT (a) and Hz = −100 mT (b). (c), (e) The spatial profiles
of the z component of spin pumping current Iz

sp(x, y = 0), excited by
a microwave field (applied near the region x = 0) with the frequency
0.3 GHz. The spin pumping currents in the skyrmion center and at its
boundary are opposite. This follows from the magnetic structure of
the skyrmion—the magnetization in the skyrmion center is opposite
to that at its boundary. (d), (f) The z component of the orbital angular
momentum Lz of skyrmions due to phason excitations (the points
correspond to the centers of skyrmions).

qualitatively consistent with those obtained in the model based
on three coupled helices.

The collective phason excitations of the SkX can pump
magnonic spin current Isp into the adjacent metal. To calcu-
late the pumped spin current we exploit the formula Isp =
h̄gr

4π
M × ∂M

∂t (where gr is the real part of the dimensionless
spin-mixing conductance, assumed gr = 7 × 1018 m−2) and
excite the phason mode with the low-frequency, equal to
0.3 GHz, microwave field applied in the vicinity of the region
x = 0. The spatial profile of the z component of the magnonic
spin pumping current Iz

sp is shown in Fig. 3(a) for positive
magnetic field and in the corresponding cross section at y = 0
in Fig. 3(c). The negative pumping current is mainly localized
inside the skyrmion lattice and propagates away from the exci-
tation region (x = 0). Outside the skyrmion region, the current
Iz
sp becomes positive. In the absence of SkX, the magnetization

oscillation with frequency 0.3 GHz cannot propagate through
the magnetic layer due to the energy gap in the spectrum and
therefore the pumping current disappears. When reversing the
direction of applied magnetic field, Hz = −100 mT, and also
of the magnetization direction, then the spin current Iz

sp also
changes its orientation as shown in Figs. 3(b) and 3(e).

The collective phason excitations in the SkX carry an
orbital angular momentum created by the dynamics of the

FIG. 4. Schematics of the two-dimensional antiferromagnetic of
the SkX in a SAF. Both top and bottom layers are shown.

three coupled helices. The z component of the orbital angular
momentum can be calculated using Noether’s theorem [45,46]
as Lz = (h̄/S)

∫
lz(x, y) dx dy, where lz(x, y) = mz(r × ∇φ)z

is the orbital angular momentum density, S is the integration
area, and φ = arctan(my/mx ). The results of the calculations
are shown in Figs. 3(d) and 3(f). Contrary to the magnonic
spin pumping current, the orbital angular momentum den-
sity does not change sign upon the magnetic field reversal
(Hz = ±100 mT). We note that the orbital angular momentum
of the phason modes in the SkX can be expressed in terms of
the pseudo-Poynting vector [47] as follows: L = (1/S)

∫
r ×

P dxdy, where Pμ = h̄
2 {Ẽ∗(∂μB̃) + B̃∗(∂μẼ )}, and we intro-

duced the notations Ẽ = mx + imy and B̃ = i(mx − imy). The
magnon attenuation effect leads to the spatial decay of Lz.
Therefore, when rescaling the orbital angular momentum di-
viding it by the magnon density n, one can eliminate the effect
of spatial decay and achieve the quantized value of Lz/n,
Lz/n ≈ h̄.

B. The SkX in a SAF

Finally, we consider the skyrmion lattice (one and two
dimensions, 1D and 2D, respectively) in a SAF. The corre-
sponding magnetization profile in the 2D case is plotted in
Fig. 4. The numerical results on the magnetic dynamics in
SAF are compared in Fig. 5 with those for a single magnetic
layer. Both the one- and two-dimensional cases are shown
there. The dispersion curves in the low-frequency regime in
the 1D SkX are linear in both single layer and the SAF. In
turn, for 2D SkX, the dispersion curve is still linear in the
SAF but becomes quadratic in the single layer. These results
are consistent with those obtained in Sec. II for 2D systems
within the model based on three coupled helices. Moreover,
they are also consistent with those obtained from Thiele’s
equations, as will be discussed later. The differences between
the dispersion curves of 1D and 2D cases (especially for a
single layer) originate from different boundary conditions. For
a 1D skyrmion lattice, we adopt a finite geo-boundary in the
numerical calculations, and the boundary effect blocks one of
the degrees the freedom. This blocking is irrelevant in the 2D
case, where the periodic boundary conditions are employed.

The spin pumping current Iz
sp in the 1D SkX in a SAF is

shown in Fig. 6. The bias field of 20 mT is applied near the
skyrmion centers in both the top and bottom layers. This field
plays the role of a pinning potential that shifts the spectrum
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FIG. 5. The spectrum of magnetic excitations in the low-
frequency regime plotted for the single ferromagnetic layer (a), (c)
and for the SAF (b), (d). The corresponding skyrmion lattices are
1D (a), (b) and 2D (c), (d). The red dotted (qy = 0) and dashed
[qy/(π/r) = 2/

√
3] lines are calculated using Eqs. (26) and (40),

respectively, for σ = 0.06 GHz and σ12 = 1 GHz.

of the system upward [Fig. 6(a)]. By applying the microwave
field in the vicinity of x = 0 in the top layer of SAF, one can
induce the skyrmion precession in both layers of the SAF. The
skyrmion precession in the top layer generates the negative
spin pumping current Iz

sp shown in blue color in Fig. 6(b).
Due to the antiferromagnetic (AFM) coupling, magnetization
dynamics in both layers are correlated, and spin pumping
current in the bottom layer is also negative. However, the
skyrmion precession and the magnitude of the current are
smaller as compared to those in the top layer. The negative
Iz
sp in the SAF is similar to the skyrmion precession and spin

pumping current generated in a single layer Fig. 3(a). The mi-
crowave field applied to the bottom layer Fig. 6(d) generates
the skyrmion precession and positive spin pumping current
Iz
sp (shown in yellow). The effect is similar to the single-layer

case Fig. 3(b). Due to the AFM coupling with a top layer, the
spin pumping current in the top layer Iz

sp is also positive, but
the current is smaller than that in the bottom layer.

The interesting feature is the spatially nonuniform distribu-
tion of the current. In particular, from Fig. 6(b) it follows that
at a certain distance from the x = 0 point, the spin pumping
current Iz

sp becomes positive, while at larger distances it again
switches sign. Thus we observe a spatially periodic switching
of the sign of current Iz

sp. The spatial distribution of the current
also depends on the frequency of the field, Fig. 6(c). The
skyrmion precession in the bottom layer, Fig. 6(d), switches
the sign of current Iz

sp in both layers as compared with
Fig. 6(b).

The spatial alternation of the magnonic current can be
explained as follows: Due to the antiferromagnetic coupling,
both left-hand and right-hand precessions (concerning the lo-
cal magnetization) coexist in the SAF. For the skyrmion with
negative magnetization in the center and positive magnetiza-
tion at the boundary, the pumping current Iz

sp is negative in
the center and positive at the boundary. When the current Iz

sp
reaches the neighboring skyrmion, it becomes negative again

FIG. 6. (a) The spectrum of 1D skyrmion lattice in a SAF when
a bias field of 20 mT is applied near the skyrmion centers in both top
and bottom layers. (b)–(d) The spatial profiles of the z component of
spin pumping current Iz

sp in the SAF layer. The spin pumping current
and skyrmion precession are excited by the microwave field with
frequencies 1 GHz (b) and 1.2 GHz (c). The skyrmion precession
is excited in the region x = 0 in the top layer. (d) The current
Iz
sp generated by the skyrmion excitation in the bottom layer. The

microwave field is applied in the region x = 0.

because the skyrmion permits only right-hand precession. In
SAF, due to the coexisting left and right precessions, the
current Iz

sp can be either positive or negative. However, there is
a significant asymmetry—the right-hand precession is always
stronger. Therefore, the −z magnetization in the top layer
and the right-hand precession induces the negative current,
stronger than the negative current induced in the bottom layer
due to the left-hand precession and positive z magnetization.
In Fig. 6(b) the negative current induced in the top layer leads
to a smaller negative current in the bottom layer. The negative
current emitted to the border of the first skyrmion changes the
sign, and the positive current reaches the region of the second
skyrmion. The positive Iz

sp > 0 generates a stronger positive
current in the bottom layer. Then Iz

sp again becomes negative
in the region of the third skyrmion, and the process is repeated
further.

The orbital angular momentum density Lz of the 1D SkX
in SAF is plotted in Fig. 7 for two cases: when the microwave
field is applied to the top (a) and bottom (b) layers of the SAF.
As one can see, when the microwave is applied to the top
layer, the orbital angular momentum density in the top layer
is larger and vice versa—when the bottom layer is excited by
the microwave field, the orbital angular momentum density is
larger in the bottom layer.
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FIG. 7. The z component of the orbital angular momentum Lz

calculated for the 1D SkX in a SAF when the oscillation is excited
by a microwave field applied near x = 0 in the (a) top and (b) bottom
layer. The frequency of the field is 1.2 GHz.

IV. MODEL BASED ON THIELE’S EQUATIONS

In case of skyrmions stabilized by the DM interaction,
the center-of-mass motion of an individual skyrmion can be
described by Thiele’s equation [48],

−G × ∂t r − α
↔
D ∂t r + F = 0, (12)

where G = 4πNsk ẑ is the gyrocoupling vector, defined by the
skyrmion topological charge Nsk = ±1 and the unit vector ẑ

along the z axis,
↔
D stands for a tensor of dissipative force, α

is the Gilbert damping constant, and F is a force acting on
the skyrmion (F = −∇V , with V standing for the correspond-
ing potential energy). The tensor

↔
D has the following form:↔

Di j = D for (i, j) = (x, x) and (i, j) = (y, y), while
↔
Di j =

0 otherwise [49]. This particlelike description of skyrmion
dynamics is also valid for systems of interacting skyrmions
[49–51].

A. Single-layer case

We consider first the dynamical states of SkX in a single
ferromagnetic layer. To do this we model SkX as a peri-
odic (in equilibrium) array of coupled skyrmions confined in
the positions Ri, where each skyrmion is surrounded by six
nearest neighbors. In a nonequilibrium (dynamical) state, the
position of the ith skyrmion, ri, can written as ri = Ri + ui,
where ui stands for a deviation of the skyrmion center from its
equilibrium position.

Let us consider two nearest-neighbor interacting
skyrmions, i and j, located in equilibrium at the positions
Ri and R j , and let ei j stand for a unit vector along R j − Ri.
The energy of such skyrmions in nonequilibrium is generally
anisotropic, i.e., it depends on the relative orientation
of the skyrmion displacements and the vector ei j . Thus
the relative displacement, ui − u j , can be decomposed into
the component [ei j · (ui − u j )]ei j along the vector ei j and the
component (ui − u j ) − [ei j · (ui − u j )]ei j normal to ei j .

Since the total force acting on the ith skyrmion is a super-
position of the forces from its nearest neighbors, we write the
Thiele’s equation in the following form:

− G × ∂t ui − α
↔
D ∂t ui

= σ‖
∑
〈 j〉

[ei j · (ui − u j )]ei j

+ σ⊥
∑
〈 j〉

{(ui − u j ) − [ei j · (ui − u j )]ei j}, (13)

where σ‖ and σ⊥ are the two coupling parameters, and 〈 j〉
denotes the summation over the nearest-neighbor skyrmions.
A particular skyrmion (say the ith one) is surrounded
by six nearest neighbors indexed with j = 1 to j = 6.
They correspond to ei1 = (1, 0), ei2 = (1/2,

√
3/2), ei3 =

(−1/2,
√

3/2), ei4 = (−1, 0), ei5 = (−1/2,−√
3/2), and

ei6 = (1/2,−√
3/2).

In the following we assume skyrmions corresponding to
Nsk = 1 and adequately normalize

↔
D as well as σ‖ and σ⊥.

Taking into account the explicit form of the tensor
↔
D [49,51],

the Thiele’s equations for a skyrmion lattice in a single ferro-
magnetic layer can be written in the form

− ∂t u
y
i − αD ∂t u

x
i

=
∑
〈 j〉

{[
σ‖e2

i jx + σ⊥
(
1 − e2

i jx

)]

× (
ux

i − ux
j

) + (σ‖ − σ⊥)ei jxei jy
(
uy

i − uy
j

)}
, (14)

∂t u
x
i − αD ∂t u

y
i

=
∑
〈 j〉

{[
σ‖e2

i jy + σ⊥
(
1 − e2

i jy

)]

× (
uy

i − uy
j

) + (σ‖ − σ⊥)ei jxei jy
(
ux

i − ux
j

)}
. (15)

We look now for solutions of the above equations in the
Bloch’s form, ux(y)

i = ux(y)
0 ei[p·Ri−ω(t )]. For simplicity, we ne-

glect the term proportional to D as being small due to a small
damping parameter α. Then, taking into account positions of
all six neighbors, one finds from Eqs. (5) and (6) the following
equations:

iωuy
0 = {2σ‖[1 − cos(pxr)] + (σ‖ + 3σ⊥)[1

− f1(p)]}ux
0 +

√
3(σ‖ − σ⊥) f2(p)uy

0, (16)

−iωux
0 = {2σ⊥[1 − cos(pxr)] + (3σ‖ + σ⊥)[1

− f1(p)]}uy
0 +

√
3(σ‖ − σ⊥) f2(p)ux

0, (17)

where

f1(p) = cos

(
pxr

2

)
cos

(√
3

2
pyr

)
, (18)

f2(p) = sin

(
pxr

2

)
sin

(√
3

2
pyr

)
, (19)

104424-7



X.-G. WANG et al. PHYSICAL REVIEW B 106, 104424 (2022)

and r is the distance between nearest-neighbor skyrmions.
Defining the column vector z = (ux

0, uy
0)T , the above equa-

tions (16) and (17) can be written as

Ĥz = 0, (20)

where the 2 × 2 matrix Ĥ has the form

Ĥ =
(

B A − iω
A + iω B′

)
, (21)

with

A = √
3(σ‖ − σ⊥) f2(p), (22)

B = 2σ‖[1 − cos(pxr)] + (σ‖ + 3σ⊥)[1 − f1(p)], (23)

B′ = 2σ⊥[1 − cos(pxr)] + (3σ‖ + σ⊥)[1 − f1(p)]. (24)

The condition of the vanishing determinant of the matrix
Ĥ leads to the following frequency ω:

ω = [{2σ‖[1 − cos(pxr)] + (σ‖ + 3σ⊥)[1 − f1(p)]}
× {2σ⊥[1 − cos(pxr)] + (3σ‖ + σ⊥)[1 − f1(p)]}
− 3[(σ‖ − σ⊥) f2(p)]2]1/2. (25)

In the limit of small |p|, the frequency can expanded as ω ≈
3
√

(3σ‖+σ⊥ )(σ‖+3σ⊥ )

8 (pr)2.

In the isotropic limit, σ‖ = σ⊥ = σ , this formula re-
duces to the following simple expression for the phason
frequency ω:

ω = 2σ [3 − ξ (p)], (26)

where ξ (p) is defined as

ξ (p) = cos(pxr) + 2 cos

(√
3

2
pyr

)
cos

(
1

2
pxr

)
. (27)

From this formula one can easily note that the spectrum is
gapless. Moreover, from expansion with respect to p it follows
that the spectrum in the small-wave-vector limit is quadratic
in p, i.e., ω ∼ p2, as is proved by the series expansion
ω ≈ 3σ

2 (pr)2.

B. Thiele’s equations for SAF

Now, we apply the description based on the Thiele’s equa-
tions to the SkX in SAF. Let the skyrmions in the top (FM1)
layer (see Fig. 1) be in the positions r(1)

i = Ri + u(1)
i , while

in the bottom layer they are in positions r(2)
i = Ri + u(2)

i . We
assumed here that in equilibrium skyrmions in both layers
are in the same positions, R(1)

i = R(2)
i = Ri. Accordingly, the

Thiele’s equations can be written as follows:

−G(1) × ∂t u
(1)
i − α(1)↔D(1) ∂t u

(1)
i = σ1‖

∑
〈 j〉

[
ei j · (

u(1)
i − u(1)

j

)]
ei j + σ1⊥

∑
〈 j〉

{(
u(1)

i − u(1)
j

)

− [
ei j · (

u(1)
i − u(1)

j

)]
ei j

} + σ12
(
u(1)

i − u(2)
i

)
, (28)

−G(2) × ∂t u
(2)
i − α(2)↔D(2) ∂t u

(2)
i = σ2‖

∑
〈 j〉

[
ei j · (

u(2)
i − u(2)

j

)]
ei j + σ2⊥

∑
〈 j〉

{(
u(2)

i − u(2)
j

)

− [
ei j · (

u(2)
i − u(2)

j

)]
ei j

} + σ12
(
u(2)

i − u(1)
i

)
, (29)

where the in-plane coupling constants in the top (bottom) layer are σ1‖ and σ1⊥ (σ2‖ and σ2⊥), whereas σ12 denotes the coupling
parameter between skyrmions in different layers. (Each skyrmion in one layer has only a single nearest-neighbor skyrmion in the
second layer.) Note that the coupling between skyrmions in two different layers is isotropic. Other parameters in the two layers
are distinguished with the upper indices (1) and (2).

Due to antiferromagnetic interlayer coupling between layers, the magnetic texture in the ferromagnetic layer FM2 is
topologically reversed to that in the layer FM1, and consequently, topological charges of skyrmions in these layers are also
opposite, N (2)

sk = −N (1)
sk . Accordingly, the Thiele’s equations can be written explicitly as follows:

−∂t u
(1)
iy − α(1)D(1) ∂t u

(1)
ix =

∑
〈 j〉

{[
σ1‖e2

i jx + σ1⊥
(
1 − e2

i jx

)](
u(1)

ix − u(1)
jx

)

+ (σ1‖ − σ1⊥)ei jxei jy
(
u(1)

iy − u(1)
jy

)} + σ12
(
u(1)

ix − u(2)
ix

)
, (30)

∂t u
(1)
ix − α(1)D(1) ∂t u

(1)
iy =

∑
〈 j〉

{[
σ1‖e2

i jy + σ⊥
(
1 − e2

i jy

)](
u(1)

iy − u(1)
jy

)

+ (σ1‖ − σ1⊥)ei jxei jy
(
u(1)

ix − u(1)
jx

)} + σ12
(
u(1)

iy − u(2)
iy

)
, (31)

+∂t u
(2)
iy − α(2)D(2) ∂t u

(2)
ix =

∑
〈 j〉

{[
σ2‖e2

i jx + σ2⊥
(
1 − e2

i jx

)](
u(2)

ix − u(2)
jx

)

+ (σ2‖ − σ2⊥)ei jxei jy
(
u(2)

iy − u(2)
jy

)} + σ12
(
u(2)

ix − u(1)
ix

)
, (32)
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−∂t u
(2)
ix − α(2)D(2) ∂t u

(2)
iy =

∑
〈 j〉

{[
σ2‖e2

i jy + σ2⊥
(
1 − e2

i jy

)](
u(2)

iy − u(2)
jy

)

+ (σ2‖ − σ2⊥)ei jxei jy
(
u(2)

ix − u(2)
jx

)} + σ12
(
u(2)

iy − u(1)
iy

)
. (33)

Similarly, as in the single-layer case, we neglect the term proportional to D and look for solutions of the above equations in
the Bloch’s wave form, ux(y)

i = ux(y)
0 ei[p·Ri−ω(t )]. Then, taking into account positions of all six in-plane nearest neighbors, from

Eqs. (30)–(33) one finds

iωu(1)y
0 = {2σ1‖[1 − cos(pxr)] + (σ1‖ + 3σ1⊥)[1 − f1(p)]}u(1)x

0 +
√

3(σ1‖ − σ1⊥) f2(p)u(1)y
0 + σ12

[
u(1)x

0 − u(2)x
0

]
, (34)

−iωu(1)x
0 = {2σ1⊥[1 − cos(pxr)] + (3σ1‖ + σ1⊥)[1 − f1(p)]}u(1)y

0 +
√

3(σ1‖ − σ1⊥) f2(p)u(1)x
0 + σ12

[
u(1)y

0 − u(2)y
0

]
, (35)

and

−iωu(2)y
0 = {2σ2‖[1 − cos(pxr)] + (σ2‖ + 3σ2⊥)[1 − f1(p)]}u(2)x

0 +
√

3(σ2‖ − σ2⊥) f2(p)u(2)y
0 + σ12

[
u(2)x

0 − u(1)x
0

]
, (36)

iωu(2)x
0 = {2σ2⊥[1 − cos(pxr)] + (3σ2‖ + σ2⊥)[1 − f1(p)]}u(2)y

0 +
√

3(σ2‖ − σ2⊥) f2(p)u(2)x
0 + σ12

[
u(2)y

0 − u(1)y
0

]
. (37)

Similarly, as in the case of single layer, we define the
column vector z = (u(1)x

0 , u(1)y
0 , (u(2)x

0 , u(2)y
0 )T . Then the above

equations (34)–(37) can be written as

ˆ̃Hz = 0. (38)

Here the 4 × 4 matrix ˆ̃H takes the form

ˆ̃H =
(

Ĥ (1) + σ12 Î −σ12 Î
−σ12 Î Ĥ (2)∗ + σ12 Î

)
, (39)

where Ĥ (1) and Ĥ (2) are the matrices Ĥ [see Eq. (21)] corre-
sponding to the top and bottom layers, respectively, while Î is
the 2 × 2 unit matrix. Frequency can be determined numeri-
cally from the condition of the vanishing determinant of the
matrix ˆ̃H [Eq. (39)].

In the isotropic and symmetric case, σ1‖ = σ1⊥ = σ2‖ =
σ2⊥ = σ , one can find the following simple analytical formula
for the phason frequency:

ω± = ±2
√

(3 − ξ (p))σ [(3 − ξ (p))σ + σ12], (40)

where ξ (p) is defined by Eq. (27). We note that the positive
(negative) frequency corresponds to the right-hand (left-hand)
precession of the skyrmions in SAF, and the negative mode is
opposite to the positive one, ω−(p) = −ω+(p). Importantly,
as follows from series expansion, the mode in SAF then be-
comes linear with p in the limit of small |p|, ω± ∼ ±p. This
is proved by the small |p| expansion, ω± ≈ ±√

3σσ12 pr. This
linear-in-|p| dependence of the excitation frequency in SAF is
much more evident when σ12 � σ [Figs. 8(e) and 8(f)]. Such
a situation seems to be physically more likely, as the in-plane
skyrmion lattice constant is much larger than the thickness of
the nonmagnetic spacer layer in SAF.

In Fig. 8 we present numerical results on the dispersion
curves of the phason modes propagating in a single ferro-
magnetic layer as well as in a symmetric (σ1‖ = σ2‖ = σ‖ and
σ1⊥ = σ2⊥ = σ⊥) SAF. We also distinguish between isotropic

(σ‖ = σ⊥) and anisotropic (σ‖ > σ⊥) situations. When the
coupling between skyrmions across the spacer layer is weak,
σ12 � σ , the dispersion relation for a SAF is very similar to
that found in the single ferromagnetic layer [Figs. 8(a) and
8(b)]. However, when the interlayer coupling between the
skyrmions is comparable to or stronger than the intralayer
one, σ12 � σ , the mode in the SAF is significantly different
from that for a single layer [Figs. 8(c) and 8(d)]. The fre-
quency of phason excitations also depends on the coupling
anisotropy and becomes reduced when σ⊥ becomes smaller
than σ‖

The results derived from the Thiele’s equations are in
agreement with those obtained from numerical simulations
for 2D SkXs. This is shown in Figs. 5(c) and 5(d), where
we have added the results obtained from the Thiele’s, see the
red dotted and dashed lines. The agrement between analytical
results derived from the Thiele’s equations and those obtained
from numerical simulations is satisfactory, confirming that the
low-energy spectrum in a single SkX layer is quadratic while
the spectrum of 2D SkX in SAF is linear.

V. SUMMARY AND CONCLUSIONS

In summary, we studied phason excitations of a skyrmion
lattice in synthetic antiferromagnets, i.e., in two ferromag-
netic layers coupled antiferromagnetically due to interlayer
exchange interaction. We have considered the magnetic dy-
namics of a skyrmion lattice in a SAF. Three different methods
have been used to analyze the spectrum of magnetic dynam-
ics: (i) an analytical approach based on the presentation of
the SkX as a superposition of three helices, (ii) numerical
micromagnetic simulations, and (iii) a simplified approach
based on the Thiele’s equations. Interestingly, all the three
approaches give consistent results, i.e., all lead to gapless and
linear phason modes.

For comparison, we have also analyzed 1D and 2D single-
layer skyrmion lattices. In the 2D case we found gapless
modes with quadratic dispersion in the small-wave-vector
limit. In turn, in the 1D case the situation is different, and
we found linear behavior (except the approach based on the
Thiele’s equation, where this behavior is quadratic).
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FIG. 8. Dispersion relations of the phason excitations in 2D within the approach based on Thiele’s equation, plotted along the main
crystal directions in the Brillouin zone of SkX. The dotted line corresponds to the modes in a single ferromagnetic layer, while the solid line
presents the positive mode, ω+(p), in a SAF. The negative mode in the SAF is exactly opposite to the positive one, ω−(p) = −ω+(p), so it
is not presented in the figure. The red curves correspond to a symmetric SAF (σ1‖ = σ2‖ = σ‖ and σ1⊥ = σ2⊥ = σ⊥) while the blue ones to a
single layer. For each case two situations are distinguished: isotropic (σ‖ = σ⊥) and anisotropic (σ‖ > σ⊥). Different panels correspond to the
following situations: (a), (b) σ12 � σ‖; (c), (d) σ12 ≈ σ‖; and (e), (f) σ12 � σ‖.

We have also analyzed numerically the spin current
pumped by skyrmion dynamics (phasons). Spatial variation
of the pumped current polarization is shown to reveal the
internal magnetic texture of the skyrmions. In addition, orbital
angular momentum associated with phason dynamics induced
externally by a microwave field has also been calculated.

We found that three independent helix modes hosted in
the synthetic antiferromagnetic material possess beneficial
features for generation of magnonic spin currents and imple-
mentation in spin caloritronics.
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