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Magnetic two-dimensional materials have great potential in the preparation of nanoelectronic and spintronic
devices. Recently, a new two-dimensional material with no corresponding bulk-structure, MoSi2N4, has been
prepared, attracting public attention to the XA2Z4 series of materials. Naturally, doping with 3d magnetic
element will result in various magnetic orderings. In our work, we replaced the Mo element with different
transition-metal elements whose property varies from magnetic to nonmagnetic and screened out a variety of
two-dimensional exchange scenarios. Then, we provided an analysis that shows the existence of a huge on-site
Coulomb interaction at 3d orbitals which is strongly related to the Mott transition and therefore causes the
superexchange interaction.
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I. INTRODUCTION

Materials having two-dimensional layered structures, such
as graphene [1], boron nitride [2], and transition-metal chalco-
genides [3], have recently attracted a great deal of attention
due to their outstanding electrical and optical properties.
They have a wide range of applications in multiple prospects
of high-tech industries like electronics and aerospace. Cor-
respondingly, various kinds of two-dimensional materials,
such as CrI3 [4] and transition-metal dichalcogenides [5],
exhibit many novel magnetic properties rarely found in three-
dimensional materials.

Recently, a new two-dimensional material with no cor-
responding bulk structure-MoSi2N4 [6] has been prepared.
Following that, a series of the two-dimensional van der
Waals layered materials with the same crystal structure as
MoSi2N4-XA2Z4 have been investigated. A number of inter-
esting properties were found in this series of materials, e.g.,
the spin-valley coupling effect [7] and piezoelectric char-
acteristics [8]. Accordingly, people have discovered novel
magnetic properties in this class of materials, and realized
tunable electronic and magnetic properties via many different
ways, such as atomic adsorption, vacancies constructing, etc.
[9–11] The discovery of two-dimensional Mott insulators [12]
as well as strong correlations between magnetism and the
Mott mechanism, are also compelling topics these days, such
as demonstrated in CoO [13].

In two-dimensional magnetic materials, the Coulomb en-
ergy of the 3d orbitals, which is usually described within the
Hubbard U model, its value, is one of the most crucial param-
eters in many other phenomena inside materials, such as the
Mott transition and the superexchange mechanism. The Mott
transition is primarily induced by the band splitting depending
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on the U value, and the occupancy of the band states is
closely related to it. The lack of relevant research results in our
insufficient understanding of the semiconductor mechanism’s
formation process inside the materials, which restricts us to
further discover more magnetic semiconductor materials with
better performance. On the other aspect, the superexchange
interaction is the key mechanism that determines the magnetic
properties, which has been explored since the applicability of
the Goodenough-Kanamori-Anderson (GKA) rule [14]. An-
other less-studied aspect is the role of ligands in regulating
magnetic properties, which is essential to understand and
control exchange coupling, especially in low-dimensional sys-
tems. This also limits the applicability of the two-dimensional
magnetic materials, as the Curie temperature is often very
low and there are difficulties in forming a stable long-range
magnetic order.

In this work, we replaced Mo with different metal elements
X to form XSi2N4 materials, in which X refers to Ti, V, Cr,
Mn, Fe, Co, Ni, and Cu, explored their respective magnetic
properties, and finally screened out a variety of excellent
and stable properties in two-dimensional magnetic materials.
Further, in the calculation process in combination with the
Wannier function, we discovered that the band-structure for-
mation mechanism inside the material is the Mott mechanism.
Finally, through the investigation of material properties under
various conditions and analysis of the superexchange mecha-
nism, we explained the result of the internal magnetic order
inside the material, then gained a deeper understanding of the
internal magnetic order’s formation process.

II. CALCULATING METHOD

The first-principles calculation has been performed in
the framework of density-functional theory (DFT) using
the Vienna Ab initio Simulation Package (VASP) [15,16].
For the electron-electron correlation effects we used the

2469-9950/2022/106(10)/104421(9) 104421-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9185-9934
https://orcid.org/0000-0001-8350-3591
https://orcid.org/0000-0002-9905-7271
https://orcid.org/0000-0001-9318-6403
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.104421&domain=pdf&date_stamp=2022-09-19
https://doi.org/10.1103/PhysRevB.106.104421


YIJUN WANG et al. PHYSICAL REVIEW B 106, 104421 (2022)

generalized gradient approximation exchange correlation
as parametrized by the Perdew-Burke-Ernzerhof [17]. The
projector augmented-wave pseudopotentials method [18,19]
was adopted to describe the interaction between electrons and
nuclei. The criteria of the total energy convergence and the
atomic force tolerance were set to 10−4 eV and 0.01 eV/Å,
respectively, and the energy cutoff of 500 eV was set on the
plane-wave basis. In the process of the geometry relaxation
of all structures, the 18×18×1 �-centered Monkhorst-Pack
grids [20] were employed to sample the Brillouin zone. The
DFT+U method [21] was adopted to describe the localized
nature of 3d electrons for transition metals. The effective U-J
value was set depending on the result of the linear-response
method [22] and is further obtained based on the method
raised by Marzari to make the value self-consistent [23]. The
phonon spectra were additionally simulated employing the
PHONOPY [24] code based on the finite displacement method
within 4×4×1 supercell, in order to verify their dynamical
stability. In the calculation process, the VASPKIT code was
used to help analyze and integrate the data of density of states
and the band structure [25]. We used the similar simulation
scheme to calculate the energy of different phases in MoS2

and MXene(Ti2CO2) to make sure that our calculations are
accurate, and the results are shown as Fig. S1 [26].

III. SEARCH OF STABLE STRUCTURE AND THE
QUANTITATIVE STUDY OF MAGNETIC ORDERING

We first identified the stable geometries of XSi2N4 mono-
layer materials (X = Ti, V, Cr, Mn, Fe, Co, Ni, Cu), which are
made up of seven layers of atoms. We chose these transition-
metal atoms X because they have similar binding mode with
Mo atom, and hence the XSi2N4 series materials we stud-
ied should have a similar composition pattern with that of
MoSi2N4. In the XSi2N4 class of materials, it has already
been found that the three central atomic layers in this class
of materials N-X -N share the similar patterns with that of the
layered MoS2 [27]. Therefore, based on the two stable phases
of MoS2, we divided the different phases of materials into
two categories, i.e., H and T ones. Then, combining with the
different composition patterns of the leftover Si and N atoms,
there are six potential structures, as shown in Fig. 1(a), named
H1, H2, H3, T1, T2, and T3.

Then, we performed structural optimization by considering
all six monolayer candidates for each composition constructed
above. We set up the energy of H1 as the reference energy, and
then the �E describes the energy where �E = Est − EH1,
in which st = H2, H3, T1, T2, or T3. In Fig. 1(b), we show
that XSi2N4 tends to form the H1-type structure for X = Mo,
Cr, and V. For all the other X elements we investigated,
the T1-type structures are energetically preferred. Then, after
arranging the elements X by their atomic number Z , some
rules about the energy of the phases in different materials can
be found. It can be clearly seen that the stable H1 structure
only exists in the elements whose valence electrons are com-
posed of three or four d electrons. For elements with 2–4 3d
electrons, it can be seen that �E for structures T1–T3 raises
gradually with the increase of 3d electrons, from a negative
value to a positive one. This is in contrast in tendency for
elements with 4–8 electrons.

FIG. 1. (a) Possible structures of XSi2N4 series materials, and
(b) the energy difference of all structures with respect to the H1
structure.

Next, we calculated the magnitude of magnetic moments
of different materials on various structures, which are sum-
marized in Table I. For X = Ti or Mo, the magnetic moments
for all phases are 0, indicating their nonmagnetic nature. In
contrast for X = Cr or Ni, the material possesses a large mag-
netic moment in T1–T3 and H1–H3 structures, respectively.
All X = Fe or Mn phases exhibit ferromagnetic ordering with
relatively large magnetic moments as anticipated. For com-
pounds with X = V, Cu, and Co, we identify small magnetic
moments of approximately 1.0 μB/atom. It is worth noting
that FeSi2N4 and MnSi2N4 have the highest magnetic mo-
ments, and VSi2N4 is a typical material which is one with
a few d electrons and becoming spin polarized for H1–H3

TABLE I. Metal atom’s magnetic moments of different materials
in different phase structures (unit: μB/atom).

H1 H2 H3 T1 T2 T3

TiSi2N4 0.0 0.0 0.0 0.0 0.0 0.0
VSi2N4 1.0 1.0 1.0 0.0 0.1 0.2
CrSi2N4 0.0 0.0 0.0 1.6 1.6 1.7
MnSi2N4 3.0 2.7 2.7 3.0 3.0 3.0
FeSi2N4 1.4 1.4 1.4 2.0 2.0 2.0
CoSi2N4 0.0 0.0 0.0 1.0 1.0 1.0
NiSi2N4 1.2 1.0 0.9 0.0 0.0 0.0
CuSi2N4 0.3 0.8 1.0 1.0 0.9 0.7
MoSi2N4 0.0 0.0 0.0 0.0 0.0 0.0
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structures. Therefore, we decided to put our attention on X =
Fe, Mn, and V for their great potential in novel and excellent
magnetic properties and do further research in these kinds of
materials.

The metal elements that we studied are all transition met-
als, whose 3d orbitals are partially filled with electrons.
However, the traditional DFT calculation method often fails
to take into account the strong Coulomb repulsion between
d electrons or f electrons. Therefore, a Hubbard model
[local-density approximation (LDA+U ) method] for electron-
electron interactions of 3d electrons is required.

Firstly, we explicitly focused on the on-site Coulomb in-
teraction in Mott insulators, which is responsible for the
unauthentic gap within LDA. The energy of LDA+U ap-
proach can be achieved by

ELDA+U [n(r)] = ELDA[n(r)] + Ehub
[
nXσ

m

] − EDC[{nXσ }],
(1)

in which n(r) is the electronic density and nXσ
m is the

atomic orbital occupations for the atom X experiencing
the “Hubbard” term. And, in the response-function language,
the value of U can be described as

U = +∂αKS

∂q
− ∂α

∂q
= χ−1

0 − χ−1, (2)

in which χ0 means the slope of the interacting response state,
and χ means that of the bare response state. As a consequence,
we may use the linear-response approach to get the U value.

However, there exist some problems in the process, which
is whether the U value we obtain from the formula above can
reflect the occupancy energy of the material. This is related
for the case where α is small enough, which is indeed hard to
achieve in the calculation process. Therefore, we utilized the
following formula below to make the U value self-consistent:

Uout = d2Equad

d
(
λI

T

)2 = Usc f − Uin

m
, (3)

in which λ represents the energy with respect to on-site
occupations, and m represents the effective degeneracy of
the orbitals whose population changes during the process of
perturbation. Then, it can be clearly seen that there is a linear
correlation between Uin and Uout. The Usc f is the intercept of
the Uin-Uout curve in the meantime, which is the result we want
to get.

Using this method, we measured the U value of the mate-
rial for X = Fe, Mn, and V. The results are shown in Fig. 2.
For FeSi2N4, the U value obtained through linear fitting and
extrapolation of data points is 7.08 eV. For MnSi2N4 and
VSi2N4, the U values are 5.01 and 5.28 eV, respectively. This
gives us a roadmap for simulating the characteristics of the
three materials more precisely. Meanwhile, it is worth noting
that the U values amount to a relatively large value, especially
for FeSi2N4, which is slightly beyond a general range for
materials with 3d electrons. The simulation results indicate
that these three materials have strong nonmetallic properties
and enjoy a broader application prospect in semiconductors,
thermal insulation materials, and so on.

Then, we calculated the phonon spectra under the linear-
response value of U and the spin-polarized state, and the

FIG. 2. Linear response of FeSi2N4, MnSi2N4, and VSi2N4.

results are shown in Fig. S2 [26]. All these phonon spectra re-
veal that there is no imaginary frequency, indicating that these
three materials are all dynamically stable. Furthermore, due
to the small energy difference between the structure H1 and
T1 of VSi2N4, the possibility of phase-changing phenomenon
does exist. Then, we have studied the phonon spectrum of
the T1 structure of VSi2N4 and found that it is also stable,
indicating that the phase changing in VSi2N4 is possible to
occur. In the meantime, we observed that in VSi2N4, the most
stable phase changes from H1 to T1 under the linear-response
U value of 5.28 eV. However, we still use the H1 phase to do
further investigation. Firstly, there is only a small energy dif-
ference between the two phases of VSi2N4 and both of them
exhibit dynamical stability according to the phonon spectrum
simulation result. Secondly, the magnetic moment for the T1
phase of VSi2N4 is 0, which means that it does not have
considerable potential for the application on two-dimensional
magnetic materials.

Next, we simulated projected density of states (PDOS)
to analyze the electron arrangement of the three materials,
and revealed the formation process of the magnetic moment,
which is shown in Fig. 3(a) and Figs. S3(a)–S3(c) [26]. From
the analysis of the material structure, it can be seen that the
central metal atom can provide four outermost electrons to
bind with the neighboring N atoms, that is, the four electrons
of 4s23d2 are given. To prove that, it can be clearly seen
that the d-p hybrid orbital exists in all three materials. The
hybrid effects of the dxy/dx2-y2 and dxz/dyz in 3d orbitals of the
metal atom and px/py orbitals in 2p orbitals of the N atom
are particularly significant. Then, for V4+, Mn4+, and Fe4+,
there are one, three, and four electrons on their 3d orbitals,
respectively. We further analyzed the crystal fields of the
three materials based on PDOS of different orbitals, and the
energy arrangement of key states is illustrated in Fig. 3(d) and
Figs. S3(b)–S3(d) [26]. For FeSi2N4, three spin-up electrons
occupy the orbits dz2 , dxy/dx2-y2 , and dxz/dyz, and a single
spin-down electron occupies dz2 . For MnSi2N4, there are also
three spin-up electrons in the orbital dz2 , dxy/dx2-y2 , and dxz/dyz

but no spin-down electron in these states. For VSi2N4, there
is only one spin-up electron in the orbital dz2 . As a result, the
magnetic moment of the three materials is 1.0, 3.0, and 2.0
μB/atom, respectively. To validate our conclusion, we further
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FIG. 3. PDOS and for (a) FeSi2N4, (b)CrSi2N4 when U = 0 and (c) CrSi2N4 when U is 4.40 eV, the linear response value, and (d)–(f)
their corresponding crystal fields.

analyzed the magnetic moment of different materials shown
in Table I and found that there are some rules in the magnetic
moments’ change with an increase of the number of valence
electrons. For TiSi2N4, the magnetic moment is 0, because
there is no 3d electron in Ti4+. Then, if the number of 3d
electrons increases, the magnetic moment increases gradually,
until the value of 3.0 μB/atom is achieved when X = Mn.
From this moment, with the number of 3d electrons’ increase,
the magnetic moment begins to decrease, and finally to 0 when
X = Ni. If the number of 3d electron still increases, a similar
pattern can be observed. The result matches our prediction
perfectly, proving our conclusion’s correctness.

And, it is noticeable in Table I that the XSi2N4 series of
materials have an integral magnetic moment in most cases,
including X = Fe, Mn and V; However, there are some excep-
tional cases, such as in chromium. CrSi2N4 shows a magnetic
moment of 1.6 or 1.7 μB/atom instead of an integral value
in its phase T1, T2, and T3. It can also be explained by
the PDOS and crystal field in Fig. 3. When the U value
is 0, CrSi2N4 shows a metallic nature, and Fermi energy is
crossed in both the spin-up band and spin-down channel, as
shown in Figs. 3(b) and 3(e). Then, the magnetic moment
tends to deviate from an integral value, and the fractional
magnetic moment forms in the meantime. On the contrary,
CrSi2N4 shows an integral magnetic moment with the value
of 2.0 μB/atom when the U is 4.40 eV, its response value.
The material exhibits the half-metallic feature, as shown in
Figs. 3(c) and 3(f). There are two spin-up electrons on its
3d orbital, and they occupy dz2 and dxz/dyz orbital separately,

making the magnetic moment of 2.0 μB/atom. To summarize,
with the U value’s increase, CrSi2N4 changes from metallic
to half metallic, and the value of magnetic moment changes
from fractional to integral in the meantime. We have also ob-
served that MoSi2N4 exhibits the similar electron composition
pattern with CrSi2N4 but shows a nonmagnetic property. We
also clarified this distinction by analyzing the crystal field of
MoSi2N4, as shown in Fig. S4 [26].

In order to further explore the magnetic anisotropic energy,
we turn on the spin-orbit coupling by the second variational
scheme as implemented in the VASP code and examine various
magnetic anisotropies. We define the magnetic anisotropic
energy as MAE = E[XYZ] − E[001] [28], in which [xyz] =
[001], [100], [101], [110], and [111]. These directions rep-
resent the z axis, x axis, facial diagonal of x-z plane, facial
diagonal of x-y plane, and the body diagonal, respectively. The
final results are shown in Fig. 4. It can be seen that all three
materials have magnetic anisotropy, but their easy magneti-
zation axes are different. For FeSi2N4 and VSi2N4, the easy
magnetization axis formed is the diagonal direction of the x-y
plane, which means that it has in-plane magnetic anisotropy.
For MnSi2N4, the easy magnetization axis formed is z-axis
direction, inducing the out-of-plane magnetic anisotropy.

From the analysis above, we can clearly see that the U
value plays an important role in various kinds of properties
in this series of materials. For example, the PDOS changes
greatly and band tends to split with the U value’s increase,
and as the result, the magnetic moment changes from a frac-
tional value to an integral one in the process. Therefore, it is

104421-4



MOTT TRANSITION AND SUPEREXCHANGE MECHANISM … PHYSICAL REVIEW B 106, 104421 (2022)

FIG. 4. Magnetic anisotropic energy (MAE) of three materials,
in which MAE is defined as MAE = E[XYZ] − E[001].

important to do further investigation under the materials’
linear response value of U and try to analyze the internal
mechanism. In Secs. IV and V, we will do further research on
the Mott transition and the superexchange mechanism under
the linear response value of U , then reveal its obvious signifi-
cance in these two phenomena.

IV. BAND STRUCTURE AND MOTT TRANSITION

Combining with the results of the U value calculated by
the linear response method, we calculated the band structures
of the three materials. The calculation results of FeSi2N4

are shown in Fig. 5. When U = 0, FeSi2N4 presents a
half-metallic property. The spin-down electron band exhibits
conductor properties while the spin-up electron band exhibits
semiconductor properties with a band gap of 1.53 eV. There-
fore, the FeSi2N4 finally presents a half-metallic property.
When the response value of U is 7.08 eV, the band structure
changes from half-metallic to semiconductive. The band gap
is an indirect one of 0.93 eV. The valence-band maximum

FIG. 5. Band structure of FeSi2N4 when U = 0 and the linear
response value, respectively.

FIG. 6. Relationship of stress and U and the proportion of the
d orbital in the d-p hybridization.

locates at the � point belonging to the spin-up channel. The
bottom of the conduction band locates between � and M
point, which is within the unoccupied spin-up band as well.
The splitting of its band structure is considerable as the U
value’s increase. The similar phenomenon is also found in
the band structures of both MnSi2N4 and VSi2N4, which are
shown in Fig. S5 [26]. For MnSi2N4, its electronic structure
transforms from metallic when U = 0 to semiconducting for
U = 5.01 eV, with an indirect band gap of 1.26 eV. As for
VSi2N4, the band structure transforms from metallicity when
U = 0 to semiconductor when U = 5.28 eV, with a direct
band gap of 1.28 eV, which is different from the indirect band
gap of the other two kinds of materials.

Owing to the visible splitting of the material’s d band in the
process of U value’s increase, materials all have the transition
from metallic or half metallic to semiconducting or insulating.
The energy of the two subbands conforms to the following
relationship [29]:

E (1)
kσ

≈ T0 + (Ek − T0)(1 − 〈n−
σ 〉), (4)

E (2)
kσ

≈ U + T0 + (Ek − T0)〈n−
σ 〉, (5)

in which T0 is the average energy of band electrons, U is the
on-site occupancy energy, and 〈n−

σ 〉 is the occupied number of
electrons with the same spin. It can be seen that the transition
from metallic to semiconducting or even insulating occurs
during the splitting of a single band structure into subbands,
and the transition process is closely related to the magnitude
of the U . As a result, various techniques, such as applying
external loading to the materials, can be used to modify the
strength of U , further achieving additional function based on
the Mott transition mechanism.

To further clarify the Mott mechanism, we studied the
effect of the stress on the U value of the materials by applying
biaxial stress. In Fig. 6, we exhibit the simulated magnitudes
of U under different strengths of tension or pressure. The
results strongly indicate that the stress can have a significant
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influence on the U value of the material, and the U value
shows a significant increasing trend with the continuous in-
crease of the stress.

According to the Hubbard model, the U value can be quan-
titatively expressed by the following relationship:

U = e2 ∫ a∗(r − Ri )a∗(r′ − Ri )a(r − Ri )a(r′ − Ri )

|r − r′| drdr′

(6)

It can be clearly seen from the above formula that the U
value has a strong correlation with the degree of localization
of the orbitals. The higher the degree of localization of the
orbital, the greater the U value is. As a result, the strength
of d-p hybridization can have great influence on the U value.
To theoretically reveal the variance of U , we calculated the
composition of d orbital in d-p hybridized state by using the
Wannier function scheme. Herein, the equation of the Wannier
function can be expressed as

an(r − l ) = N−1/2
∑
k∈BZ

e−iklφnk (r), (7)

while the Bloch eigenstates of the Bloch function ϕnk (r) can
be expanded as

|φnk〉 =
∑

j

Cnk
j

∣∣χ k
j

〉
. (8)

And, the Hamilton matrix can be constructed as

Hk
i j = 〈

χ k
i

∣∣H ∣∣χ k
j

〉
. (9)

Based on the formulas above, we can achieve the propor-
tion of different orbitals from the value of Cnk by performing
WANNIER90 program [30], and establish the connection be-
tween orbital proportions and U . Here, we use Cnk to show
the proportion of d orbitals and do our further analysis based
thereon.

On this foundation, we simultaneously calculated the Wan-
nier function for the states of the three materials under
different stresses to show the relation of the U value and local-
ization of the orbitals. Since the hybridization mainly occurs
in the spin-up electrons according to the analysis of crystal
field, we chose the Gamma point and the spin-up electrons to
analyze the consequence shown by the Wannier function. The
result is also shown in Fig. 6 associating with the U value. It
can be clearly seen that the U value of FeSi2N4 is very closely
related to the proportion of d orbitals, and the higher d-orbital
ratio can always induce the larger U . Such strongly dependent
behavior further demonstrated that the U value is closely
related to the degree of orbital localization. The change of the
proportion of the d orbital is more significant with the change
of stress and has a greater impact on the change of the U
value.

Meanwhile, it can be also reasonably predicted that dif-
ferent control methods can be used on the material, such as
stress, electric field, and so on. In this way, the U value of the
material can be modified, so as to control the band structure
of the material to achieve or tailor physical properties.

FIG. 7. (a) Schematic diagram of the state used for calculation
of superexchange interaction and (b) the energy contrast of different
states.

V. SUPEREXCHANGE INTERACTION OF THE MATERIAL

For metal atoms, their spins interact with each other, induc-
ing the ferromagnetic order or antiferromagnetic order. For
XSi2N4 system materials, the distance between the transition-
metal X atoms is relatively large, suggesting that the direct
exchange interaction is hard to form. Therefore, the atomic
spin’s interaction is realized through superexchange interac-
tion. Firstly, we calculated the magnetic exchange coefficients
of these three magnetic materials. The exchange effects
are considered included near-neighboring atomic exchange,
second-neighboring atomic exchange, and third-neighboring
atomic exchange, which are represented by J1, J2, and J3,
respectively. We established one ferromagnetic state and three
antiferromagnetic states [31] with different spin conditions
called S1, S2, S3, and S4 to calculate the value of J , as shown
in Fig. 7(a). The corresponding energies of these states are E1,
E2, E3, and E4. Finally, we obtained our calculation formula
for J as below and relevant results were obtained through cal-
culation and put into the calculation formula of J value, which
is shown in Table II. Meanwhile, we defined �Ex = Ex − E1,
in which x = 2, 3, and 4 to describe the energy contrast of
different states in XSi2N4. It can be found that VSi2N4 tends

TABLE II. Table of exchange coefficients (unit: meV).

Fe Mn V

J1 13.17 1.28 −26.84
J2 −58.59 −3.00 70.84
J3 54.30 −1.03 −37.84
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FIG. 8. Superexchange mechanism of (a) J1 and (b) J2 in XSi2N4.

to form the ferromagnetic order, while FeSi2N4 and MnSi2N4

tend to form the antiferromagnetic order, which is shown in
Fig. 7(b).

16J1 + 16J2 = (E2 − E1)/2s2, (10)

8J1 + 16J2 + 16J3 = (E3 − E1)/2s2, (11)

14J1 + 14J2 + 8J3 = (E4 − E1)/2s2. (12)

Then we explored the mechanism of superexchange. The
strength of the superexchange interaction is determined by the
magnitude of effective J , which can be expressed as

Jeff = 4t4
0

�2

(
1

�
+ 1

U

)
, (13)

in which t0 means the hopping integral of the d and p orbital,
� means the splitting energy of the d and p orbital, and U
means the on-site Coulomb interaction of d orbital. It can be
clearly seen that its strength is mainly affected by two kinds of
energy, namely, the charge occupation energy of the d orbital
and the charge-transfer energy between the d-p orbital.

If only J1 is considered, VSi2N4 tends to form an antifer-
romagnetic order, while FeSi2N4 and MnSi2N4 tend to form
a ferromagnetic order. Combining the electron arrangement
of the three materials for analysis, this result can be clarified
by the mechanism below: as shown in Fig. 8(a), for XSi2N4,
we raised five kinds of superexchange mechanisms [32]

according to the different d-p hybrid approach of J1 based on
the well-known GKA rule [33]. According to the rule, if the
electron transfer happens between overlapping orbitals that
are each half filled, the superexchange interactions are anti-
ferromagnetic. However, they are ferromagnetic if the virtual
electron transfer is from a half-filled to an empty orbital or
from a filled to a half-filled orbital. The first three mecha-
nisms make the material form a ferromagnetic order, while
the latter two induce antiferromagnetic order. According to
our simulation, the U value in XSi2N4 is much bigger than
the splitting energy; thus, the electrons tend to fill in the eg

orbital, indicating that the mechanism (II) in ferromagnetic
exchange and (V) in antiferromagnetic exchange plays the
dominant role.

For mechanisms (II) and (V), the major difference con-
centrates on the hybridization condition of the p orbital.
If the electrons locate on the same orbital, mechanism (V)
dominates the superexchange interaction, forming the anti-
ferromagnetic order. And, if they are on different orbitals,
the major hybridization occurs following the mechanism (II),
forming the ferromagnetic order. Therefore, we now put our
eyes on PDOS of the neighboring N atom of the metal atom
to obtain the electron occupy state of the p orbitals. From
PDOS of three materials, we can see that in FeSi2N4, the
spin-up electrons play the dominated role in the hybridization,
suggesting that mechanism (II) plays the dominated role in
J1. Similarly, we can observe that in MnSi2N4, the spin-up
electrons induce stronger hybridization than spin-down elec-
trons, indicating that mechanism (II) is more decisive than
mechanism (V) in the forming of the magnetic order. As a
result, the value J1 of MnSi2N4 reveals that it tends to form
a ferromagnetic ordering, but the tendency is much smaller
compared to FeSi2N4. For VSi2N4, it is obvious that the
spin-up electrons and the spin-down ones participate in the
hybridization together, demonstrating that the mechanism (V)
plays the critical role in hybridization, allowing VSi2N4 to
form an antiferromagnetic ordering.

However, the magnetic order of the XSi2N4 series of ma-
terials shows a totally opposite consequence with what is
revealed by J1. Then, we further discovered that such effect
can be primarily attributed to the anomalously large J2 for
all of the three-layered materials. As shown in Fig. 8(b),
compared with J1, there is not only the localization effect of
d-p hybridization but also the delocalization effect of p-p hy-
bridization. The delocalization of p-p bonding is substantially
stronger than the localization of d-p bonding in XSi2N4 due
to the strong nonmetallicity of N and the fact that the p-p link
only exists between the px/py two orbitals, implying that the
effect is more significant, as is shown in Fig. 8(b). Therefore,
the final result is that the value of J2 is much greater than J1.
Thus, J2 plays the predominant role in the forming process
of the magnetic order. We further analyze the effect of J3 on
the magnetic orders, which is summarized in Part S7 in the
Supplemental Material [26].

Furthermore, we performed Monte Carlo simulation via
the VAMPIRE software [34] package to derive the Curie tem-
peratures for XSi2N4. As shown in Fig. 9 below, the Curie
temperature can reach up to 145 K for FeSi2N4, and 292 K for
VSi2N4, respectively.
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FIG. 9. Curie temperature of XSi2N4.

VI. CONCLUSION

In this work, we focused on the XSi2N4 series of materials,
replaced Mo element with different transition-metal elements
X = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, and did further
research when X = Fe, Mn, and V. We explored their re-
spective magnetic properties, such as the magnetic moment,
magnetic anisotropy, the exchange coefficient J , and the Curie
temperature, etc. Furthermore, we discovered that the band-
structure formation mechanism inside the material is the Mott
mechanism. We further explored the formation process of the

Mott mechanism in combination with the Wannier functions
under the biaxial strain loadings. Finally, to explain the result
of the internal magnetic order’s formation of the materials,
we analyzed the superexchange mechanism, calculated the
value of the superexchange coefficient J and explained the
consequence, then gained a deeper understanding in the for-
mation process of the internal magnetic order. We hope to
further discover the mechanism of the magnetism in this series
of materials in the future, guiding the development of the
two-dimensional magnetic materials.
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