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Skyrmion helicity: Quantization and quantum tunneling effects
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We derive the quantization of magnetic helicity in the solid state, and we demonstrate tunable macroscopic
quantum tunneling, coherence, and oscillation for a skyrmion spin texture stabilized in frustrated magnets. We
also discuss the parameter space for the experimental realization of quantum effects. Typically, for a skyrmion of
5 nm radius, quantum tunneling between two macroscopic states with distinct helicities occurs with an inverse
escape rate within seconds below 100 mK, and an energy splitting in the MHz regime. The feasibility of quantum
tunneling of an ensemble of magnetic spins inspires new platforms for quantum operations utilizing topologically
protected chiral spin configurations.
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I. INTRODUCTION

Macroscopic quantum tunneling has attracted both exper-
imental and theoretical attention for its implications for the
foundations of quantum mechanics as well as for its techno-
logical consequences [1]. It is a fundamental process in the
dynamics of superconducting and magnetic materials [2–7],
and a precondition for quantum operations [8]. Among the
promising candidates for practical applications, Josephson
junctions are currently one of the leading platforms for quan-
tum computing protocols [9,10], while mesoscopic magnetic
systems may offer complementary functionality [11–13].

Recently, it has been proposed that topologically pro-
tected nanoscale magnetization textures, so-called skyrmions,
could act as potential building blocks for realizing quantum
logic elements [13]. Their formation and dynamics are un-
derstood sufficiently well in spintronics [14,15], propelling
the interest beyond noninterventional creation or observa-
tion studies and extending their suitability for information
handling from the classical to the quantum regime [16–20].
Magnetic skyrmions of a few lattice sites in frustrated magnets
can exhibit quantized excitations while maintaining the same
topological charge. They develop quantized eigenstates with
distinct helicities and out-of-plane magnetizations [13].

Beyond the fundamental interest in the quantization of
helicity in the solid state, chiral magnetic textures can there-
fore open entirely new pathways towards qubit design with
a coherence time in the microsecond regime. The applicabil-
ity to quantum operations, however, depends on the viability
of quantum tunneling of an ensemble of magnetic spins.
Demonstrating the feasibility of this phenomenon will inspire
the development of new platforms for quantum operations
utilizing a topologically protected group of chiral spin con-
figurations.

*cpsaroud@uni-koeln.de
†christos@ntu.edu.sg

Here, we derive the quantization of helicity, and we show
quantum tunneling effects for elliptical skyrmions stabilized
in frustrated magnets under external fields and perturbations
(see Fig. 1). We demonstrate quantum tunneling processes
between two macroscopic states with distinct helicities that
occur with an inverse escape rate within seconds below
100 mK, for a typical skyrmion of 5 nm radius. In the absence
of an energy bias, quantum tunneling effects are found to
lift the degeneracy between the two states and give rise to
an energy tunnel splitting in the MHz regime. The quantum
phase induced by the Zeeman term leads to quantum phase
interference, observed as tunneling splitting oscillation with
the external magnetic field.

The structure of the paper is as follows. In Sec. II we
apply the method of collective coordinate quantization to an
inversion symmetric Heisenberg model with competing in-
teractions, and we derive the skyrmion dynamics in terms
of the quantized skyrmion helicity. We show that depend-
ing on the presence of external perturbations, skyrmions in
frustrated magnets provide a platform for the observation
of diverse macroscopic quantum phenomena. These include
macroscopic quantum tunneling, macroscopic quantum co-
herence, and macroscopic quantum oscillation, described in
detail in Secs. III, IV, and V, respectively. Experimental im-
plications on the observation of quantum effects are discussed
in Sec. VI, together with the parameter space for a practical
recipe. Our main conclusions are summarized in Sec. VII,
while some technical details are deferred to three Appendixes.

II. SKYRMION HELICITY QUANTIZATION

We consider two-dimensional (2D) insulating magnetic
layers governed by the imaginary time Euclidean action,

SE = iSNA�2
∫ β/2

−β/2
dτ

∫
dr�̇(1 − �) + NA

JS2

∫ β

0
dτH,

(1)
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where NA is the number of layers, S is the total spin,
and � is a dimensionless constant. Here we use a spheri-
cal parametrization for the normalized magnetization m =
[sin � cos �, sin � sin �, cos �]. �̇ denotes the imaginary
time derivative, and H = JS2

∫
drF (m) is the inversion-

symmetric classical Heisenberg model with competing inter-
actions [21],

F (m) = − 1
2 (∇m)2 + 1

2 (∇2m)2 − hmz + κm2
z . (2)

The exchange coupling J sets the energy scale, while κ =
K�2/J and h = gμBH�2/JS are dimensionless and denote the
anisotropy and magnetic field, respectively, with K in units
of energy and H in units of T. Imaginary time τ and space r
variables are given in reduced units. In physical units r′ = r�a
and τ ′ = τ/JS2, where a is the lattice constant. Also, we
set h̄ = 1. The quasi-2D behavior of Eq. (1) is established
when the transverse degrees of freedom are frozen out. This
is achieved when, due to the finite NA, the transverse spin
waves acquire a finite-size gap. Typically NA � 100 for an
operational temperature of 2–3 K [22,23].

Stationary configurations of action (1), denoted as �0 and
�0 = cos �0, are found by minimizing the energy functional,
i.e., by solving the equations δF/δ�0 = 0 = δF/δ�0. These
skyrmion solutions are characterized by a fixed topological
charge [24],

Q = 1

4π

∫
dr m · (∂xm × ∂ym). (3)

Rotationally symmetric solutions are described by
�0(r) = −Qφ and �0(r) = �0(ρ) with boundary conditions
�0(0) = π and �0(ρ → ∞) = 0. Here we use the
approximate solution �0(ρ) = 4 tan−1(e−ρ/γr ) cos(γi ), with
γr = 1/2Re(γ ), γi = Im(γ )/2 and γ = √−1 + γ̃ /

√
2,

γ̃ = √
1 − 4(h − 2κ ). The skyrmion radius is given

by λ = 2γra. The ferromagnetic (FM) background
mFM = (0, 0, 1) is stable for (h − 2κ ) � hcr , with hcr = 1/4.
An isolated skyrmion m0 exists as a metastable state above
mFM with energy H = J

∫
dr[F (m0) − F (mFM )] (see

Refs. [21,25] for more details on the model).
External fields and perturbations are described by,

F ′ =
∫

dr
[
κxm2

x + h⊥ymx + εzẑ · P
]
, (4)

where κx = Kxl2/J denotes the strength of an in-plane mag-
netic anisotropy, h⊥ = gμBH⊥al2/JS is the strength of an
in-plane magnetic field gradient, and εz = EPE a3�2/J is
the reduced out-of-plane electric field, with P = [êx × (m ×
∂xm) + êy × (m × ∂ym)] the electric polarization. Here Kx

is in units of eV, H⊥ is in T/m, E is in V/m, and PE is
in C/m2. The noncollinear spin texture generates an electric
polarization according to the spin current mechanism [26].
Electric fields have emerged as a new, powerful tool for a
current-free control of skyrmion dynamics [27–30], and they
provide a direct way for tuning skyrmion helicity [31].

The first term in the functional (4) corresponds to an in-
plane uniaxial magnetocrystalline anisotropy-term, which is
known to induce elliptical shape distortions in the skyrmion
profile [32]. In-plane anisotropy can be induced by a
piezoelectric stressor [33], or by lattice mismatch symme-
try breaking between the magnetic layer and nonmagnetic

substrate [34,35]. The uniaxial anisotropy creates elliptic
distortions in the skyrmion profile, parametrized here as
��(ρ, φ) = �0(ρ) + g(ρ) cos 2φ, where g(ρ) is dictated by
the microscopic mechanism responsible for skyrmion de-
formation. We use the phenomenological function g(ρ) =
ssech[(ρ − λ)/�0], with parameters λ, �0, and s � 1.

The model F is characterized by an unbroken global
symmetry, � → � + ϕ0, where ϕ0 is the skyrmion helicity.
ϕ0 is energy-independent due to the rotational symmetry of
the system, and it can be considered as a collective coordi-
nate. By employing quantum field theory methods and the
Faddeev-Popov techniques [13,36,37], the quantum skyrmion
dynamics is governed by the imaginary time Euclidean action,

SE =
∫ β/2

−β/2
dτ

[
iS̄ϕ̇0(P + �) + S̄2P2

2M + h1P + V (ϕ0)

]
,

(5)

where P(τ ) = Sz(τ ) − �, with Sz = ∫
dr(1 − cos �) the

canonical to ϕ0 momentum associated with global spin ro-
tations [38] and � = ∫

dr(1 − cos �0), with �0 the static
skyrmion profile. Here S̄ = SNA�2. The quantity S̄� corre-
sponds to roughly the total spin of the skyrmion relative to that
of the background. Details of the derivation and an explicit
proof that the employed functional quantization corresponds
to a canonical transformation of the original theory can be
found in Appendix A. The helicity potential is given by

V (ϕ0) = V0 cos 2ϕ0 − V1 cos ϕ0 + V2 sin ϕ0, (6)

where V0, V1, V2, as well as parameters h1 and M are discussed
in Appendix A. Notably V0 ∝ κx (in-plane anisotropy), V1 ∝
εz (electric field), and V2 ∝ h⊥ (magnetic field gradient).

Next, we employ a coherent state path integral formulation
with the partition function Z = ∫

Dϕ0DPe−SE Z̃ . Here Z̃ =∫
DχDχ†δ(F1)δ(F2)e− ∫

drdτχ†[G+K]χ describes the dynamics
of the fluctuating part of the field, and χ = (η, ξ ) with η, ξ

quantum fluctuations around the classical skyrmion configu-
ration, ξ = � − �0, and η = � − �0. Fi are constraints to
ensure that the treatment of the collective coordinates ϕ0, P
constitutes a canonical transformation. It appears convenient
to integrate out the canonical momentum,

Z =
∫

Dϕ0Z̃e
∫ β/2
−β/2[ M2 ϕ̇0

2−iAϕ̇0+V (ϕ0 )+c]
, (7)

where A = (h1M/S̄ − S̄�), and c is a constant. The sec-
ond term of the action is a total imaginary-time derivative,
which depends only on the initial and final values ϕ0(0), ϕ0(β )
and has no effect on the classical equation of motion. All
ϕ0(τ ) trajectories are periodic in imaginary time with period
β and a boundary condition ϕ0(τ + β ) = ϕ0(τ ) + 2πn, with
n an integer. The model resembles an electron moving on
a conducting ring crossed by flux �, while the parameter
A can be interpreted as a vector potential of the magnetic
flux penetrating the ring [39–41]. Depending on the potential
landscape V (ϕ0), we consider three distinct cases of quantum
tunneling (Fig. 2): (i) macroscopic quantum tunneling (MQT),
(ii) macroscopic quantum coherence (MQC), and (iii) macro-
scopic quantum oscillation (MQO).
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FIG. 1. Representation of skyrmion helicity quantum tunneling.
(a) An electric field (yellow plates), a uniaxial tensile stress (red
arrows), and an in-plane magnetic field gradient (blue arrow) create
a double-well helicity potential for elliptical skyrmions stabilized in
magnetic disks (green). (b) Quantum tunneling between two macro-
scopic states with distinct helicities can occur with an inverse escape
rate of �−1

Q ≈ sec, below a temperature Tc ≈ 100 mK, above which
thermal activation �th takes place. In the absence of an energy bias,
quantum tunneling effects give rise to an energy tunnel splitting �E
in the MHz regime.

III. MACROSCOPIC QUANTUM TUNNELING

We begin our analysis by considering the helicity po-
tential V (ϕ0) = V0 cos 2ϕ0 + V1 cos ϕ0 + V2 sin ϕ0, plotted in
Fig. 2(i). In the absence of V2, there exist two degenerate
minima, while a small bias V2 lifts the degeneracy, and a
state from the upper well (ϕ1) decays into the lower (ϕ2), a
process known as quantum tunneling. Given that ϕI is an in-
flection point closest to the right of ϕ1, found by the condition
V ′′(ϕI ) = 0 with V ′′′(ϕI ) < 0, the potential can be expanded
as

U (φ) = 27

4
Vmax

(
φ

φd

)2(
1 − φ

φd

)
, (8)

where we have shifted the coordinates such that U (φ) =
0 with φ = ϕ0 + ϕ1. We introduce the tunneling distance
φd = 3(ϕI − ϕ1) defined by U (φd ) = 0, and the barrier height
Vmax = −2(ϕI − ϕ1)3V ′′′(ϕI )/3. The possibility of quantum
tunneling arises when the potential barrier is small, i.e.,
Vmax � 1. More formally, the optimum condition for the ob-
servability of tunneling events is when ε = 1 − V1/V c

1 � 1
[42], where V c

1 is the coercive electric field found by requiring
V ′′(ϕm) = 0, with ϕm the maximum point closest to the right
of ϕ1.

The Euclidean action (1) is rendered stationary by the
instanton bounce trajectory φb(τ ) = φd sech2ω0τ/2, where
ω0 = 3(3Vmax/2Mφ2

d )
1
2 describes the motion of small oscilla-

tions at the potential minimum of U . This trajectory describes
the imaginary-time motion for which the skyrmion helicity
located at φ = 0 starts at τ = −∞ to roll down the slope of

FIG. 2. Potential barrier for a skyrmion. (i) Tunneling through
the potential barrier V (ϕ0) from a metastable energy minimum to the
other side of the barrier. (ii) Tunneling between degenerate ground-
state levels. Here, tunneling removes the degeneracy by splitting the
degenerate level into the true ground state and the first excited state.
(iii) Oscillation of tunneling splitting with respect to the magnetic
field.

the potential, arrives at φ = φb at τ = 0, and bounces back to
φ0 at τ = ∞ (see Fig. 3). The tunneling action is determined
only by the functional profile of U and is given by

SE (φb) =
∫ φb

0
dφ[

√
2MU (φ) − iA] = 36

5

Vmax

ω0
− iAφb.

(9)

If we now take into account that the escape rate is determined
by the action over the whole bounce, which leads from φ = 0
to φ = φb and back to φ = 0, we arrive at S0 = 36Vmax/5ω0.

FIG. 3. (a) Effective potential barrier U (φ) given in Eq. (8).
Here φI is the inflection point, φm is the maximum point, while
ω0 describes small oscillations at the potential minimum and ωm at
the inverted potential minimum. (b) The instanton bounce trajectory
φb(τ ). The skyrmion helicity located at φ = 0 starts at τ = −∞,
arrives at φ = φb at τ = 0, and bounces back to φ0 at τ = ∞.
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The escape tunneling rate �Q is given by the standard WKB
expression,

�Q = 2ω0

√
15S0

2π
e−S0 . (10)

Analytic expressions are given in Appendix B in the limit
of a small detuning energy between the two potential minima.

A. Finite-temperature effects

Let us now consider temperature effects. We make use of
the method of steepest descent, under the assumption that the
exponential factor e−SE (τ )−Eτ is stationary, i.e., ∂SE/∂E =
−τ (E ), with τ (E ) the imaginary-time oscillation period. The
path integral is evaluated over trajectories that satisfy the
first integral of the equation of motion at a given energy E ,
Mφ̇2

th/2 = U (φth ) − E . The Euclidean action has now the
form

SE (E ) = 2
∫ φ f (E )

φi (E )
dφ{

√
2M[U (φ) − E ] − iA}, (11)

with φi, f (E ) the turning points calculated by requiring
U (φi, f ) − E = 0, satisfying φi = 0 and φ f = φd in the zero-
temperature limit T, E → 0. Like before, we choose the phase
of the trajectory such that φth(τ ) = φth(−τ ) and φth(0) =
φ f (E ). Thus, the contributions from the gauge field A
vanish identically. In the semiclassical limit, the quantum-
mechanical rate is dominated by the periodic orbit with period
τ (E ) = β and oscillation time

τ (E ) =
√

2M
∫ φ f (E )

φi (E )

dφ√
U (φ) − E

. (12)

The action of Eq. (11) vanishes for E > Vmax, with Vmax

the height of the potential barrier. The period τ (E ) becomes
infinite in the limit of zero energy, while for E ≈ Vmax it tends
to a finite value τc = 2π/ωm, with ωm = ω0 the frequency
of small oscillations at the bottom of the inverted potential.
In this limit, there exists a temperature above which there is
no solution with the required period. The extremal trajectory
satisfying the periodicity condition is the stationary point
φm = 2φd/3 that corresponds to the minimum of the inverted
potential (see Fig. 3) and produces the well-known Boltzmann
exponent e−Vmax/kBT of pure thermal activation. The crossover
temperature Tc is found by the requirement Tc = ωm/2π .

We now discuss the WKB exponent and decay rate in the
entire range of temperature 0 � T � Tc and T > Tc. Although
thermal activation prevails above Tc, the quantum effect is still
incorporated into the preexponential factor [43,44],

�cl = ωm

2π

sinh(βω0/2)

sin(βωm/2)
e−βVmax , (13)

and it reduces to the classical transition state formula �cl =
(ω0/2π )e−βVmax in the T � ω0, ωm limit.

Below Tc, the thermal bounce φth(τ ) reduces to small os-
cillations near the bottom of the inverted potential [45],

φth(τ ) = φ0(T ) + δφ(T ) sin[ω(T )τ ], (14)

with φ0(Tc) = φm, δφ(Tc) = 0, and ω(Tc) = ω0. Using the
equation of motion Mφ̈th = U ′(φth ) and neglecting higher
harmonics, the coefficients are φ0(T ) = φd (1 + T 2/T 2

c )/3

FIG. 4. Euclidean action SE as a function of temperature. SE

decays exponentially above the crossover temperature Tc, which
marks the transition from quantum to classical behavior. The T1 �
T � Tc regime describes thermal corrections to the quantum action,
while below T1 the action is a constant up to exponentially small
corrections.

and δφ(T ) = √
2φd

√
1 − T 4/T 4

c /3. Finally, the approximate
form of the minimal action by employing the thermon trajec-
tory is

Sin(T ) = Vmax

T

(
1 − 3

T 2
(Tc − T )2

)
+ O([Tc − T ]2), (15)

and it is valid for T − Tc � Tc.
Next, we consider the tunneling rate in the low-temperature

regime T � Tc to calculate the leading thermal enhancement
due to thermal occupation of excited states in the well with en-
ergies En = ω0(n + 1/2) and escape rate �n = �Q(c2

0S2
0 )n/n!.

Here c0 = √
60, S0 is the action of the instanton, and �Q is the

corresponding tunneling rate given in Eq. (10). The thermal
rate is given by

�B =
∑

n �ne−βEn∑
n e−βEn

= 1

Z0

1√
2πτβ

e−SB (β ), (16)

where τβ = c2
0S0ω

2
0e−βω0 and

SB(β ) = S0
(
1 − c2

0e−βω0
)
. (17)

To summarize, the WKB exponent is given by SB(T ) of
Eq. (17) for 0 � T � T1, Sin(T ) of Eq. (15) for T1 � T � Tc,
and Scl = Vmax/T for T � Tc. Here T1 is found by the re-
quirement SB(T1) = Sin(T1). Figure 4 illustrates the Euclidean
action as a function of T/Tc in a wide temperature range.
It suggests that experimental observables are temperature-
independent below a characteristic temperature T1, similar
to temperature-independent magnetic relaxation rates found
experimentally in magnets [46,47] and superconductors [48].

B. Tunneling with dissipation

Let us now consider the effect of interaction of a skyrmion
with the microscopic degrees of freedom on the transition
rate. To include noise sources, we consider the magne-
tization dynamics encoded in the Landau-Lifshitz-Gilbert
equation (LLG) [49,50] ṁ = γ (−δH/δm) × m + αm × ṁ,
with γ the gyromagnetic ratio and α the Gilbert damping.
This translates to an Ohmic dissipative term in the equation of
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motion for the generalized coordinate of helicity [51],

Mϕ̈0 + αϕ0 ϕ̇0 + V ′(ϕ0) = ξ (t ), (18)

with αϕ0 = αS̄
∫

dr sin � and ξ (t ) a fluctuating force with
a classical ensemble average 〈ξ (t )ξ (0)〉 = 2αϕ0 T δ(t ). The
equation of motion Eq. (18) corresponds to the stationary path
of the total action [43],

Sdis =
∫ β/2

−β/2
dτ

[
1

2
Mϕ̇2

0 + V (ϕ0)

+
∫ τ

0
dτ ′K(τ − τ ′)[ϕ0(τ ) − ϕ0(τ ′)]2

]
, (19)

where K(τ ) = αϕ0 (πT )2/π sinh2(πT τ ). In this case, the
crossover temperature between thermal hopping and quantum
tunneling decreases monotonically with increasing damping
strength,

Tc = ωR

2π
= ω0

2π

⎛
⎝

√
1 −

(
αϕ0

2ω0

)2

− αϕ0

2ω0

⎞
⎠. (20)

In the classical limit T/Tc → ∞, the transition rate is given
by the classical form �cl = (ωR/4π )e−βVmax , while at T � Tc

one finds [43]

�Q = 6

√
6ω0Vmax

π

(
1 + 2.86

αϕ0

2ω0

)
e
−S0

(
1+45ζ (3)

αϕ0
2ω0π2

)
. (21)

Direct evidence for quantum tunneling is associated with
the temperature independence of an observable, typically the
magnetization relaxation time. To detect quantum effects, �−1

Q
of Eq. (21) must not exceed a few hours, and Tc should be
experimentally accessible. In Sec. VI we provide estimates of
these quantities, and we define the parameter space for which
MQT for the skyrmion helicity is realistically possible.

IV. MACROSCOPIC QUANTUM COHERENCE

By tuning the external helicity potential, magnetic
skyrmions in frustrated magnets can offer a platform for the
observation of diverse quantum effects. We consider the tun-
neling between a doubly degenerate magnetic state known
as macroscopic quantum coherence. Here tunneling removes
the degeneracy by splitting the degenerate level into the true
ground state and the first excited state with an energy splitting
�E .

In the absence of detuning energy V2, which is the re-
sult of an applied magnetic field gradient, skyrmion helicity
experiences a symmetric double-well potential landscape
[see Fig. 2(ii)] with two minima at ±ϕs, for a symmetric
bistable potential with shifted coordinates. Near ±ϕs and
for ε = 1 − V1/V c

1 � 1, with V c
1 the coercive force, the po-

tential is approximated by V (ϕ0) = (Vb/ϕ
2
s )(ϕ2

0 − ϕ2
s )2, with

Vb = V0ϕ
2
s (1 − Ṽ 2

1 )/2, ϕs � 2
√

1 − Ṽ1/
√

1 + Ṽ1, and Ṽ1 =
V1/4V0. The instanton (anti-instanton) solution connects the
two potential minima −ϕs to ϕs (ϕs to −ϕs), and it corre-
sponds to a nontrivial solution of the equation of motion
Mϕ̈b − V ′′(ϕb) = 0 with boundary conditions ϕb(−β/2) =
∓ϕs and ϕb(β/2) = ±ϕs. Solutions are described by ϕb(τ ) =
±ϕstanh(ωbτ ), with ωb = √

V ′′(ϕs)/4M = √
2Vb/M the os-

cillator frequencies of the local potential minima (see Fig. 5).

FIG. 5. (a) Effective double-well potential V (ϕ0) with two min-
ima at ±ϕs. Here ωb describes small oscillations at the potential
minimum. (b) The instanton bounce trajectory ϕb(τ ) (blue line)
connects the two potential minima −ϕs to ϕs while the anti-instanton
solution (red line) connects ϕs to −ϕs.

The probability amplitude for the skyrmion to tunnel from
an initial ϕi to a final ϕ f is given by

ZE (ϕi, ϕ f , β ) = N
∫ ϕ f

ϕi

Dϕ0e
− ∫ β

2

− β
2

dτ [ M2 ϕ̇2
0+V (ϕ0 )−iAϕ̇0]

, (22)

where N is an overall normalization of the measure in the
path integral and is independent of the potential. Since we are
interested in the β → ∞ limit, the instantons stay mostly near
the maxima, and the temporal extension of the instanton is set
by the oscillator frequencies of the local potential minima.
Following the dilute instanton gas approximation (DIGA)
[52–54], approximate solutions of the stationary equation in-
clude anti-instantons/instanton pairs, assumed to have too
little overlap to interact with each other.

Taking into account the multi-instanton configurations un-
der DIGA, and fixing N as explained in detail in Appendix C,
we find

ZE (ϕs, ϕs, β ) =
√

2Mωb

π
e−βωb cosh(�Eβ/2), (23)

while the tunneling splitting is given by

�E = 16ωb

√
Vbϕs

πMωb
e− 8ϕ2

s Vb
3ωb . (24)

Equations (23) and (24) assume tunneling processes with
boundary conditions ϕ(∓β/2) = ϕs and an even number of
alternating instantons and anti-instantons, such that contribu-
tions from the gauge potential A cancel out.

The tunneling splitting in physical terms is understood
as follows. In the quantum Hamiltonian language, the sys-
tem has two low-lying eigenstates located in the two local
minima. In the presence of a weak interbarrier coupling
emerging from quantum tunneling effects, the two states
split into a symmetric (antisymmetric) |S〉 (|A〉) eigen-
state, with energies εS,A. The transition amplitudes are
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FIG. 6. (a) Effective periodic potential V (ϕ0) with minima at
±(2n + 1)π/2. The blue dashed line corresponds to the instanton
solution ϕ+ connecting the (2n + 1)π/2 and (2n + 3)π/2 vacua in
a clockwise direction. Due to potential symmetry under π rotations,
the red dashed line corresponds to an equivalent instanton solution
ϕ−, connecting the (2n + 1)π/2 and (2n + 3)π/2 vacua in an anti-
clockwise direction. Anti-instantons ϕa connecting the (2n + 3)π/2
vacuum to (2n + 1)π/2 are denoted with the green dashed line.
(b) The instanton bounce trajectories ϕ+(τ ) (blue line), ϕ−(τ ) (red
line), and ϕa(τ ) (green line) as a function of imaginary time.

expressed as

ZE (ϕs,±ϕs, β ) ≈ 〈ϕa(|S〉e−εSτ 〈S| + |A〉e−εAτ 〈A|)| ± ϕa〉

≈ C

2
(e−(ωb−�E )β/2 ± e−(ωb+�E )β/2), (25)

with εS,A = ωb/2 ± �E/2 and �E the tunnel-splitting.

V. MACROSCOPIC QUANTUM OSCILLATION

In the previous section, we showed that tunneling between
degenerate vacua results in energy level splitting. We will
now demonstrate how the gauge potential A leads to the
phase interference, observed as the oscillation of tunneling
splitting [39]. We consider the simplified potential V (ϕ0) =
V0 cos(2ϕ0), i.e., in the absence of an electric field V1 and a
magnetic field gradient V2 [see Fig. 2(iii)]. The instanton equa-
tion of motion reads Mϕ̇2

0/2 = V (ϕ0), where we have shifted
the potential V (ϕ0) = 2V0 cos2(ϕ0), such that V (ϕ0) > 0. The
potential is periodic with a period π , the vacua are located
at ±(2n + 1)π/2, and the positions of the potential peaks are
at ±nπ . The instanton solution ϕb = sin−1 tanh(ωbτ ) + nπ ,
with ωb = 2

√
V0/M, starts from vacuum at ϕi = (n − 1/2)π

at τ = −∞, reaches the center of the potential barrier ϕ0 =
nπ at τ = 0, and finally arrives at the neighboring vacuum
at ϕ f = (n + 1/2)π at τ = +∞. Since the potential is sym-
metric under π rotations, a transition from ϕi to ϕ f can occur
either in the clockwise ϕ+ = sin−1 tanh(ωbτ ) + nπ or in the
anticlockwise direction ϕ− = − sin−1 tanh(ωbτ ) + (n − 1)π
(see Fig. 6 for a schematic illustration). The action has the
form

SE (ϕ±) = S0 ∓ iAπ, (26)

FIG. 7. Tunneling splitting �E of Eq. (28) oscillates with exter-
nal field h with a period �h(h) = h1M/2S̄ − S̄�/2 that depends on
the magnetic field.

with S0 = 8V0/ωb being independent of the direction of tun-
neling, while the gauge term A gives rise to a phase with
an opposite sign, depending on the direction of tunneling.
We consider contributions from clockwise and anticlockwise
tunneling, as well as contributions from the infinite number
of instanton and anti-instanton pairs. We note that the phase
from the gauge potential for any instanton–anti-instanton pair
vanishes. Thus the transition amplitude is expressed as [23,55]

ZE (ϕi, ϕs, β ) =
√
Mωb

π
e−βωb/2 sinh(�Eβ/2) (27)

with a tunneling splitting

�E = 2| cos(πA)|
√

8V0ωb

2πM e−S0 . (28)

Details of the calculation are provided in Appendix C.
From Eq. (28) it becomes apparent that the tunneling splitting
is quenched, �E = 0, whenever A = h1M/S̄ − S̄� = k +
1/2, with k an integer. Quantum tunneling can be completely
suppressed for magnetic systems with half-integer total spin
as a result of destructive quantum interference between tun-
neling paths [23,56,57]. The so-called spin-parity effect is
related to the Kramers degeneracy in systems that obey time-
reversal symmetry, and it is a direct result of the topological
phase eiS̄�ϕ̇0 , with S̄� the total spin of the skyrmion. Here we
report an additional tunneling rate quenching with external
field, related to an Aharonov-Bohm type MQO in spin sys-
tems [39–41,58].

Although both the topological spin Berry phase (S̄�) and
the quantum phase induced by the Zeeman term (h1M/S̄) do
not affect the equation of motion for the skyrmion helicity,
the gauge potential A leads to quantum phase interference
of two equivalent tunnel paths, with a clear signature on the
tunneling splitting �E as a function of the magnetic field. In
Fig. 7 we illustrate the quenching of the tunneling splitting
with external field h, and we note that both the skyrmion mass
M and spin � depend on its size, and are thus inversely
proportional to the external magnetic field, rendering A a
nonmonotonous function of h. The red line depicts the tunnel-
ing splitting amplitude �E0 = 2(8V0ωb/2πM)1/2e−S0 , while
the oscillation period is a magnetic-field-dependent quantity
�h = h1M/2S̄ − S̄�/2.
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TABLE I. Tunneling quantities �−1
Q and Tc for a skyrmion of size

λ = 5 nm and for various values of the parameter ε = 1 − Ez/Ec
z ,

with Ec
z = 1.23 mV/μm the coercive electric field required to di-

minish the barrier height.

ε E (mV/μm) �−1
Q (s) Tc (mK)

0.58 0.51 1.5 × 108 108
0.41 0.72 2.67 98
0.27 0.89 3 × 10−5 79

VI. OBSERVATION OF QUANTUM EFFECTS

To observe quantum effects, �−1
Q of Eq. (21) must be in

the few hours range and Tc must be experimentally accessible.
Here we use a magnetic material with J = 0.5 meV, K/J =
0.086, Kx/J = 0.006, and H = 2.44 T. Also, an effective
spin NAS = 20, which corresponds to a total magnetiza-
tion Ms = NASgμB/a3 = 0.37 MA/m, electric polarization
PE = 20 μC/cm2, ultralow Gilbert damping α = 10−5, and
magnetic field gradient H⊥ = 1.59 mT/μm. The degree of
frustration is l = √

13/4. The coercive electric field required
to diminish the barrier height is Ec

z = 1.23 mV/μm.
The considered model Eq. (2) corresponds to the con-

tinuum model of either the J1 − J3 Heisenberg model on a
triangular lattice or the J1 − J2 − J3 Heisenberg model on a
square lattice [21,59]. The critical ratio J3/J1 for the emer-
gence of magnetic spirals and other modulated spin states
is 1/3. Triangular magnets with transition-metal ions are
known to be frustrated magnets, including NiGa2S4 with
|J3/J1| = 0.2 [60], NiBr2 with |J3/J1| = 0.26 [61,62], and
α-NaFeO2 with |J3/J1| = 1 [63,64]. Skyrmion lattice phases
have been observed in the centrosymmetric frustrated triangu-
lar Gd2PdSi3 [65] and kagome Gd3Ru4Al12 [66] magnets.

Table I indicates that MQT for a skyrmion of radius
λ = 5 nm is realizable below 100 mK within seconds. Fig-
ure 8 shows that quantum tunneling events diminish with
λ and NA. For the same set of parameters and H⊥ = 0, the
tunneling splitting of Eq. (24) corresponds to �E = 3.2 ×
10−2 MHz for E = 0.59 mV/μm (ε = 0.4), �E = 10.2 MHz
for E = 0.69 mV/μm (ε = 0.3), and �E = 70 MHz for

2 4 6 8 10

λa

0.0

2.5

5.0

7.5

10.0

S 0
/N

A
S

FIG. 8. Skyrmion size λ dependence of the Euclidean action S0.
NA is the number of 2D layers, S is the total spin, and a is the lattice
constant.

E = 0.74 mV/μm (ε = 0.24). To reproduce Fig. 7 in physical
units, J/h̄ = 759.6 GHz and J/gμBl2 = 5.31 T.

We note that additional magnetic anisotropy terms are
allowed by symmetry and should be taken into account.
In particular, the inclusion of the nonconventional in-plane
fourfold crystal anisotropy term ∝ m4

x + m4
y [67–69] breaks

the rotational degeneracy of the skyrmion helicity and leads
to a double-periodic potential term cos 2ϕ0 for a skyrmion
with an elliptical profile. Similarly, the presence of the
Dzyaloshinskii-Moriya (DM) interaction [70,71] gives rise to
sin ϕ0. Thus, their effect is already included in the effective
potential term Eq. (8). We note, however, that their strength K4

should be a perturbation to the leading frustration, K4/J � 1.
This condition ensures that the tunneling process between dis-
tinct helicity states occurs within the specified experimentally
accessible regime.

Over the years, direct observations of MQT in small mag-
netic structures revealed quantum behavior in a variety of
systems. For example, quantum tunneling of the magnetiza-
tion (QTM) has been extensively investigated in high-spin
single-molecule magnets, such as Mn12 [72], Fe8 [73], and
Mn4 [74]. These systems possess an energy barrier for
the reversal of the magnetic moment due to an Ising-type
magnetocrystalline anisotropy, and they lie at the interface be-
tween classical and quantum-mechanical behavior. Typically,
QTM is observed by magnetization hysteresis displaying a
staircase structure, originating from thermally assisted QTM
[5,75,76]. The hysteresis loops are temperature-independent
below 350 mK for Fe8 [77] and 300 mK for Mn4 [78], in-
dicating entry to a pure quantum regime. Another approach
is based on the temperature independence of the magnetic
relaxation time below a crossover temperature [73,79–81].

The study of short-time magnetic dynamical properties
offers further evidence for quantum coherent tunneling. Mea-
surements of the frequency-dependent magnetic susceptibility
and magnetic noise of horse-spleen ferritin using a thin-film
dc SQUID susceptometer as a sensor revealed a well-defined
resonance below 200 mK [4,82]. The resonance is inter-
preted as the tunneling splitting between two macroscopic
states with the corresponding frequency being temperature-
independent below 200 mK. Experimental evidence for a
long-lasting quantum coherence and oscillations in the Fe4

complex was demonstrated using pulsed electron spin res-
onance (ESR) spectroscopy [83]. Here, the tunneling rate
quenching of MQO originating from the destructive interfer-
ence of symmetry-related spin paths was investigated using
an array of micro-SQUIDs in single crystals of Fe8 [77].
The measurements revealed the anticipated oscillations of the
tunneling splitting as a function of a magnetic field applied
along the hard anisotropy axis, with a period of 0.41 T. Other
types of QTM between two magnetization states involve the
quantum tunneling of the domain wall [7] or magnetic vortex
[84] position. The above-mentioned experimental demonstra-
tions suggest that quantum magnetic tunneling is common
among mesoscopic spin systems.

Nevertheless, the quantum tunneling effects in skyrmion
systems described in the preceding paragraphs do not involve
reversal of magnetization, hence they are more challenging
to detect. It is promising, however, that many efforts have
been devoted toward the development of sensors to detect
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magnetic signals with quantum sensitivity. In particular, solid-
state spins of impurities have become powerful quantum
sensors with high electric and magnetic field resolution [85].
Among them, nitrogen-vacancy centers in diamond have been
used to measure skyrmion helicity in a magnetic multi-
layer [86], whereas single-magnon detectors based on hybrid
quantum systems [87,88] provide a natural platform to mea-
sure the frequency shift originating from quantum tunneling
between two states with distinct helicities. In this regard,
magnetic resonance techniques with a detection sensitivity at
the single-spin level, such as magnetic resonance force mi-
croscopy [89,90], electron paramagnetic resonance combined
with scanning tunneling microscopy [91,92], and pulsed ESR
[93], can also be exploited. Recently developed theoretical
methods can be used to distinguish skyrmion helicity from
stray magnetic field or magnetic force experimental measure-
ments [94]. Furthermore, skyrmion helicity dynamics may be
detectable using resonant elastic x-ray scattering combined
with ferromagnetic resonance [95,96].

VII. CONCLUDING REMARKS

In this work, we give a detailed derivation of the tunnel-
ing problem of skyrmion helicity in frustrated magnets out
of an effective potential. We adopt a path-integral quantiza-
tion method and introduce skyrmion helicity by performing
a canonical transformation of the dynamical variables in the
phase-space path integral. This approach describes the quan-
tum mechanics of a massive particlelike single degree of
freedom. We provide analytical expressions for the effective
mass, and we demonstrate that the Zeeman energy gives rise
to an effective gauge potential.

An in-plane magnetic anisotropy, an electric field, and a
magnetic field gradient create a double-well potential with
tunable barrier height. Within an instanton approach, we de-
rive the WKB exponent, crossover temperature, and escape
rate describing the quantum tunneling out of the metastable
potential well. Finite temperatures are incorporated into
the calculation in the entire temperature range, as well as the
effect of Ohmic dissipation on the tunneling rate.

In the absence of a bias field, skyrmion helicity experiences
a symmetric double minimum. The system performs coherent
oscillations between two degenerate wells and exhibits MQC
at sufficiently low temperatures. We provide an analytical
expression for the energy tunneling splitting as a function of
system parameters.

For a periodic potential due to an in-plane anisotropy, the
effective gauge potential leads to quantum phase interference
similar to the Aharonov-Bohm type effect in spin tunneling.
Symmetry-related paths interfere destructively, quenching
the tunneling rate. The tunneling splitting oscillates with
the external uniform magnetic field, with a magnetic-field-
dependent oscillation period.

Special attention is paid to the regime of applicability of
our results. The tunneling rate and crossover temperature are
estimated for typical material parameters. For a skyrmion of
radius 5 nm, MQT is realizable below 100 mK within seconds,
while the tunneling splitting lies in the 10–70 MHz regime.

Our study suggests that quantum mechanics manifests it-
self at the macroscopic level of skyrmion helicity. Notably, by

tuning the external helicity potential, magnetic skyrmions in
frustrated magnets can offer a platform for the observation of
diverse quantum effects, including MQT, MQC, and MQO.
An in situ control of the barrier height is also essential for a
detectable quantum tunneling. Our formalism can serve as a
basis for future experimental investigations of the quantum
behavior of skyrmion helicity. Advances in the theoretical
understanding of macroscopic quantum effects are expected
to have an impact on the development of new platforms for
quantum operations utilizing magnetic skyrmions.
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APPENDIX A: SKYRMION QUANTIZATION
AND INTERNAL SYMMETRY

For completeness, we derive the skyrmion quantization,
originally introduced in Ref. [13]. We also demonstrate
explicitly that the employed methods for the functional
quantization of the skyrmion field correspond to a canoni-
cal transformation of the original theory with second class
constraints.

The partition function of the model is given by Z =∫
Dme−SE , with SE described by Eq. (1), while the dynamical

part of the action

SSW = iS̄
∫ β/2

−β/2
dτ

∫
drA(m) · ṁ, (A1)

where A(m) = m × ms/(1 − m · ms) is the gauge poten-
tial and ms is the Dirac string. Under a choice of ms =
−ẑ and a spherical parametrization for the field m, SW Z =
iS̄

∫
τ,r(1 − �)�̇ in Eq. (1). For a discussion on the gauge

choice, the reader is referred to [38]. We introduce field
n = √

1 − cos �/ sin �m and the corresponding vector field
An = ∂�n such that An · ṅ = (1 − �)�̇. The model H is
characterized by an unbroken symmetry m → M(ϕ0(t ))m
with

M =
⎡
⎣cos ϕ0 − sin ϕ0 0

sin ϕ0 cos ϕ0 0
0 0 1

⎤
⎦.

The zero mode associated with infinitesimal rotations is
An0 = ∂�n0, where n0 describes the skyrmion profile. This
zero mode leads to infrared divergences, which are removed
by imposing constraints of the form F1 = ∫

drAn0 · (ñ − ñ0)
and F2 = (1/�)

∫
drAn0 · (Ãn − Ãn0 ). Here we use the tilde

notation to denote rotated vectors Ã = MA, � = ∫
drAn0 ·

An0 , and we note that the second constraint F2 ensures the
conservation of the conjugate to ϕ0 internal angular momen-
tum, denoted as Sz. These are δ-constraints, introduced in the
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path integral as follows:

1 =
∫

Dϕ0Jϕ0δ(F1), 1 =
∫

DSzJSzδ(F2), (A2)

with Jϕ0 = δF1/δϕ0 and JSz = δF2/δSz the Jacobians of the
transformation.

Next we separate the field into a classical static solution
parametrized by the helicity ϕ0(τ ), promoted to a time-
dependent dynamical variable, and the quantum fluctuations
around it, n = ñ0 + γ̃ . Similarly, we introduce An = cÃn0 +
ζ̃. Constant c ensures that the above change of variables
constitutes a canonical transformation and is specified from
the momentum conservation constraint p − Sz = F2, with p =∫

dr(1 − �)∂ϕ0�. We find c = (Sz − ∫
r ζ̃ · ∂ϕ0 ñ)/

∫
r Ãn0 ·

∂ϕ0 ñ, and we confirm that the phase-space path integral retains
its canonical form

∫
r,τ An · ṅ = ∫

τ
Szϕ̇0 + ∫

r,t ζ̃ · ˙̃γ , while the
two Jacobian factors cancel, Jϕ0 JSz = 1.

To analyze the energy functional F in terms of the new
variables, it appears convenient to apply the transformation
�̄(r, τ ) = [Sz(τ ) − ∫

r η(r, τ )∂φ�(r, τ )]�̄0(r, τ )/�+ η(r, τ )
and �(r, τ ) = �0(r, ϕ0(τ )) + ξ (r, τ ), with �̄ = 1 − �.
We then verify that the Wess-Zumino term maintains its
canonical form, SW Z = iS̄

∫
�̄�̇ = iS̄[

∫
τ

Szϕ̇0 + ∫
r,τ ηξ̇ ].

The old variables � and � have the usual canonical Poisson
brackets {�(r, τ ),�(r′, τ )} = δ(r − r′), where

{A(r), B(r′)} =
∫

dr′′
[

δA(r)

δ�(r′′)
δB(r′)
δ�(r′′)

− δA(r)

δ�(r′′)
δBr′

δ�(r′′)

]
,

(A3)

while in the extended phase space [ϕ0, Sz, η, ξ ] the Poisson
bracket has the structure

{A, B}PE = δA

δϕ0

δB

δSz
− δA

δSz

δB

δϕ0

+
∫

dr′′
[

δA(r)

δξ (r′′)
δB(r′)
δη(r′′)

− δA(r)

δη(r′′)
δBr′

δξ (r′′)

]
.

(A4)

Constraints F1, F2 are second class with a nonvanishing Pois-
son bracket {F1, F2} = �. Restriction of the dynamics to the
constraint surface is achieved through the introduction of
Dirac brackets,

{A, B}D = {A, B}PE + {A, F1}PE�−1{F2, B}PE

− {A, F2}PE�−1{F1, B}PE . (A5)

Geometrically, the Dirac bracket is the pullback of the Poisson
bracket to the constraint surface, and it satisfies all the prop-
erties of the ordinary Poisson bracket. By a straightforward
computation, we verify that {�(r),�(r′)}D = δ(r − r′).

The components of the energy H = NA
∫

dr[F (r) −
F (mFM )] in terms of the new variables are given by

H = H0 + h1P + S̄2

2MP2 + O(P3) + O(ξ 2, η2, ξη), (A6)

where P(τ ) = Sz(τ ) − � is the momentum from its
static value �, and for now we ignore the effect of the
quantum fluctuations. H0 corresponds to the energy of
the static skyrmion, while the effective magnetic field
and mass are given by h1 = NA[h − κh + 2I1/�] and

M−1 = 2NA[κM + I1/�
2]/S̄2. We introduce κh = ∫

r(1 −
�0)�0/�, κM = κ

∫
r(1 − �0)2/�2, and I1 = ∫

r[(�′
0 +

ρ�′′
0 )2/ρ2 − �′

0]. V0 = 2πNAκx
∫

ρdρg(ρ) sin(2�0),
V1 = 2πNAεz

∫
ρdρ[sin 2�0/2ρ + �′

0], and V2 =
2πNAh⊥

∫
ρdρ[ρ sin �0/4].

APPENDIX B: ANALYTIC EXPRESSIONS
FOR THE MQT PROBLEM

Here we provide expressions for the various quantities
entering the definition of Eq. (8) in the limit of a small de-
tuning energy between the two potential minima, V2 � 1. We
find ϕ1 = tan−1(−[1 − Ṽ 2

1 ]1/2/Ṽ1) + Ṽ1Ṽ2/(1 − Ṽ 2
1 ) + O(Ṽ 2

2 ),
ϕ2 = tan−1([1 − Ṽ 2

1 ]1/2/Ṽ1) + Ṽ1Ṽ2/(1 − Ṽ 2
1 ) + 2π + O(Ṽ 2

2 ),
and ϕI = tan−1 (−[8 − 2Ṽ1(Ṽ1 + v1)]1/2/[Ṽ1 + v1]) − Ṽ2/v1 +
O(Ṽ 2

2 ) with v1 = [8 + Ṽ 2
1 ]1/2. Here we use Ṽ1 = V 1/4V0 and

Ṽ2 = V2/4V0. Further, we define ϕm = π − Ṽ2/(1 − Ṽ1) +
O(Ṽ 2

2 ).

APPENDIX C: TRANSITION AMPLITUDES
AND FLUCTUATION DETERMINANTS

In this Appendix, we provide detailed calculations of the
transition amplitude ZE of Eq. (22) as well as the tunneling
splitting �E of Eqs. (24) and (28).

1. Transition amplitude

Following the saddle-point approximation, we expand
ϕ0(τ ) = ϕb(τ ) + φ(τ ), with φ(τ ) = ∑∞

n=0 cnφ̃n(τ ) satisfying
the orthogonality condition∫ β

2

− β

2

dτ φ̃n(τ )φ̃m(τ ) = δnm, (C1)

and the boundary condition φ̃n(±β/2) = 0. The action up to
second order in φ is written as

SE = SE (ϕb) + 1

2

∫ β

2

− β

2

dτφ(τ )F̂ (ϕb)φ(τ ) + O(φ3), (C2)

where we have introduced the abbreviation [−Md2/dτ 2 +
V ′′(ϕb)]δ(τ − τ ′) = F̂ (ϕb)δ(τ − τ ′).

In terms of the eigenfunctions φ̃n, with F̂ (ϕb)φ̃n = λnφ̃n,
the action reads

SE = SE (ϕb) + 1

2

∑
n

λnc2
n, (C3)

while the transition amplitude (22) is given by

ZE (ϕi, ϕ f , β ) � N e−S0(ϕb)
∏

n

∫
dcn

2π
e− 1

2

∑
n λnc2

n

= N e−SE (ϕb)( det[F̂ (ϕb)])−1/2. (C4)

2. Instanton solution and zero mode

In the neighborhood of ±ϕs and for ε = 1 − V1/V c
1 � 1,

with V c
1 the coercive force, the potential is approximated by

V (ϕ0) = (Vb/ϕ
2
s )(ϕ2

0 − ϕ2
s )2, with Vb = V0ϕ

2
s (1 − Ṽ 2

1 )/2 and

ϕs � 2
√

1 − Ṽ1/
√

1 + Ṽ1. The instanton (anti-instanton) so-
lution is ϕb(τ ) = ±ϕstanh(ωbτ ), with ωb = √

V ′′(ϕs)/4M =
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√
2Vb/M the oscillator frequencies of the local potential min-

ima. The Euclidean action is obtained by Eq. (1), SE (ϕb) =
S0 + 2iAϕs, where S0 = 4Mϕ2

s ωb/3 = 4
√

2MVbϕ
2
s /3. The

instanton breaks the time-translation symmetry of the time-
independent potential V , thus we expect a zero mode in the
spectrum of F̂ (ϕb) with λ0 = 0, corresponding to infinite
shifts of the instanton center ϕb(τ ) → ϕb(τ − τ0). It is easy to
verify that the zero mode is φ̃0 = √

M/S0ϕ̇b, while all other
modes have positive eigenvalues λn > 0. The Gaussian inte-
gral for λn = λ0 = 0 in Eq. (C4) is divergent and performed
by noticing that dc0 = √

S0/Mdτ0. Thus, the transition am-
plitude between the two minima is

ZE (−ϕs, ϕs, β ) = N e−SE (ϕb)

√
S0

2πMβ( det[F̂ (ϕb)′])−1/2,

(C5)

where the prime at the determinant denotes that the zero mode
is now omitted.

3. Fluctuation determinant

We note that to fix the normalization N , it is convenient to
use the unperturbed harmonic oscillator of frequency ω as a
reference point,

ZE (−ϕs, ϕs, β ) = Zhe−SE (ϕb)

√
S0

2πMβ

(
det[F̂ (ϕb)′]
det[F̂ (ϕh)]

)−1/2

,

(C6)

provided that Zh = N det[F̂ (ϕh)]−1/2. Here we consider the
simpler potential with F̂ (ϕh) = −d2/dτ 2 + ω2, and we re-
defined F̂ by absorbing a constant factor (det M)−1/2. This
potential has no tunneling effects, thus ϕ0(±β/2) = 0 and
ϕh = 0. The eigenvalues of F̂ (ϕh) are λn,n = (nπ/β )2 + ω2.
Hence,

Zh = N
[ ∞∏

n=1

(
nπ

β

)2
]−1/2[ ∞∏

n=1

(
1 + ωβ

nπ

)2
]−1/2

=
√
M
2π

[sinh(βω)]−1/2 β→∞=
√
Mω

π
e−ωβ/2. (C7)

To calculate the determinant of F̂ (ϕb) appearing in
Eq. (C6), we need to analyze the spectrum of the op-
erator F̂ (ϕb) = Md2/dτ 2 + V ′′(ϕb) = −Md2/dτ 2 − 8Vb +
12Vb/ cosh2 ωbτ . Rescaling the time as τ ′ = ωbτ and absorb-
ing the factor (det M)−1/2 into the normalization, we notice
that the operator F̂ is proportional to the Pösch-Teller po-
tential F̂ (ϕb) = ω2

bM2,2, where M�,m is a general family of
operators with an exactly solvable spectrum with structure,

M�,m = − d2

dt2
+ m2 − �(� + 1)

cosh2 t
. (C8)

Since the spectrum of the operator M�,m is known, the
determinant with respect to the particle free operator M0,m

reads [54]

det′ M�,m

det M0,m
=

∏
1� j��, j �=m(m2 − j2)∏

1� j��(m + j)
. (C9)

By comparing Eqs. (C7) and (C9), we conclude that ω =
2ωb and det[F̂ (ϕb)′]/ det[F̂ (ϕh)] = 1/48ω2

b. We finally arrive
at

ZE (−ϕs, ϕs, β ) =
√

2Mωb

π
e−βωbe−SE (ϕb)βωb4

√
3

√
S0

2πM .

(C10)

4. Instanton gas

Since we are interested in β → ∞, the instantons stay
most of the time near the maxima, and the temporal ex-
tension of the instanton is set by the oscillator frequencies
of the local potential minima, ωb = √

V ′′(ϕs)/4M. Thus,
approximate solutions of the stationary equation include anti-
instantons/instanton pairs,

ϕN (τ ) =
N∑

k=1

ϕb(τ − τk ), (C11)

with centers ordered in Euclidean time as −β/2 � τ1 �
τ2 � · · · τN � β/2. Following the dilute instanton gas ap-
proximation (DIGA) [52–54], the action decomposes into the
sum

S (ϕN + φ) = S (ϕs + φ0) +
N∑

k=1

SE (ϕb + φk ), (C12)

expressing the requirement that the individual instantons do
not know of each other and have too little overlap to interact.
ZN is written as

ZN (−ϕs, ϕs, β ) =N
∫

Dφ0e−SE (ϕs+φ0 )

×
∏

k

N
∫

Dφke−SE (ϕb+φk )

= Z0(ϕs)[Z1(−ϕs, ϕs, β )]N � Z0(Z1β )N/N!.

(C13)

Comparing with the results of the previous para-
graph, we find Z0 = √

2Mωb/πe−βωb and Z1 =
4ωb

√
3S0/2πMe−SE (ϕb). Taking into account the multi-

instanton configurations under DIGA, one finds that

ZE (ϕs, ϕs, β ) = Z0

∑
Neven

(Z1β )N

N!

=
√

2Mωb

π
e−ωbβ cosh(�Eβ/2), (C14)

where we introduced the tunneling splitting �E = 2Z1, and
we focused on the tunneling processes with boundary condi-
tions ϕ(∓β/2) = ϕs and an even number of alternating instan-
tons and anti-instantons. In this special case, the contributions
from the gauge potential A cancel out, and SE (ϕb) = S0 =
8ϕ2

s Vb/3ωb = 4
√

2MVbϕ
2
s /3. Finally, the tunneling splitting

is

�E = 16ωb

√
Vbϕs

πMωb
e−S0 . (C15)
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5. Transition amplitude in the MQO problem

In this subsection, we outline the steps for the calculation
of the transition amplitude given in Eq. (27). Here, the po-
tential V (ϕ0) = 2V0 cos2(ϕ0) is periodic with a period π , and
the vacua are located at ±(2n + 1)π/2. The instanton solu-
tion of Mϕ̇2

0/2 = V (ϕ0) is ϕb = sin−1 tanh(ωbτ ) + nπ with
ωb = 2

√
V0/M. It connects ϕi = (n − 1/2)π with ϕ f = (n +

1/2)π . Since the potential is symmetric under π rotations,
a transition from ϕi to ϕ f can occur either in the clockwise
instanton ϕ+ = sin−1 tanh(ωbτ ) + nπ or in the anticlockwise
anti-instanton direction ϕ− = − sin−1 tanh(ωbτ ) + (n − 1)π .

Following the procedure of the previous subsection, the
transition amplitude between ϕi and ϕ f is given by

ZE (ϕi, ϕ f , β ) =
√
Mω

π
e−βω/2e−S0(ϕb)| cos(πA)|

×
√

S0

2πMβ

(
det[F̂ (ϕb)′]
det[F̂ (ϕh)]

)−1/2

, (C16)

where now ω = ωb, F̂ (ϕb) = ω2
bM1,1, taking into consider-

ation contributions from both clockwise and anticlockwise

tunneling. To obtain the final result, the contributions from the
infinite number of instanton and anti-instanton pairs to the one
instanton contribution have to be taken into account, noting
that the phase from the gauge potential for any instanton-
anti-instanton pair vanishes. Thus the transition amplitude is
expressed as [23,55]

ZE (ϕi, ϕs, β ) = Z0

∑
Nodd

(Z1β )N

N!
= Z0 sinh(βZ1)

=
√
Mωb

π
e−βωb/2 sinh(�Eβ/2) (C17)

and a tunneling splitting of the form

�E = 2Z1 = 2ωb| cos(πA)|
√

S0

2πMe−S0

= 2| cos(πA)|
√

8V0ωb

2πM e−S0 . (C18)
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