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Electrically charged magnetic skyrmions
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We consider magnetic oxide/heavy metal oxide hybrid film on top of a substrate with high dielectric constant.
We use the double exchange model to describe the system behavior. The interface between two oxide films
produces Rashba spin-orbit interaction. The phase separation appears in such a magnetic film. Combination of
the phase separation and spin-orbit coupling leads to formation of electrically charged magnetic clusters with
skyrmions. We show that such clusters have both electrical and topological charges. Importantly, clusters with
sizes suitable for skyrmions formation may occur only for substrate with a high dielectric constant.
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I. INTRODUCTION

Interfaces between ferromagnetic metals and heavy met-
als attract a lot of attention since they produce strong
Dzyaloshinskii-Moriya interaction (DMI) stabilizing mag-
netic skyrmions in such hybrid films [1–4]. In the last decade
transitional metal/heavy metal systems (such as Co/Pt) were
studied a lot [5–9]. Recently, hybrid magnetic oxide (MO)
films came into focus for many groups [10–24]. It was found
that such multilayer structures can also produce strong enough
DMI interaction and even host magnetic skyrmions (Sks).

Even a single magnetic oxide film shows a very rich
physics. There are plenty of magnetic states that can be re-
alized in such a film [checkerboard antiferromagnetic (AFM)
state, canted AFM state, layered AFM state, and ferro-
magnetic (FM) state] depending on the doping or other
conditions [25–28]. Electron transport also shows nontrivial
behavior. Magnetic oxides are famous for the metal-insulator
transition caused by the external magnetic field [29–31].

One of the interesting phenomena occurring in MO ma-
terials is the so-called phase separation [32–37]. In a phase
separated state the current carriers are gathered in clusters
with FM ordering. These clusters are surrounded by AFM
insulating regions with no charge carrier.

The rich physics of magnetic oxides appears due to
many-body effects, essential contribution of the Coulomb in-
teraction, and competing types of exchange interaction. One
of the simplest models describing magnetic oxides is the
double exchange model with conduction electrons and lo-
calized magnetic moments interacting through an exchange
interaction [26,32]. Short-range Coulomb interaction is of-
ten taken into account via on-site repulsion of conduction
electrons [28,38,39]. Long-range interaction (important in the
phase separated state) is considered when long-range charge
inhomogeneities occur in magnetic oxides [40–43].

Recently, the model of the MO was extended by includ-
ing the Rashba spin-orbit interaction (SOI) occurring at an
interface between MO and another layer [16,44–46]. Such
a Rashba interaction leads to the appearance of an effective
DMI. Mostly, the case of high electron concentration was

considered. Electron density in this case does not have any
long-range inhomogeneities. It was shown that Sks (and Sk
lattices) may be stable in such magnetic films. Experimental
studies confirm the theoretical predictions.

While the case of high electron density is interesting due
to many-body correlation effects, the opposite case of low
concentration provides other intriguing opportunities. In par-
ticular, in the system with low electron concentration, the
phase separation may occur. Recently, it was shown that MO
in a phase separated state shows unusual magnetoelectric
coupling phenomena due to the interplay between phase sepa-
ration and the Coulomb interaction screening effects [42,43].
In the present work we consider the model of the MO with
Rashba SOI and low electron concentration where the phase
separation occurs. The system is shown in Fig. 1. We assume
that there is a bilayer film consisting of magnetic oxide and
another oxide layer. The system is placed on top of the sub-

FIG. 1. Bilayer magnetic oxide film on top of a substrate. Due
to the phase separation negatively charged clusters (only one is
shown) appear. Outside of the clusters (blue region) the magnetic
state is AFM. This region is positively charged. Inside of the cluster
a magnetic skyrmion appears.
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strate with a high dielectric constant. We show that due to the
combination of the phase separation and the SOI, electrically
charged clusters with nonzero topological magnetic charge
may occur. Such a situation is shown in Fig. 1. A conductive
cluster with an excessive amount of electrons (gray circle)
is surrounded by an insulating region (blue). The insulating
region has AFM state, while the cluster hosts a magnetic
skyrmion.

The paper is organized as follows. The main idea and
model are discussed in Sec. II. In Sec. III we consider possible
magnetic states of the MO hybrid film and discuss the ap-
pearance of the electrically and topologically charged clusters.
Finally, we define the parameters region where such clusters
appear.

II. MAIN IDEA AND MODEL

Here we consider the magnetic oxide film with strong
Rashba SOI occurring at the interface between magnetic oxide
and the substrate or other nonmagnetic layer. We answer the
question if the phase separation can appear in this system
and if a skyrmion can occur in magnetic clusters in the phase
separated state. It is known that under certain conditions elec-
trons can gather in small clusters in the MO film. A FM state
appears inside of these clusters due to increased electron den-
sity favoring the FM exchange interaction. Outside of these
clusters, electrons are absent and the AFM state is realized
due to AFM direct exchange between localized magnetic mo-
ments. The Rashba SOI of electrons effectively leads to the
DMI interaction between localized magnetic moments. The
DMI interaction may form a Sk in the FM cluster. Since
electrons gather together in the clusters the electric charge
occurs. Finally, we have electrically and topologically charged
clusters in the AFM insulating matrix. Here we will check if
such a state is possible.

A. Hamiltonian of the system

We consider a bilayer MO film consisting of a magnetic
and a nonmagnetic layer. the magnetic layer has the thickness
t . The film is in (x, y) plane. The bilayer system is placed
on top of a substrate with a dielectric constant ε. There are
localized magnetic moments and conduction electrons in the
magnetic film. The Hamiltonian of the system has magnetic
and electronic parts

Htot = Hmag + Hel. (1)

The localized magnetic moments form magnetization of the
sample. The magnetic moments are treated as classical vectors
using an effective Hamiltonian

Hmag = Hex + Han + Hms, (2)

with the exchange interaction Hex, anisotropy Han, and dipole-
dipole interaction Hms. We consider the nearest neighbor
exchange interaction −J (mim j ), where mi is the unit vec-
tor co-directed with magnetic moment i. The ion magnetic
moment magnitude is ms. The exchange interaction between
localized magnetic moments is AFM (J < 0). The magnetic
anisotropy is out-of-plane. It may appear due to the interfacial
effects. We assume that all magnetic moments experience the

same anisotropy described by the term −Km2
iz/2. The long-

rang magnetodipole interaction has the form

Hms =
∑
i, j

[(mim j ) − 3(miri j )(m jri j )]/r5
i j, (3)

where ri j is the vector connecting two ions.
We consider the magnetic material with cubic lattice with

the lattice constant �. Besides the localized magnetic mo-
ments there are conduction electrons in the system. The
average electron density is n0. Note that near the interface
there could be an embedded electric field influencing the
electron density. We assume that n0 is the density taking this
effect into account.

Delocalized electrons have a few contributions to energy.
A kinetic energy (Ekin) is obtained within a tight-binding
model with hopping matrix element t0. There is an s-d in-
teraction (with characteristic energy Jsd) between electrons
and localized magnetic moments. Due to the s-d interaction
the hopping matrix element is renormalized t0 → t0 cos(θ/2),
where θ is the angle between localized magnetic moments of
neighboring sites. An electron momentum p can be introduced
in the tight-binding model.

There is a Rashba SOI, which may occur due to the inter-
face between the MO film and another layer or substrate. A
single electron SOI Hamiltonian has the form

Hso = −αso(σ · [z0 × p]) = αso

(
0 py + ipx

py − ipx 0

)
,

(4)
where αso is the spin-orbit coupling constant, p is the momen-
tum operator, and z0 is the normal to the film.

In a phase separated state the electron density becomes
inhomogeneous and the long-range Coulomb interaction (HC)
contributes to the system energy. The total electron Hamilto-
nian has the form

Hel = Hkin + Hso + HC. (5)

We will discuss the Coulomb energy HC in the next sec-
tion for each particular magnetic state of the film.

B. Magnetization distribution of a skyrmion

Below we consider several different magnetic states. One
of them is a skyrmion state. It is a cylindrically symmetric
magnetization distribution with magnetization given by

m = [m⊥(ρ) cos(ϕ + ϕ0), m⊥(ρ) sin(ϕ + ϕ0), mz(ρ)], (6)

where m2
z + m2

⊥ = 1. Such a distribution can describe a Sk
with a different domain wall (WD) type (“Néel” ϕ0 = 0 and
“Bloch” ϕ0 = π/2). A Sk radius rsk can be introduced. In the
Sk center (ρ < rsk) m⊥ ≈ 0 and mz ≈ 1. In the external region
of the skyrmion (ρ > rsk) the z component of magnetization is
negative mz ≈ −1 and m⊥ ≈ 0. Near the Sk radius (ρ ≈ rsk)
the transition region (domain wall) appears where mz changes
the sign and m⊥ becomes large. The transition region width is
wdw.

C. Effective DMI interaction

For the case of Sk magnetization distribution, the contri-
bution of the Rashba SOI is nonzero. The electron’s SOI can

104423-2



ELECTRICALLY CHARGED MAGNETIC SKYRMIONS PHYSICAL REVIEW B 106, 104423 (2022)

be transformed to an effective DMI of the localized magnetic
moments. To estimate the effective DMI we use the follow-
ing assumptions. First, we consider the limit of low electron
concentration and replace the tight-binding model with a free-
electron model with an effective mass. The effective single
electron Hamiltonian has the form

Hel = p2/2me + Hso, (7)

where me is the effective electron mass. It is related to the hop-
ping matrix element as me = h̄2/t0/�2, where � is the lattice
constant. We assume here that the localized magnetic moment
orientation changes slowly in space, and corrections to the ef-
fective mass due to the magnetic moment noncollinearity can
be neglected. The single electron SOI energy can be rewritten
in the cylindrical coordinates (ρ and φ) as follows:

Hso = αso

(
0 e−iϕ (pϕ + ipρ )

eiϕ (pϕ − ipρ ) 0x

)
, (8)

where pϕ = −ih̄/ρ∂ϕ and pρ = −ih̄∂ρ . We denote the off-
diagonal parts of the SOI operator as H+

so (upper right) and
H−

so (lower left).
We consider the case when characteristic skyrmion size

is much bigger than the electron wavelength λF and the mo-
mentum conservation length λp. In this limit we can treat the
skyrmion as a slowly spatially varying magnetization distri-
bution. Also, we consider the case of strong s-d interaction
and use the adiabatic approximation [(h̄kFq/me )/(Jsd/h̄) � 1,
where q ∼ |∂m/∂r|] [47]. In this approximation, an electron
magnetic moment follows the magnetization of the skyrmion.
In the quasiadiabatic approximation, electron wave functions
have the form

 = ψsψk =
(

↑e−iϕ/2

↓eiϕ/2

)
ei(kr), (9)

where ψs is the spin-dependent part and ψk = eikr. Note that
the spin-dependent part does not depend on k and is the
same for all electrons with the same spin projection. Such a
wave function produces a vortexlike rotation (with winding
number +1) of the electron spin (σ ) when one goes around
the coordinates origin:

〈σx〉 = Re(∗
↑↓) cos(ϕ) − Im(∗

↑↓) sin(ϕ),

〈σy〉 = Re(∗
↑↓) sin(ϕ) + Im(∗

↑↓) sin(ϕ). (10)

Since electron spin follows the magnetization, the wave
functions are different for Néel and Bloch skyrmions [see
Eq. (6)]. For the Bloch-type skyrmion the wave functions have
the form

↑(ρ) = cos[θ (ρ)/2],

↑(ρ) = −i sin[θ (ρ)/2]. (11)

Here θ changes from 0 to π across the DW width wdw in the
region ρ ∼ rsk.

For the Néel-type skyrmion the wave functions are given
by

↑(ρ) = cos[θ (ρ)/2],

↓(ρ) = sin[θ (ρ)/2]. (12)

The matrix elements of the spin-orbit interaction Hso(k) =
〈|Hso|〉 have the form

Hso(k)

=
∫

d3r∗
↑↓(eiϕ/2H+

soeiϕ/2) + ↑∗
↓(e−iϕ/2H−

soe−iϕ/2)

+ ∗
↑↓eiϕ (e−ikrH+

soeikr ) + ↑∗
↓e−iϕ (e−ikrH−

soeikr ).
(13)

The first line describes the action of the SO operator on the
spin part of the wave function while the second line describes
the action of the SO operator on the coordinate part. To cal-
culate the second line we use the SO operator defined in the
Cartesian coordinate [Eq. (4)]. The second line is linear in the
quasimomentum k and leads to zero contribution to the SOI
energy after averaging over all electrons. Therefore, we keep
only the first two terms in Eq. (13):

Hso(k) = −αsoh̄

[∫
d3r

(
∗

↑
∂↓
∂ρ

− ∗
↓
∂↑
∂ρ

)

+ iIm
∫

d3r
∗

↓↑
ρ

]
. (14)

In a Sk the magnetization variation happens far from the
Sk center around ρ = rsk. Therefore, only electrons near the
transition region (Sk DW) give a nonzero contribution to the
SOI energy. We assume that the electron localization region is
much smaller than the Sk radius rsk and DW width wdw. This
assumption is valid for skyrmions in the range of 10 to 100 nm
and DW width of order of 10 nm which is much bigger than
the electron momentum scattering length.

The integral in Eq. (14) is zero for the Bloch-type
skyrmion.

HBloch
so (k, ρ) = 0. (15)

For the Néel-type skyrmion the SOI contribution is
nonzero and negative, decreasing the total system energy. For
the Néel-type skyrmions we have

HNeel
so (k, ρ) = −αsoh̄

1

2

∂θ

∂ρ
. (16)

As one can see, the expression for the SO interaction of a
single electron does not depend on the electron momentum k.
Therefore, averaging over all electrons gives a concentration
factor. After averaging over the Sk transition region (domain
wall) we obtain the total contribution of the SOI for the Néel-
type Sk energy

HNe
′
elTot

so = −αsoπ
2rsktnh̄, (17)

where n is the electron concentration inside of a Sk DW.
Beside the Sk, a few other states may occur in the MO film.

These states are either collinear or noncollinear but with fast
varying rotation direction. Therefore, these states produce a
zero average SOI contribution.
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FIG. 2. Magnetic states (cross sections) considered in this work.
(a) Canted state of the first type. (b) Canted state of the second type.
(c) Cross section of a cylindrically symmetric FM cluster with radius
rcl surrounded by the AFM region. (d) Cross section of a cylindrically
symmetric cluster with radius rcl surrounded by AFM regions. A Sk
with radius rsk and DW thickness wdw is inside the cluster.

III. DIFFERENT MAGNETIC STATES OF THE SYSTEM

In this section we consider three possible magnetic states
in the MO film. For all states we assume that magnetization
is uniform across the magnetic film thickness. First, we con-
sider the uniform state with canted magnetic moments [see
Figs. 2(a) and 2(b)]. We assume that a checkerboard mag-
netic structure appears in this state [26]. At that neighboring
magnetic moments are tilted by the angle θc with respect to
each other. If θc = 0 one has a FM state, while θc = π corre-
sponds to an AFM state. Average magnetization in this case
has the form mcan

av = ms cos(θc/2)/�3. There are two types
of this state: (i) the average magnetization is directed along
the z axis (anisotropy axis [see Fig. 2(a)] and (ii) the average
magnetization is in the plane of the sample [see Fig. 2(b)]. The
first type is realized for large average magnetization (close
to FM state). The second type is more favorable for small
average magnetization when the system is close to the AFM
state. Electron density n0 in this state is uniform.

The second state is the state with uniformly magnetized
FM clusters in an AFM matrix [35] shown in Fig. 2(c). The
cluster is cylindrically symmetric (a cut is shown in the fig-
ure). This state is characterized by two parameters: (1) the
average ratio of FM cluster area Scl to the total sample area
Ss, and (2) the average cluster radius rc. Note that the different
FM clusters may have opposite orientation of magnetization.
Therefore, we neglect the magnetostatic interaction between
them using the fact that the cluster size is much bigger than the
film thickness. Below we show that appearance of the cluster
state is mostly defined by the competition between exchange
and kinetic energy and weakly depends on the magnetostatic
energy.

The third state is the one where a Sk stays inside of a clus-
ter. Part of the cluster is magnetized up and part of the cluster
is magnetized down [see Fig. 2(d)]. The DW is in between
these two parts. Such a system has two more parameters: the
skyrmion radius rsk and the DW thickness wdw.

Note that ground magnetic state of the system can be differ-
ent from the considered three states. In particular, a FM cluster
may split into FM domains with opposite magnetization and
some nonzero or zero topological charge. Here we are not
considering this state. Instead, we study a skyrmion in the FM
cluster that is a metastable state of the system. The skyrmion
state can be created by a tip of a magnetic force microscope
or by other means.

A. OOP anisotropy requirement

While we consider out-of-plane magnetic anisotropy
K > 0, the magnetostatic interaction can transform it to ef-
fectively in-plane anisotropy. In the case of canted uniform
state the effective magnetic anisotropy is given by Kcan

eff =
K − 4πm2

s /�
3 cos(θc/2). We assume that Kcan

eff > 1 even at
θc = 0. In this case the effective anisotropy is out-of-plane in
all considered magnetic states. Experimental observations of
magnetic behavior of several bilayer systems with magnetic
oxides evidence that out-of-plane magnetic anisotropy can be
realized in practice [12].

B. Uniform canted state

The canted state of the first type is characterized by the
canting angle θc between neighboring magnetic moments.
The SO energy is zero in this case because on average the
magnetization rotation is absent [average ∂θ/∂r in Eq. (16) is
zero]:

E can1
so = 0. (18)

The MS, anisotropy, exchange, and kinetic average ener-
gies are given by the following expressions:

E can1
ms

Sst
= 2π�dd cos2(θc/2), (19)

E can1
an

Sst
= −K̃ cos2(θc/2)Sst/2, (20)

E can1
ex

Sst
≈ −3J̃ cos(θc), (21)

E can1
k

Sst
= −2t̃0 cos(θc/2)

(
4ñ0 − 2π t̃ ñ2

0

)
. (22)

Here we introduced normalized quantities t̃ = t/�, ñ0 = n0 ∗
�3, t̃0 = t0/�3, K̃ = K/�3, J̃ = J/�3, and �dd = m2

s /�
6.

The sample area is denoted Ss.
For the second type of the canted state the kinetic and

exchange energies are the same, E can1
k = E can2

k and E can1
ex =

E can2
ex . The MS energy is zero, E can2

ms = 0. And the anisotropy
energy has the form

E can2
an

Sst
= −K̃ sin2(θc/2)/2. (23)

Comparing the energies of two canted states and choosing
the one that is smaller we obtain the single expression for the
canted state energy:

E can
tot

Sst
= −3J̃ cos(θc) − 2t̃0 cos(θc/2)

(
4ñ0 − 2π t̃ ñ2

0

)

+
{

(2π�dd − K̃/2) cos2
(

θc
2

)
, cos2

(
θc
2

)
> K̃

(K̃−4π�dd )

−K̃/2 sin2(θc/2), cos2
(

θc
2

)
< K̃

2(K̃/2−2π�dd )
.

(24)

C. State with uniform FM clusters

The uniform cluster state is characterized by the cluster
area Scl and cluster size rcl. We assume that the magnetic
state in the clusters is the FM one. Outside the clusters there
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is an AFM state. At that, all conduction electrons are gath-
ered inside of the clusters. Therefore, the clusters are charged
negatively and the AFM regions are charged positively. The
contribution due to long-range Coulomb interaction E cl

Coul be-
comes finite. In addition, the phase boundary between FM
cluster and AFM surrounding space appears introducing the
phase boundary energy E cl

pb. The magnetic state is collinear.
Therefore, the SOI does not contribute to the system energy.
The total cluster energy E cl

tot has the form

E cl
tot = E cl

ex + E cl
an + E cl

ms + E cl
k + E cl

Coul + E cl
pb. (25)

We consider all these contributions in detail. The exchange
energy of this state has the form

E cl
ex

Sst
≈ 3J̃ (1 − 2η). (26)

Here we introduce the parameter η = Scl/Ss. The anisotropy
energy is minimized for this state:

E cl
an

Sst
= −K̃/2. (27)

For the FM cluster with cylindrical shape the MS en-
ergy can be estimated using a demagnetizing factor Ndem =
4π/(2t/

√
π/rcl + 1) [48]. The cluster MS energy is given by

E cl
ms

Sst
= 2π�dd

2t√
πrcl

+ 1
. (28)

The MS energy can be calculated more precisely using the
expression

E cl
ms =

∫
�cl

∫
�cl

Edd (r, r′)d3rd3r′. (29)

The kinetic energy of the FM cluster state has the form

E cl
k

Sst
= −2t̃0

(
4ñ0 − 2π t̃ ñ2

0/η
)
. (30)

The above kinetic energy is written for a parabolic band.
Therefore, for η → 0 (AFM uniform state) the kinetic en-
ergy in this equation is infinite. For very small clusters the
electron density reaches its limiting value 1 electron per site
(�3n0/η = 1) and cannot grow more. At this value the whole
electronic band is filled and the total kinetic energy becomes
zero. The compression ratio η cannot be smaller than �3n0.

The distribution of electron density in this state is inho-
mogeneous and the long-range Coulomb interaction appears.
Clusters are charged negatively with the density −|e|n0

(1/η − 1), the space surrounding the cluster is positively
charged with the density |e|n0. To simplify, the problem we
consider is noninteracting clusters. This assumption is justi-
fied because the region including the cluster and surrounding
matrix is neutral on average. Therefore, the main contribution
to the Coulomb energy appears due to the interaction of a
negatively charged cluster with the positively charged sur-
rounding media. To estimate this energy we replace the cluster
with an infinitely thin disk with uniform charge. This disk is
surrounded by a positively charged ring. The total charge is
zero. The disk radius is rcl, and the ring external radius is

rd = rcl/
√

η. The Coulomb energy has the form

E cl
Coul

Sst
= 2e2

t (ε + 1)

η

πr2
cl

∫
|r1|<Rd

∫
|r2|<Rd

d2r1d2r2
σ (r1)σ (r2)

|r1 − r2| .

(31)

Here the surface density σ (r) = n0t (1/η − 1) for r < rcl and
σ (r) = −n0t for rcl/η > r > rcl. The dielectric permittivity in
the denominator of Eq. (31) is the substrate dielectric constant.
The electric field produced by the charged regions of the MO
film penetrates the substrate and interacts with it. Generally,
on one side the MO film is surrounded by air with dielectric
permittivity of 1 and on the other side there is a substrate with
dielectric permittivity ε. Varying the dielectric permittivity of
the substrate one can control the strength of the Coulomb
interaction.

The last energy contribution is due to the phase boundary.
There are two contributions to the phase boundary energy:
(1) exchange interaction E ex

pb ≈ J̃ lclt�, where lcl = 2πrcl is
the cluster phase boundary length. The arrangement of mag-
netic moments at the cluster boundary is like the following
· · · ↑↑↑↓↑↓ · · · . Therefore, the phase boundary exchange
energy contribution is negative and favors formation of such
a boundary. Anisotropy energy is minimized for collinear
magnetic state and does not contribute to the phase boundary
energy. Oppositely, the kinetic energy contribution is posi-
tive. Electrons have a barrier at the phase boundary leading
to the kinetic energy increase. We estimate this contribution
as follows. Inside the cluster an electron can jump from its
site to all six neighboring sites. Therefore, the energy is
proportional to −3t0. At the boundary one of the directions
is prohibited. Therefore, the energy increases by t0/2. This
gives us an estimate of the kinetic energy increase Ekin

pb ≈
lclt�t̃0/2(4ñ0 − 2π t̃ ñ0/η). The total phase boundary energy
is given by Epb ≈ lclt�[J̃ + t̃0/2(4ñ0 − 2π t̃ ñ0/η)]. Finally,
for multiple clusters we obtain the following average phase
boundary energy:

E cl
pb

Sst
= 2η�

rcl
[J̃ + t̃0/2(4ñ0 − 2π t̃ ñ0/η)]. (32)

Minimizing the energy over η and rcl one can find the rel-
ative clusters area and size. Exchange, anisotropy, and kinetic
energies in Eqs. (26), (27), and (30) do not depend on the
cluster size rc. Therefore, the cluster size (at fixed clusters area
Scl) is defined by the competition of the Coulomb interaction,
MS interaction, and the phase boundary energy. Our estimates
show that the MS energy can be neglected when we define the
cluster size and average cluster area for typical magnetization
of MOs. The Coulomb energy decreases the cluster size since
it prefers to have short-range charge inhomogeneities rather
than the long-range ones. In contrast, the phase boundary
increases the cluster size.

D. Appearance of the FM cluster

The system is described by several parameters: J , t0, K ,
�dd, t , n0, and ε. We can reduce the number of independent
parameters. First, we introduce the effective anisotropy K̃eff =
K − 4π�dd. Such a combination enters most of the equa-
tions above. Also, we normalize all energies by t̃0. Finally,
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we obtain five independent parameters: Jeff = J̃/t̃0, Keff =
K̃eff/t̃0, ñ0, t̃ , and ε. Below we fix the film thickness t̃ = 2.5
(film thickness is approximately 1 nm) and discuss the system
properties using 2D state diagrams in coordinates (ñ0, Jeff )
for several values of substrate dielectric constant ε. We find
that the effective anisotropy does not qualitatively change
the state diagrams. Therefore, we show phase diagrams for
Keff = 0.002 only.

We use parameters which correspond to real materials.
In particular, we consider 0.01 < Jeff < 0.05. Based on the
analysis of magnetic ordering temperatures of the magnetic
oxides (such as LaSrMnO) in the range 100–300 K (follow-
ing Ref. [16]) we get J of about 0.03t0. The characteristic
kinetic energy in MO is in the range of tens of meV to
hundreds of meV. Magnetization of the LSMO material (in
the LSMO/SRO bilayer) is about Ms = 350 G (5/2 μB per
unit cell with 0.4 nm size). Using this value we find that the
MS contribution to energy is negligible. For t0 = 100 meV,
the magnetic anisotropy value Keff = 0.002 corresponds to
the anisotropy energy density of 500 kJ/m3, which is typical
for magnetic oxides [12,16]. The concentration of conduction
electrons is usually controlled by doping in MOs. Here we
study the region of low doping 0.001–0.06 electrons per unit
cell. In this region the correlation effects are weak.

Note that due to the interfacial effect the actual doping level
may be different and should be defined experimentally. For the
dielectric constant we compare two different values ε = 50
and ε = 2000. As we mentioned in the Introduction the DMI
was observed in LSMO/SRO bilayer films. So, this is a suit-
able pair of material (with right doping level) to study effects
discussed in the present work. Many oxide materials have a
dielectric constant of several tens (like TiO2 or La2O3) [49].
A lot of ferroelectrics have a dielectric constant of a few thou-
sand [50]. In most ferroelectrics, the dielectric constant can be
tuned by electric field or by varying temperature [50]. In some
organic ferroelectrics the dielectric constant may change with
temperature from below ten to a few thousand [51]. Thus, one
can control the Coulomb energy using external parameters
and eventually control the magnetic state of the system, see
Ref. [42].

First, we investigate where the cluster state is more favor-
able than the canted state. To do this for each set of parameters
(ñ0, Jeff ) we minimize the cluster state energy E cl

tot [Eq. (25)]
over the relative cluster area η and the cluster radius rcl and
the canted state energy E can

tot [Eq. (24)] over the canting angle
θc. Then we compare the optimized cluster state and canted
state energies and choose the lowest one.

Figure 3 shows the diagram comparing canted state and the
FM cluster state for Keff = 0.002 and ε = 2000. Blue areas
in the upper and lower right corners show the parameters
region where the canted state is more favorable. In the rest
of the parameter space (the colored region) the FM cluster
state is more favorable. Color in this region indicates the rel-
ative clusters area η. The relative cluster area η grows as one
increases the electron concentration. This can be understood
as follows. The electrons mediate an effective FM interaction
between localized magnetic moments. Therefore, increasing
the electron number leads to formation of a bigger FM region
in the film. The cluster size also increases as one decreases the
direct AFM interaction.
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FIG. 3. State diagram for MO film. All parameters defined in the
text. Color shows the value of compression ratio for cluster state η.
Small blue region in the right bottom corner corresponds to a canted
state. The red line shows the percolation threshold with η = 0.65.
Above this line the percolation appears and no separate clusters exist.

Note that as the relative cluster area grows the represen-
tation of the system as an ensemble of FM clusters becomes
less relevant. For a certain cluster area percolation appears and
an infinite cluster spanning the whole sample forms. Such a
film cannot be described in terms of clusters. Therefore, we
do not consider such a state as cluster state in this work. The
percolation threshold for 2D film is η = 0.65. The threshold
is shown by the red line in Fig. 3. Only the state to the right of
this line is considered as a cluster state.

Increasing Keff one can increase the parameters region with
the cluster state because anisotropy favors FM or AFM state
and not the canted one.

Cluster size is defined by the competition of the long-
range Coulomb energy and the cluster boundary energy. The
Coulomb interaction makes the cluster size smaller, while
the cluster boundary energy grows with reducing the cluster
size. Figure 4 shows the optimum cluster radius for the same
parameters as in Fig. 3 (Keff = 0.002, ε = 2000). Comparing
Figs. 4 and 3 one can see that the cluster radius decreases with
increasing the compression ratio 1/η. This happens because
the increase of the compression ratio increases the charge
inhomogeneity and therefore the long-range Coulomb inter-
action leading to the cluster size reduction. At low electron
concentration and large exchange constant the cluster radius
becomes very small (1 nm). This region is generally beyond
the validity of our model. Such small clusters cannot host
skyrmions. The skyrmion size is restricted by the DW width.
The skyrmion radius should be bigger than two DW thick-
nesses. The DW thickness is a few nm. Therefore, clusters
with radius less than 5 nm cannot have skyrmions. We show
a 5 nm cluster radius by the orange line in Fig. 4. Finally,
the region of parameters interesting for skyrmion formation is
restricted by the percolation limit on one side (red line) and
the smallest possible cluster radius (orange line).

The substrate dielectric constant is important. Figures 3
and 4 show the case of high dielectric constant, ε = 2000.
Figures 5 and 6 show the state diagram for low dielectric con-
stant ε = 50. In this case the Coulomb interaction is strong.

104423-6



ELECTRICALLY CHARGED MAGNETIC SKYRMIONS PHYSICAL REVIEW B 106, 104423 (2022)

Cluster state

0.02 0.04 0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

5

10

15

20

25

30

35

40

45

FIG. 4. Cluster radius in MO film vs electron concentration n0

and the normalized direct exchange interaction constant J̃/t̃0. All
parameters are defined in the text. The red line shows the percolation
threshold where η = 0.65. Above this line the percolation appears
and no separate clusters exist. Orange line shows the cluster radius
of 5 nm.

It does not change the region of parameters where the phase
separation appears. However, it reduces the clusters size in the
phase separated state. Big clusters which can host skyrmions
appear in a very small parameters region (enclosed by the red
and orange lines in Fig. 6).

E. Cluster with a skyrmion

Consider a FM cluster with the radius rc in an AFM matrix.
Let the cluster contain the Néel skyrmion with radius rsk.
The skyrmion consists of three regions [see Fig. 2(d)]. The
inner FM part, the DW, and the outer FM part with opposite
magnetization. The Sk radius rsk is assumed to be much bigger
than the DW width wdw. The DW contains approximately
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FIG. 5. Diagram of states for the MO film on the substrate with
ε = 50. See parameters in the text. Color shows the compression
ration value for cluster state η. Small blue region in the right bottom
corner is where the canted state is more favorable. The red line shows
where η = 0.65. This line shows the percolation threshold. Above
this line the percolation appears and no separate clusters are possible.
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FIG. 6. Cluster radius in MO film on the substrate with ε = 50
as a function of electron concentration n0 and the normalized direct
exchange interaction constant J̃/t̃0. See parameters in the text. The
red line shows the percolation threshold where η = 0.65. Above this
line the percolation appears and no separate clusters are possible.
Orange line shows the cluster radius of 5 nm.

Ndw = wdw/� atomic planes. The magnetization rotates in
the DW. The angle between the magnetic moments in the
neighboring atomic plane can be estimated as �θ = π/Ndw.
Note that the DW in the skyrmion is curved. Therefore, if
one moves along the DW the magnetization orientation also
rotates. Full 2π rotation occurs along the DW length 2πrsk.
One can estimate the mutual angle between two neighboring
magnetic moments in the same DW plane as �θ|| = �/rsk.

The Sk state energy differs from the FM cluster energy by
the DW energy. The energy of the DW consists of four parts:
(1) the exchange energy; (2) the anisotropy energy; (3) the
kinetic energy of electrons; and (4) the spin-orbit interaction
of electrons. The exchange component has the form

�W ex
dw = |J|NdwSdw[cos(�θ ) − 1 + cos(�θ||) − 1]

≈ −|J|tπ
�

(
rskπ

2

wdw
+ wdw

rsk

)
. (33)

Here Sdw is the number of magnetic moments along the DW
area. It can be estimated as Sdw = 2πrskt/�2. For the mag-
netic anisotropy energy we obtain

�W an
dw = KNdwSdw

4
= πKrsktwdw

4�3
. (34)

The total kinetic energy of all electrons in the DW region has
the form

W kin
dw = − 2πrskwdwtt0(4n − 2π�2tn2)

× [cos(�θ/2) + cos(�θ||/2)]. (35)

So, the DW contribution to the total kinetic energy is given by

�W kin
dw = πtt0�

2(n − π�2tn2/2)

(
rskπ

2

wdw
+ wdw

rsk

)
. (36)

Note that all three above contributions do not depend on
the DW type and are the same for both Néel and Bloch DWs.
The only assumption made is that within the DW the spins are
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rotated in the same plane by the same angle as we go from one
plane to the next one.

The next contribution to the cluster energy is the SOI.
According to Eq. (17) the SOI energy for the Néel Sk has the
form

�W so
dw = −αsoh̄π2rsktndw. (37)

Beside the DW energy, the existence of two oppositely
magnetized regions of the cluster changes the magneto-
static energy of the system (comparing to the state with
FM clusters). The correction to the dipole-dipole energy due
to skyrmion formation can be numerically calculated using
Eq. (3) with Sk magnetization distribution. We denote the
difference between the FM state MS energy and the Sk state
MS energy as �W Sk

ms .
The total skyrmion energy (energy difference between FM

and Sk states) is a sum of all considered contributions:

�W tot
Sk = �W ex

dw + �W an
dw + W kin

dw + �W so
dw + �W ms

Sk . (38)

F. Skyrmion stability diagram

Formation of skyrmions depends on competition of differ-
ent energy contributions considered above. A skyrmion can
be considered as a cylindrical DW. The kinetic energy of an
electron favors the FM order of magnetic moments in the
cluster, the AFM direct exchange counteracts this. In total,
in the parameters region where clusters form, the kinetic en-
ergy dominates producing the effective exchange interaction
of FM type, which counteracts the DW formation. Magnetic
anisotropy also increases the DW energy. The magnetostatic
interaction favors formation of magnetic domains and there-
fore favors formation of skyrmion even in the absence of SOI
(DMI interaction). However, our calculations show that the
MS energy in such a thin film with typical magnetization
of the MOs produces a very low energy contribution and is
not important. Similar estimates can be found in other pa-
pers [52–54]. The SOI of electrons leads to effective DMI
interaction, reducing the energy of a DW in the cluster. If
DW energy is positive the Sk does not exist. But for large
enough DMI interaction the DW energy becomes negative
and skyrmion formation is possible. Note that in this case
the length of the DW grows but it is limited by the size of
the cluster. Thus, the skyrmion formed in the cluster has a
radius close to the cluster size. Our simulations show that it is
smaller due to cluster boundary effect, DW thickness, and the
MS interaction.

Figure 7 shows the state diagram in coordinates J̃ , ñ0

(ε = 2000, Keff = 0.002, αsoh̄/� = 0.05t0) where the region
with Sk formation in the cluster is shown. The blue region
corresponds to the case where clusters are absent or the Sk is
unstable in the cluster. The colored region shows the Sk radius
in the skyrmion stability region. Generally, the Sks are stable
in the part of the region shown in Fig. 4 between orange and
red lines and at high enough J̃ . The smaller the direct AFM
exchange coupling constant, the bigger the effective total FM
exchange interaction and therefore the bigger the DW energy.
Thus, at low J̃ the skyrmion formation is less possible. This is
why the skyrmion stability regions correspond to high values
of J̃ .
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FIG. 7. State diagram of MO film placed on top of a substrate
with ε = 2000. All parameters are the same as in Fig. 3. Color
shows the skyrmion radius in the parameters region where skyrmion
is stable. Blue color shows the parameter region with an unstable
skyrmion.

Colors show the Sk radius. Comparing Figs. 7 and 4 one
can see that the Sk radius is almost the same as the cluster
radius.

In the skyrmion stability region the topological charge of
the cluster is one.

For small substrate dielectric constant (ε = 50) the
skyrmion is unstable in the considered parameter region. This
is because at low ε, big enough clusters occur only for small
exchange interaction constant J̃ [see Fig. 5(b)]. In this region
the DW energy is positive preventing formation of skyrmion.

As we mention above, in some substrates the dielectric
constant can be controlled using electric field or temperature.
In particular, this can be done in ferroelectric materials. This
opens the way to manipulate skyrmions in a hybrid structure
with MO film on top of a ferroelectric substrate.

G. Cluster electric charge

Above, we mentioned that electron concentration inside
of clusters is bigger than outside of clusters. Therefore, the
electric charge occurs in the cluster. Depending on the com-
pression ratio and the cluster size the total electric charge can
be different. A number of excessive electrons is given by

Nel = πr2
cl(1/η − 1)n0. (39)

Figure 8 shows the dependence of the cluster charge (Nel)
on the system parameters. While even the cluster without the
Sk has a nonzero charge, we show here only the region with
stable Sk. In this region clusters have both topological and
electrical charges. Generally, the bigger the cluster size the
bigger the electric charge it has. For a cluster radius of 12 nm,
the number of excessive electrons reaches 600 meaning that
such a cluster is sensitive to the electric field. Applying an
electric field one can move the cluster and move the Sks.
One can consider this as a magnetoelectric phenomena, where
one can move magnetic Sks with an electric field. Such an
electric field can be created with a scanning probe microscope
tip or with applying a voltage along the MO film. Due to
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FIG. 8. Diagram of states for the MO film placed on top of a
substrate with ε = 2000. Other parameters are the same as in Fig. 3.
Color shows a number of excessive electrons inside a cluster in the
parameters region where the skyrmion is stable. Blue color denotes
the parameter region where the skyrmion is not stable.

a big cluster charge the electric field needed to move the
cluster and Sk can be much lower than the field (and current)
needed to move Sks in artificial Co/Pt multilayer structures
via spin-transfer torque or spin-orbit torque effects.

H. Comments on thermal stability of skyrmions in MO

We consider the system at zero temperature and do not
take thermal fluctuations into account. Thermal stability of
skyrmions attracted a lot of attention recently [55,56]. There
are two paths for the skyrmion to annihilate due to the thermal
fluctuations: (1) through the contraction of skyrmion size and
finally collapsing the skyrmoin and (2) annihilation through
the boundary of a laterally confined magnetic structure. The
first path is energy consuming since the thermal fluctuations

need to overcome exchange interaction in this case. The sec-
ond scenario requires less energy and therefore is the more
probable one. Note however, that laterally confined magnetic
film considered in previous papers is not the same as the later-
ally confined magnetic cluster in the AFM matrix considered
in our paper. The boundary between FM and AFM region may
move and deform. So, the skyrmion annihilation conditions
may be very different and requires further studying.

IV. CONCLUSION

We considered an ultrathin magnetic oxide film on top
of the high dielectric constant substrate. We used the dou-
ble exchange model to describe the system behavior. We
include the Rashba spin-orbit interaction in the model. This
interaction exists at the interface of the magnetic oxide and
the substrate or other additional layer. The Rashba spin-orbit
interaction acts on electrons and is transformed into an effec-
tive Dzyaloshinskii-Moriya interaction for localized magnetic
moments in the magnetic oxide film. We showed that the
phase separation appears in such a magnetic oxide film in a
certain parameters region. Due to the phase separation electri-
cally charged magnetic clusters appear. Additionally, the DMI
interaction leads to formation of a magnetic skyrmion in the
electrically charged clusters. We showed that one can obtain
clusters having both electric and topological charges. Impor-
tantly, the clusters with sizes suitable for skyrmions formation
may occur only for substrates with a high dielectric constant.
Otherwise, clusters are too small for a skyrmion appearance.
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