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Frustrated mixed-spin chains: Three-site interactions and flat-band magnons
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We investigate the ground-state phase diagram of frustrated mixed-spin (1, 1/2) chains with three-site four-
spin interactions employing different approaches, such as cluster mean field theory, cluster variational method,
and spin-wave theory. The interplay of next-nearest-neighbor and three-site interactions leads to a plethora of
magnetic and nonmagnetic phases in the ground-state phase diagram. We show that aside from the ferromagnetic
and Neel orders, the ground state possesses a magnetic phase in which magnon excitations are dispersionless.
The emergence of flat-band magnons is a consequence of the inhomogeneity of our frustrated mixed-spin chains
and does not occur in similar uniform spin chains. We also demonstrate that the presence of three-site interaction
gives rise to various nonmagnetic phases, such as antiferroquadrupole order and quantum spin-liquid phase.
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I. INTRODUCTION

Quantum spin models are building blocks of condensed-
matter physics and quantum information theory. The starting
point for the study of quantum magnetic systems is of-
ten spin models with pairwise exchange interactions, but
in beyond-Heisenberg systems, such as high-TC supercon-
ductors [1], spin-liquids (SLs) [2], 1D magnetic material
CsMnxMg1−xBr3 [3], magnetic molecules [4,5], complex salts
[6,7], and nuclear magnetism of solid 3He [8,9], to reach re-
sults consistent with experiments, more realistic spin models
with higher-order interactions should be considered [10–21].
One of the most common extensions is biquadratic inter-
action in S � 1 spin systems [22–26], which gives rise to
different dimer and Haldane phases [26–29]. Multisite inter-
actions are another proposal in amendment of the Heisenberg
model in magnetic materials [5,8,12,15,30–35], which appear
in fourth-order expansion of the two-orbital Hubbard model
at half filling [32,36–38]. Recently, Hoffmann and Blügel
demonstrated that multiorbital Hubbard models are effectively
mapped onto a spin model with three-site four-spin interac-
tions [39]. The three-site four-spin [19,34,35,39] and four-site
four-spin [40] interactions are crucial in deriving the unusual
up-up-down-down ground state of iron-based magnetic mate-
rials. Recently, much attention has been devoted to the study
of the effects of three-site interactions on the ground-state
phase diagram of spin-S Heisenberg models [32,41–46]. How-
ever, mixed-spin systems with beyond-Heisenberg models are
rarely studied. Mixed-spin models are a special class in spin
systems in which their universality class is completely dif-
ferent from uniform spin models [47–54]. Recently, it has
been shown that the ground states of J1 − J3 ferrimagnetic
spin-(1,1/2) chains, with J1 and J3 being nearest neighbor
(NN) and three-site interactions, show nematic and quantum
SL phases [55–58]. The focus of the previous studies was to
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investigate the effects of three-site interactions on the ground-
state phase diagram of the standard mixed-spin systems with
NN interactions. In this paper, in addition to the NN and
three-site interactions, we also consider next nearest neighbor
(NNN) (J2) interaction, and reveal the combined effects of
the NN, NNN, and three-site interactions on the ground-state
properties of J1 − J2 − J3 mixed-spin chains. We demonstrate
that the interplay of the NNN and three-site interactions gives
rise to interesting phases not seen in J1 − J3 and J1 − J2

models. By employing different approaches such as cluster
mean field (CMF) theory, cluster variational method (CVM),
and spin wave theory (SWT), we examine the ground-state
phase diagram of J1 − J2 − J3 mixed-spin (1,1/2) chains with
beyond-Heisenberg Hamiltonians and show that, aside from
the ferromagnetic (F) and Neel (N) orders, there is a magnetic
up-up-down-down phase in which all magnon excitations are
dispersionless. The emergence of flat-band magnons is a con-
sequence of the inhomogeneity of our mixed-spin chains, not
seen in similar uniform spin chains. We also demonstrate
that different nonmagnetic orders such as antiferroquadrupole
(AFQ) order and quantum SL phase appear in the ground-state
phase diagram.

This paper is organized as follows. In Sec. II, we introduce
our model and investigated the ground-state properties of a
finite chain. In Sec. III, we present the classical phase diagram
of the system and show that, in addition to the F and N
orders, different highly degenerate phases also emerge in the
phase diagram. In Sec. IV, we study the effects of quantum
fluctuations by means of SWT and obtain the ground-state
phases as well as magnon excitations. The results of cluster
mean field theory (CMFT) and CVM are presented in Secs. V
and VI. Finally, we summarize our results in Sec. VII.

II. MIXED-SPIN CHAINS WITH THREE-SITE
EXCHANGE INTERACTIONS

Let us consider an alternating mixed-spin chain
with spins S and T , described by the following
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FIG. 1. The ground-state energy of a finite chain with N = 4
spins, versus φ, for different positive (left) and negative (right) values
of three-site interaction. The green, blue, and black colors show,
respectively, the ground states with ferromagnetic, Neel, and antifer-
roquadrupole orders. The yellow, purple, and red show, respectively,
the degenerate ground states D1, D2, and D3, defined in Table I.

Hamiltonian:

H =
N∑

i=0

(
J1(�S2i · �T2i+1 + �T2i+1 · �S2i+2)

+ JS
2
�S2i · �S2i+2 + JT

2
�T2i+1 · �T2i+3

+ JT
3 [(�S2i · �T2i+1)( �T2i+1 · �S2i+2) + H.c.]

+ JS
3 [( �T2i−1 · �S2i )(�S2i · �T2i+1) + H.c.]

)
, (1)

where the summation runs over unit cells, and J1, JS,T
2 , and

JS,T
3 refer to the NN, NNN, and three-site interactions, re-

spectively. In the mixed-spin (T = 1, S = 1/2) chains, the
three-site interactions JS

3 are reduced to the NNN interactions
between T spins, and therefore we can set JS

3 = 0 without
loss of generality. In the rest of the paper, we set J1 = J cos φ,
JS

2 = JT
2 = J2 = J sin φ, and JT

3 = J3.
Before examining the ground-state phase diagram of the

Hamiltonian Eq. (1), it is insightful to investigate the ground-
state properties of a finite chain. We obtained the energy
spectrum of a chain of N = 4 spins (S1 − T2 − S3 − T4) for
different values of exchange parameters, and plotted in Fig. 1
the ground-state energy versus the angle φ for different pos-
itive and negative values of J3. The changes in the behavior
of the ground-state energy are often due to level crossings
in the energy spectrum which indicate ground-state phase
transitions within the system. To classify the ground state
of the system, we examine the behavior of the expectation
values of Sα

i and T α
i with α = x, y, z. As illustrated by dif-

ferent colors (see Fig. 1), the ground state can have different

TABLE I. The definitions of various magnetic and nonmagnetic
orders. mz

S (mz
T ) and smz

S (smz
T ) are, respectively, the magnetization

and the staggered magnetization in the subsystem with spin S (T ).
Also, smz is the staggered magnetization of the entire system and sq
shows the staggered quadrupole order in the subsystem with spin T .

Phase Configuration Order parameters

F uuuu mz
S , mz

T

N dudu mz
S , mz

T , smz

D1 uudd, duud smz
S , smz

T

D2 uudu, duuu smz
S , mz

T

D3 dudd, uuud mz
S , smz

T

AFQ sq

magnetic and nonmagnetic orders. In the regions with green,
blue, and black colors, the ground state has, respectively, F,
N, and AFQ orders [see Eq. (14) for the definition], and in
the narrow regions with yellow, purple, and red colors (see
Fig. 1, right) the ground states are, respectively, the doubly
degenerate D1, D2, and D3 states defined below. In the AFQ
phase, the ground state is written in terms of the product states
as follows:

|AFQ〉 =
∑

i1,...,i4

ci1,...,i4 (1 − sgn(J3)S )|i1, . . . , i4〉, (2)

where |i1, . . . , i4〉 is a product state (the eigenvectors of Sz
total)

with in being the ith state at site n, the coefficients ci1,...,i4
depend on the exchange parameters, and S = �4

n=1Sn, with
Sn being a spin-flip operator acting as

Sn| ± 1/2n〉 = | ∓ 1/2n〉,Sn| ± 1n(0n)〉 = | ∓ 1n(0n)〉. (3)

In this |AFQ〉 state, all the expectation values, 〈Sα
i 〉 and 〈T α

i 〉,
are zero, and there is no magnetic order in the system. In the
degenerate phases, the ground state is doubly degenerate and
can be written as

|D j〉 =
∑

i1,...,i4

ci1,...,i4 |i1, . . . , i4〉,

|D′ j〉 =
∑

i1,...,i4

c′
i1,...,i4S|i1, . . . , i4〉, (4)

where c and c′ with c′ = −c are exchange-dependent coef-
ficients and j = 1, 2 and 3. For state |D1〉 (|D′1〉), we have
〈Sz

1〉, 〈T z
2 〉 > 0 (< 0), and 〈Sz

3〉, 〈T z
4 〉 < 0 (> 0), which result

in a nonzero staggered magnetization in both the subsys-
tems with spins S and T . In this phase, the ground state
possesses uudd or dduu orders where u and d stand for up
and down, respectively. Moreover, for state |D2〉 (|D′2〉), we
have 〈Sz

1〉, 〈T z
2 〉, 〈T z

4 〉 > 0 (< 0) and 〈Sz
3〉 < 0 (> 0), which in-

dicate that the ground state has uudu or ddud orders with a
nonzero staggered magnetization in the subsystem with spin
S and magnetization in the subsystem with spin T . Finally,
in state |D3〉 (|D′3〉), 〈Sz

1〉, 〈T z
2 〉, 〈Sz

3〉 > 0 (< 0) while 〈T z
4 〉 <

0 (> 0), indicating uuud or dddu orders with a nonzero mag-
netization in the subsystem with spin S and nonzero staggered
magnetization in the subsystem with spin T .

It is clearly seen that by increasing the three-site interac-
tion, the magnetic orders (the green and blue colors) disappear
and instead an AFQ order emerges. Actually, by increasing
J3, more product states contribute in the ground state which
results in the disappearance of the magnetic orders. In the
case of negative J3, the ground state of the finite chain is
magnetically disordered, except for some narrow intervals
that the ground state is degenerate with magnetic order. In
the following sections, we will show that all the mentioned
orders also exist in the ground-state phase diagram of the
infinite chain.

In the above discussions, we have made an important
physical assumption on the ground state of the finite system,
which we explain it as the following. In one-dimensional
gapped spin chains with short-range interaction, the true
ground state should follow the area law [59,60]. According
to the area law, when the correlation between particles in a
system reduces exponentially with distance, the entanglement
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between one region and the rest of the system only depends
on the area of the boundary between them. As a result,
when the system is divided into two parts, only short-range
correlations around the cut play a role in the ground-state
entanglement. This is contrary to the excited states in which
the entanglement follows a volume law. For a finite spin chain
with a degenerate ground state, in the absence of an external
magnetic field, the ground state is a linear combination of
symmetry-broken degenerate states. In this state, the symme-
try of the system is preserved and expectation values of all
local order parameters are zero. Although such a state is the
true ground state of the system, the entanglement in this state
is high and consequently cannot help us reach the ground state
of the infinite system. Therefore, to have a better intuition
about the ground-state properties of our infinite spin chain
from the ground state properties of a finite chain, it is more
reasonable to choose a symmetry-broken quasiground state
with lower entanglement.

III. CLASSICAL PHASE DIAGRAM

To obtain the classical phase diagram of our spin model,
spins T and S are considered three-dimensional classical
vectors, respectively, with sizes 1 and 1/2. By minimizing
the classical energy of a finite spin chain described by the
Hamiltonian Eq. (1) with respect to the polar and az-
imuthal angles of spins, we find that the configuration with
minimum energy is coplanar and follows a four-sublattice
structure. Therefore, to obtain the classical phase diagram, we
parametrize the spin vectors as follows:

�Si = S(cos θi ẑ + sin θix̂),

�Tj = T (cos θ j ẑ + sin θ j x̂). (5)

By considering a four-sublattice structure, we have

θ4i = θ4i+4 = θ0,

θ4i+1 = θ4i+5 = θ1,

θ4i+2 = θ4i+6 = θ2,

θ4i+3 = θ4i+7 = θ3. (6)

According to Eq. (6), obtaining the classical ground state is
reduced to minimizing the classical energy of a four-site block
(S0 − T1 − S2 − T3),

Ecl/N = J1ST

2
(cos θ0 + cos θ2 + cos θ23 + cos θ30)

+ J2 (S2 cos θ20 + T 2 cos θ3)

+ J3S2T 2 (cos θ0 cos θ2 + cos θ23 cos θ30), (7)

where θi j = θi − θ j , and θ1 = 0 (we choose the z axis along
the T1 direction). To present the classical phase diagram, we
investigate the behavior of the staggered magnetization in
different subsystems, defined as

smz =
∑

i

(−1)i+1mz
i /

∣∣mz
i

∣∣,
smz

S =
∑

i

(−1)i+1mz
2i

/∣∣mz
2i

∣∣,
smz

T =
∑

i

(−1)i+1mz
2i+1

/∣∣mz
2i+1

∣∣. (8)

AFQ

F

D1

N

D2

D1

N

D2

NF

D2

D1 D3

(c)

(b)(a)

00

0

FIG. 2. The ground-state phase diagram of the frustrated mixed-
spin (1,1/2) chains in the J1 − J2 plane for different values of J3 > 0
[(a) J3 = 0.25, (b) J3 = 0.75, and (c) J3 = 1.5]. The tick marks,
respectively, show the angles φ = 0, π/2, π, 3π/2 when we move
counterclockwise on the circle. The inner, middle, and outer circles
are, respectively, the results of classical approach, linear SWT, and
CMFT. N and F refer to the phases with Neel and ferromagnetic
orders, and D1, D2, and D3 are phases where the ground states are
highly degenerate. In the AFQ, all the magnetic order parameters
are zero, while staggered quadrupole order parameter is nonzero. All
these orders are defined in Table I.

The classical phase diagrams of the Hamiltonian Eq. (1) are
illustrated in Figs. 2 and 3 (the inner circles) for different
positive and negative values of the three-site interaction. Two
phases with F and N orders, and also different highly degen-
erate phases (D1, D2, and D3) are appeared in the classical
phase diagrams. Since our spin system consists of two types
of spin with different sizes, then, in general, we can classify
all classical phases using the total magnetization of the ground
state. Accordingly, except for the D1 phase, the other phases
have a ferrimagnetic order with net total magnetization. But
to examine the effects of quantum fluctuations in more detail,
it is more reasonable to classify the phases by defining the
subsystems’ magnetization and staggered magnetization, as
we have defined in Table I.

For small values of J2, around φ = 0 (π ), for J3 < 1, the
system is in the N (F) phase, while for J3 > 1, the strong
three-site interactions destroy these orders, and instead the
highly degenerate D1 and D2 phases appear. In the D1 phase,
which appears for J2 > 0, the spins in each subsystem are
antiparallel to minimize both the NNN and three-site inter-
actions, and both the uudd and duud configurations are the
ground states. But in D2, which appears for J2 < 0, these
interactions are partially minimized by antiparallel alignment
of S = 1/2 spins, while parallel alignment of T = 1 spins and
the uudu and duuu configurations have minimum energy.

For large values of J2, around φ = π/2, the system is in
the D1 phase for all positive and small negative strengths
of J3, while for large positive three-site interactions another
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D1

D3

NF

D2D1D3
D3

NF

D2D3

D1

(c)

(b)(a)

00

0

FIG. 3. The ground-state phase diagram of the frustrated mixed-
spin (1,1/2) chains in the J1 − J2 plane for different values of J3 < 0
[(a) J3 = −0.25 (b) J3 = −0.75, and (c) J3 = −1.5]. See the caption
of Fig. 2 for additional information.

degenerate phase, the D3 phase, appears in the ground-state
phase diagram (see Fig. 2). In this phase, the dudd and uuud
configurations have minimum energy.

For large strengths of J3 > 0, for example, at J3 = 1.5,
the D1 phase is stabilized in the entire region of J2 > 0 to
minimize both the J2 > 0 and J3 interactions, while for J2 <

0, the system is in the D2 phase to partially minimize both
the J2 < 0 and J3 > 0 interactions [see Fig. 2(c)]. In the limit
of strong J3 < 0 interaction, for example, at J3 = −1.5, all
three N, F, and D3 phases minimize the three-site interactions,
individually. For strong antiferromagnetic J2 interaction, the
D3 phase is stabilized to satisfy the J2 interaction in subsystem
T , while for small strengths of J2 in both cases of J2 < 0 and
J2 > 0, the ferromagnetic (N) phase is stabilized in favor of F
(antiferromagnetic) NN interactions J1 [see Fig. 3(c)].

It should be noted that in the D1, D2, and D3 phases, each
block has two minimum energy configurations. This double
degeneracy induces a large classical degeneracy of the order
of 2N/2 in the system, which are often lifted by including quan-
tum fluctuations. In the next sections, we employ different
methods and investigate the stability of the classical phases
against quantum fluctuations.

IV. SPIN-WAVE THEORY (SWT): SOFT MODES
AND FLAT-BAND MAGNONS

As shown, in the classical phase diagrams there are three
different highly degenerate phases. Considering quantum
fluctuations by means of SWT can partially lift these degen-
eracies. In this section, we use linear SWT and obtain the
ground-state phase diagram of our frustrated system, as well
as excitation spectra.

As the spins lie on the xz plane, before performing SWT,
we apply the following rotations:

⎛
⎜⎝

Sx
i

Sy
i

Sz
i

⎞
⎟⎠ = Ry(θi )

⎛
⎜⎜⎝

S̃x
i

S̃y
i

S̃z
i

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

T x
j

T y
j

T z
j

⎞
⎟⎟⎠ = Ry(θ j )

⎛
⎜⎜⎝

T̃ x
j

T̃ y
j

T̃ z
j

⎞
⎟⎟⎠, (9)

where θi and θ j are obtained from Eqs. (5) and Ry(θ ) is a rota-
tion matrix around the y axis, perpendicular to the spin plane.
Using Holstein-Primakoff (HP) transformations, we turn the
spin Hamiltonian Eq. (1) into a bosonic one. Unlike the F and
N phases, in the degenerate phases the classical ground states
are highly degenerate and it is not possible to use SWT for
all configurations. We use the classical states of the forms:
. . . uudd . . . , . . . uudu . . . , and . . . uuud . . . , respectively, for
the D1, D2, and D3 phases. To get acceptable results, we must
consider a ground state close to the exact ground state of the
system. Since, except in few cases such as the F phase, the
exact ground state of quantum spin models is not available, a
classical ground state is used. The more similar this classical
state is to the ground state of the system, the more precise
the results of SWT will be. For example, in a spin chain with
antiferromagnetic NN coupling, the classical ground state that
is usually considered is a N state. Since this state is far from
the quantum ground state, the results of the SWT are not valid.
This is because the quantum fluctuations do not allow the
N order to emerge in the ground state of the system. But if
we consider the same classical state for an antiferromagnetic
square lattice, the results of the SWT are acceptable and valid.
In our case, since the selected states are stable in the presence
of quantum fluctuations (according to our CVM results, see
Sec. VI), therefore we expect the results of SWT to be valid.

In all these phases, the bosonic Hamiltonian has the fol-
lowing form:

H = Ecl +
∑

k

F (k) +
∑

k

ψ
†
k D(k)ψk, (10)

where Ecl is the classical energy, F (k) is a function of bosons
wave number, D(k) is a dynamical square matrix made up
of the coefficients of bilinear terms, and ψk is a vector of HP
bosonic creation and annihilation operators (see Appendix A).
In the F, N, D2, and D3 phases, the dynamical matrix is
positive-definite with nonzero positive eigenvalues, but, in
contrast, in the D1 phase this matrix is semi-positive-definite
with at least one zero eigenvalue. The dimension of the dy-
namical matrix is determined by the number of sublattices in
each subsystems. In the F and N phases, the classical state has
a two-sublattice structure, and therefore D is a 4×4 matrix.
In the D2 (D3) phase, however, due to the translational sym-
metry breaking, in the S = 1/2 (T = 1) subsystem, we define
three kinds of HP bosons to fully capture the excitations and
corrections to the classical phase diagram, and therefore the
D matrix in these phases is a 6×6 matrix with three positive
eigenvalues.
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2
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D3

0-1
0

2

1
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(
)

N

0

2
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FIG. 4. Magnon dispersion in different phases of the J1 − J2 −
J3 mixed-spin (1,1/2) chains. For the F phase, we set J3 = 0.25
and φ = 240◦; for N, J3 = 0.25 and φ = 300◦; for D2, J3 = 1.5
and φ = 300◦; and for D3, J3 = −1.5 and φ = 110◦. The men-
tioned angles, respectively, correspond to the following (J1, J2)
pairs: F, (−0.5, −0.87); N, (0.5,−0.87); D2, (0.5, −0.87); and D3,
(−0.34, 0.94).

A. The D2 and D3 phases with dispersive magnons

Paraunitary diagonalization [61–63] of the dynamical
matrix D, yields the ground state of the Hamiltonian Eq. (10)
as well as the magnon excitations. In Fig. 4, we have plotted
the excitation energies in the different F, N, D2, and D3
phases. In all phases, the lowest-energy excitation is gapless
and behaves as k2 near k = 0 point. In the absence of J2 and J3

interactions, linear SWT yields two types of magnons: a gap-
less acoustical branch with Sz = N/2 − 1 and a gapped optical
branch with Sz = N/2 + 1, respectively, with the dispersions
ε−

k and ε+
k , given by ε∓

k /J1 = ∓ 1
2 + ( 1

4 + 2 sin2 k)1/2, though
the antiferromagnetic gap within the linear SWT is 	 = J1.
Adding NNN and three-site interactions leads to changes in
the spectrum. In the F phase, the antiferromagnetic gap in-
creases, while decreasing in the N phase. In contrast to the
standard case where the two branches have finite separation
in the entire Brillouin zone, here in the N phase, some band-
crossing occurs at a finite k value.

In the D2 phase, the bottom and top of all magnon bands
are, respectively, located at k = 0 (the zone origin) and k =
π/(2a) (taking into account that 2a corresponds to the size of
the unit cell for D phases—this point is the zone boundary),
and no band crossing happens. The lowest-energy excitation
is gapless, while the other two branches are separated by an
energy gap from the ground state, larger than the gap in the
standard case. In the D3 phase, unlike D2, the bottom of the
highest-energy magnon band is located at the zone boundary,
meaning that the configuration where each magnon is out of
phase with its neighbors has the lowest energy. Furthermore,
for stronger J3 interactions, we see that the highest-energy

bands in both the D2 and D3 phases [red curves in Fig. 4 (D2
and D3)] become more disperse in energy, and successively
weaker J3 interactions correspond to flatter bands [blue and
red curves in Fig. 4 (F and N)].

B. The D1 phase and flat-band magnons

In the D1 phase, we use the classical ground state
of the form . . . uudd. . . . Due to the translational sym-
metry breaking in both the subsystems, we consider four
HP bosons in our SWT. The spin-wave Hamiltonian is
given by Eq. (10), with ψk being a vector given by ψk =
(ak, bk, ck, dk, a†

k, b†
k, c†

k , d†
k )†, where the eight components

are HP bosonic annihilation/creation operators, and the dy-
namical matrix is given by

D =
(

A B
B∗ A∗

)
,

with A and B being the following square matrices:

A =

⎛
⎜⎜⎜⎜⎜⎝

f − g+e−ik 0 0

g+eik 1
2 (J2 + J3) 0 0

0 0 f + 0

0 0 0 J2
2

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 − J2
4 e−2ik 0

0 0 g−e−ik − J2
2 e−2ik

− J2
4 e−2ik g−e−ik 0 0

0 − J2
2 e−2ik 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where the parameters f ± and g± are defined in Eq. (A2).
The function F (k) in the Hamiltonian Eq. (10) is obtained
as F (k) = −Tr(A), where Tr denotes the trace. Unlike the F,
N, D2, and D3 phases, in the D1 phase the dynamical ma-
trix is semi-positive-definite. Using an appropriate paraunitary
transformation [61–63], the spin-wave Hamiltonian Eq. (10)
is diagonalized as

H = Esw + Hs + Hns,

Hs = ε1

∑
k

α
†
k αk + ε2

∑
k

β
†
k βk,

Hns =
∑

k

(γ †
k γk + γkγ

†
k + γkγk + γ

†
k γ

†
k )

+
∑

k

(η†
kηk + ηkη

†
k − ηkηk − η

†
kη

†
k ), (11)

where, αk, βk, γk , and ηk (α†
k , β

†
k , γ

†
k , and η

†
k ) are magnonic

creation (annihilation) operators, and Esw is the ground-state
energy which is the classical energy modified by quantum
corrections. The Hamiltonian Hs, has the standard form of
a diagonalized bosonic Hamiltonian, where ε1 and ε2 are
some positive constants independent of the k values of the
magnons α and β. The Hamiltonian Hns is, however, not in the
standard form, and to obtain the energy spectrum of the γ and
η magnons, we use the inverse Dirac transformations, write
the bosonic operators in terms of the position and momentum
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operators, and readily obtain

γ
†
k γk + γkγ

†
k + γkγk + γ

†
k γ

†
k = X 2

k ,

η
†
kηk + ηkη

†
k − ηkηk − η

†
kη

†
k = P2

k . (12)

As seen, the bosonic Hamiltonian is written in terms of the
position and momentum operators which are independent and
have continuous spectrum, running from 0 to infinity. The
spectrum is twofold degenerate: the eigenvalues x and −x of
the operator X correspond to different wave functions (Dirac
delta functions). These modes, i.e., γ and η are improper soft
modes corresponding to zero eigenvalue and zero paravalues
of the dynamical matrix D in (IV B). To sum up, in the D1
phase all magnons are amazingly dispersionless, which is a
crucial feature for magnon localization and magnon crystal-
lization. The crystallization of magnetic quasiparticles, like a
Wigner crystal, could be key to understanding exotic quantum
phases such as supersolid phases [64,65] and flat-band solid
states [66]. Localization of magnons occurs in various one-
and two-dimensional systems [67] (see also the review paper
[68] by Derzhko et al. and references therein). The mechanism
behind such a crystallization is different in different systems.
In many cases, this localization, in turn, is a consequence of
destructive quantum interference which occurs due to a spe-
cial geometry of the lattice. In frustrated spin dimer systems in
the presence of an applied magnetic field, when repulsive in-
teractions of magnons become large, they completely suppress
the hopping of magnons and, consequently, a periodic array of
magnons form [69]. Although the mechanisms are different,
in all systems frustration plays a vital role in the formation
of the dimer phase and, consequently, the crystallization of
magnons. In our mixed-spin system, the presence of NNN and
three-site interactions causes the system to be frustrated. If
the NNN interactions are weaker than the NN ones, magnon
crystal forms only in the presence of three-site interaction. It
seems that the quadrupoles in the system cause the quantum
interference of the magnons to be destructive—they cause the
magnons to be flat-band and localized in each unit cell.

Finally, in Figs. 2 and 3, we have plotted the spin wave
ground-state phase diagrams (the middle circles) of the
Hamiltonian Eq. (1). In general, the quantum fluctuations
given by linear SWT modify the classical orders around tran-
sition points and shift phases boundaries. However, in the
regions illustrated by white colors, the SWT fails to predict
the order of the system, properly. It predicts that the fluctua-
tions destabilize the degenerate phases. It takes into account
the effects of quantum fluctuations but does not give more
information about the degenerate phases in comparison with
the classical method, and we should employ other techniques
to obtain the ground-state phase diagram.

V. CLUSTER MEAN FIELD THEORY:
ANTIFERROQUADRUPOLAR ORDER

CMFT is an extension of the standard mean-field theory
in which the interacting spin system is reduced to a noninter-
acting system of clusters of multiple sites. In this theory, the
interactions of spins within the clusters are treated, exactly,
and the outside spins are included as effective fields. In this
approach, quantum fluctuations as well as spin correlations are

partially taken into account [64,65,70–73]. In this section, we
use CMFT and obtain the ground-state phase diagram of our
frustrated mixed-spin system for different strengths of the NN,
NNN, and three-site interactions. We will show that, aside
from the F and N phases, our CMFT predicts the emergence
of a nonmagnetic AFQ order.

By dividing the system into clusters of four spins (two
S = 1/2, and two T = 1 spins), we write the Hamiltonian
Eq. (1) as

HCMFT =
N/2∑
i=0

(
Hi + heff

i

)
,

Hi = J1(�S2i · �T2i+1 + �T2i+1 · �S2i+2 + �S2i+2 · �T2i+3)

+ J2(�S2i · �S2i+2 + �T2i+1 · �T2i+3)

+ J3(�S2i · Q2i+1 · �S2i+2),

heff
i = J1( �m2i−1 · �S2i + �T2i+3 · �m2i+4)

+ J2( �m2i−2 · �S2i + �S2i+2 · �m2i+4 + �m2i−1 · �T2i+1

+ �T2i+3 · �m2i+5) + J3( �m2i−2 · q2i−1 · �S2i

+ �S2i+2 · Q2i+3 · �m2i+4), (13)

where Qi is quadrupole operator with the components (T x
i )2 −

(T y
i )2, 1√

3
[2(T z

i )2 − (T x
i )2 − (T y

i )2], T x
i T y

i + T y
i T x

i , T y
i T z

i +
T z

i T y
i , and T x

i T z
i + T z

i T x
i [74–76], and qi is quadrupole tensor

with quadrupole moment qi = 〈Qi〉, where the bracket 〈〉 de-
notes expectation values on the CMF ground state. In CMFT,
the three-site four-spin interaction term is transformed to the
interaction of two dipoles with a quadrupole and to obtain
the CMF ground- phase diagram, we define the following
staggered quadrupole order parameters:

sq =
∑

i

(−1)i+1q2i+1/|q2i+1|, (14)

where the summation runs over spins T . The CMF phase
diagrams are demonstrated in Figs. 2 and 3 (the outer circles)
for different strengths of J3 > 0 and J3 < 0. The quantum
fluctuations considered in CMFT cause changes in the clas-
sical phase diagram, which can be referred to the appearance
of the AFQ order in the case of J3 > 0 [see Fig. 2(b) for
J3 = 0.75]. In this phase, the staggered quadrupole order in
the subsystem with the T spins is nonzero, but all magnetic
orders are zero.

Despite all abilities of the CMFT in improving the classical
phase diagram of the system, it fails to predict the feature
of the degenerate phases. Nevertheless, one can use CMFT
and implement a CVM to find the features of the degenerate
phases. In the following, we employ a CMFT-based CVM and
obtain the ground-state phases in the degenerate regions.

VI. CLUSTER VARIATIONAL METHOD (CVM)

In CVM, a many-body wave function is estimated by a
family of variational wave functions of finite blocks which
make up that system [77]. In this respect, some properties of
the many-body wave function, like long-range entanglement,
which were not considered in CMFT, return to the system.
This method is useful in cases that the optimum configura-
tion obtained in the blocks is highly degenerate. Here, we
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generalized the CVM presented in Ref. [77] to our mixed-
spin Hamiltonian Eq. (1) and obtain the ground states in the
degenerate regions of the CMFT phase diagram.

In CVM, the variational wave function of the system
(|ϕCVM〉) is written as a superposition of the highly degenerate
wave functions,

|ϕCVM〉 =
∑
{ �m}

a{ �m}|ψ ({ �m})〉, (15)

where the sum runs over all 2N/2 configurations which op-
timize the variational energy of the system, and |ψ ({ �m})〉
is the wave function of the system with configuration { �m}
[see Eq. (B1)]. The complex coefficients a{ �m} are variational
parameters, satisfying∑

{ �m}
|a{ �m}|2 = 1. (16)

The variational energy is given by

ECVM = 〈ϕCVM|H |ϕCVM〉
〈ϕCVM|ϕCVM〉

=
∑

{ �m′}{ �m} a∗
{ �m′}a{ �m}X{ �m′}{ �m}∑

{ �m′}{ �m} a∗
{ �m′}a{ �m}O{ �m′}{ �m}

= a† · X · a
a† · O · a

, (17)

where a is a vector of the variational coefficients and O and X
are matrices with the following elements:

O{ �m′}{ �m} = 〈ψ ({ �m′})|ψ ({ �m})〉,
X{ �m′}{ �m} = 〈ψ ({ �m′})|H |ψ ({ �m})〉, (18)

which are the overlap of the degenerate wave functions and the
matrix elements of the Hamiltonian in this basis, respectively
[77]. Minimizing the variational energy with respect to the
coefficients gives the ground state. The details of our CVM
are reported in Appendix B. Since in the CVM the interac-
tions between nearest-neighbor clusters are taken into account
properly, we expect to see features of highly entangled phases
such as quantum SL in our mixed-spin model. Actually, such
phases cannot be predicted by CMFT, because in CMFT the
interactions between clusters are considered as mean fields.

In Figs. 5 and 6, we have plotted the final ground-state
phase diagrams of the Hamiltonian Eq. (1) for different
strengths of the three-site interaction. Using the CVM, the
degeneracies of the ground states in D1, D2, and D3 phases
are lifted and instead the nondegenerate uudd, duuu, and
dudd phases, and also the nonmagnetic AFQ order emerges
in the ground-state phase diagram. But the interesting point
is the emergence of a disordered phase for large strengths
of three-site interactions, where all the magnetic and the
quadrupole order parameters are zero, and the ground state
has no long-range order. Such a disordered phase is also
seen by our CVM in the ground-state phase diagram of the
J1 − J3 mixed-spin models (J2 = 0). Recently, using the den-
sity matrix renormalization group (DMRG) method, it has
been shown that in the J1 − J3 model this phase is a kind of SL
phase [55]. This means that our CVM can properly predict the
presence of such a SL phase in the ground-state phase diagram
of frustrated mixed-spin systems. However, to conclude that
the SL region in our system is definitely a SL phase, the be-
havior of correlation functions should be examined. Although

N

AFQ

F

AFQ

N

AFQ

F

C

uudd

N

AFQ

C

uudd
uudd

AFQ

duuu

AFQ

(c)

(b)(a)

0

00

FIG. 5. The ground state phase diagram of the frustrated mixed-
spin (1,1/2) chains in the J1 − J2 plane, for different values of J3 > 0
[(a) J3 = 0.25 (b) J3 = 0.75 and (c) J3 = 1.5]. The tuning parameter
is the angle φ. The uudd phase in which the magnons are flat-band,
is not seen for small strengths of three-site interactions.

we cannot calculate the correlation functions by CVM, but
since the CVM wave function is a linear combination of the
degenerate states, and also all the local order parameters are
zero, the SL region is most likely to be a true SL phase.

There is also a region denoted by C in which with the
precision we considered in our CVM, the true order of the

N

AFQ

F

AFQ

dudd

N

AFQ

F

C

SL
C

N
F

AFQ

AFQ

dudd

CAFQ(c)

(b)(a)

00

0

FIG. 6. The ground state phase diagram of the frustrated mixed-
spin (1,1/2) chains in the J1 − J2 plane, for different values of
J3 < 0 ((a) J3 = −0.25, (b) J3 = −0.75 and (c) J3 = −1.5). The
tuning parameter is the angle φ. The SL phase emerges for large
strengths of three-site interactions. This phase is absent in the phase
diagrams illustrated in Fig. 5.
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ground state is not fixed. In this region, by varying J1 and J2

the ground state oscillates sequentially between magnetic and
AFQ orders.

To have a better understanding of our final ground-state
phase diagram, reported in Figs. 5 and 6, in the following we
discuss our results in the two extreme limits of (1) J1, J3 
= 0,
and J2 = 0, and (2) J2, J3 
= 0, and J1 = 0. In the absence of
J2, when J3 = 0 we have a ferrimagnetic spin-(1,1/2) chain
with ferrimagnetic order indicating by both the smz 
= 0 and
mz 
= 0. When J3 becomes nonzero, we are faced with two
different situations for negative and positive values of J3. For
the former case (J3 < 0), the ferrimagnetic order of the chains
will remain unchanged, for J1 > 0 the alignment of spins
is antiparallel and the ground state has a N order, and for
J1 < 0 the alignment is parallel and the ground state has a
F order. But, in case of positive J3, in the limit of large J3 the
ferrimagnetic order of the system is destroyed and instead the
AFQ (C) phase appears for J1 > 0 (J1 < 0).

Now let us go to the limit of J2, J3 
= 0, and J1 = 0. In
the absence of J1, when J3 = 0, we have two decoupled spin
chains, one is a spin-1/2 and the other is a spin-1 chain. When
J2 < 0, trivially both spin chains have a F ground state with
magnon excitations, but for J2 > 0, we have a critical spin-1/2
chain with a gapless ground state and spinon excitations, and
a spin-1 chain with a gapped ground state and Haldane excita-
tions. The addition of the three-site interactions has interesting
effects. When J3 < 0, in the case of J2 < 0, the F orders of
the chains remain unchanged and a ferrimagnetic order with
two kinds of magnon excitations is formed in the mixed-spin
chain. But, in the case of J2 > 0, an AFQ order appear in the
mixed-spin chain to minimize both the J2 and J3 interactions.
When J3 > 0, the three-site interactions destroy the F orders
of the spin-1/2 and spin-1 chains and instead the AFQ or C
phases appear for the entire range of J2 < 0, and large J3.
The interesting point to note is that even though in the case
of positive J2 both the spin-1/2 and the spin-1 chains are
disordered, but the presence of three-site interaction causes
the appearance of the AFQ order in the mixed-spin chain.

To find the SL regions in our model, we have also plotted in
Fig. 7 the J2 − J3 phase diagram of our frustrated mixed-spin
(1,1/2) system in the units of J1. At the J3 = 0 line, the
ground-state phase diagram of the system is well-known [54].
Using DMRG, it has been shown that below the J2 = 0.231
point, the ground state is in the ferrimagnetic N phase with to-
tal spin Sg = (T − S)N , and above this point the ground state
is disordered with Sg = 0. In agreement with the DMRG, our
CVM also predicts a magnetically ordered-disordered phase
transition around J2 ∼ 0.3. According to our CVM results,
in the absence of three-site interaction, for low strengths of
J2 the ground state has N order, by increasing J2 the effects
of frustration become much bolder and above the transition
point, in the region of 0.3 < J2 < 1.2, the convergence to a
ground state does rarely happen (in this interval, our CVM
often predicts a uudd phase), but above this region the AFQ
order appears in the ground state. By introducing J3, in addi-
tion to the AFQ phase, other nonmagnetic phases such as the
uudd and SL also appear in the phase diagram.

Furthermore, as clearly seen from the phase diagrams in
Figs. 5–7, the uudd phase is stable against quantum fluctua-
tions. As we have discussed, in this phase magnon excitations

J
2
/J
1

J 3
/J
1

-0.5 0 0.5 1 1.5
0

0.5

1

1.5

N

uuddSL
uudd

AFQ

FIG. 7. The ground-state phase diagram of the frustrated mixed-
spin (1,1/2) system for J1 = 1 in the J2 − J3 plane. In the narrow
regions for small positive J2/J1 and large positive J3/J1, the system
is in the SL phase. In the wide green region, the system is in the uudd
phase where magnons are flat band.

are flat band, and therefore magnon crystal can form in the
system. The higher the strength of the three-site interactions,
the greater the regions associated with the magnon crystal.
This means that in the J1 − J2 − J3 mixed-spin (1,1/2) chains,
the presence of positive three-spin interactions is crucial in
magnon crystallization.

VII. SUMMARY AND CONCLUSION

We investigated the ground-state phase diagram of frus-
trated mixed-spin (1, 1/2) chains with NN, NNN, and
three-site four spins interactions. We first studied the classical
phase diagrams and showed that, aside from the F and N or-
ders, various kinds of highly degenerate phases emerge in the
classical phase diagram. To consider the effects of quantum
fluctuations, we studied the ground-state phase diagram of the
system using SWT, CMFT, and CVM. We demonstrated that
the degeneracies in the classical phase diagrams are lifted,
and instead different exotic quantum orders, such as AFQ
phase and SL appear in the ground-state phase diagram of
the system. We also demonstrated that the ground state shows
the magnetic uudd phase in which magnon hoppings are sup-
pressed. In this phase, the magnons are flat band and magnon
crystal can be formed in the system. Such a crystallization is
indeed a consequence of the frustration and inhomogeneity
of our mixed-spin system and is not seen in the frustrated
J1 − J2 − J3 spin-1 chains. As far as we know, except for
the three dimensional flat-band metallic ferrimagnets, like
TbMn6Sn6 [78], this is the first work in which flat-band
magnons are seen in one-dimensional mixed-spin systems.
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APPENDIX A: SPIN-WAVE HAMILTONIAN

In this Appendix, we obtain the spin-wave Hamiltonian of
the J1 − J2 − J3 mixed-spin (1,1/2) chains. In all the men-
tioned phases, the SW Hamiltonian is written as

H = Ecl +
∑

k

F (k) +
∑

k

ψ
†
k D(k)ψk, (A1)

where Ecl is the classical ground-state energy. Making use of
the following definitions:

a±
1 = 1

2
(J2(cos(2k) − 1) − 2J3 ± 2J1),

a±
2 = 1

2
(2J2(cos(2k) − 1) − J3 ± J1), (A2)

g± =
√

2

4
(±J1 − J3), f ± = 1

2

(
J3 + J2

2
± J1

)
,

h = 1

2
(2J2(cos(2k) − 1) + J3), d = 1

2
(J2 − J1 − J3),

the dynamical matrix D, the vector ψk , and the function F (k)
are given as follows.

In the F and N phases, the vector ψk is (ak, bk, a†
−k, b†

−k ),
where a†

k (ak )† and b†
k (bk ) are the creation (annihilation) opera-

tors of HP bosons with wave number k. The dynamical matrix
is the following 4×4 matrix:

D =
(

A B
B A

)
,

where A and B are 2×2 square matrices, in the F phase they
are

A =
(

a−
1 −2g− cos k

−2g− cos k a−
2

)
,

B =
(

0 0
0 0

)
,

and in the N phase, we have

A =
(

a+
1 0
0 a+

2

)
,

B =
(

0 −2g+ cos k
−2g+ cos k 0

)
.

The functions F (k) are given by

F (k) = 3
2 J2 cos(2k) − Tr(A), (A3)

where Tr denotes the trace.
In the D2 and D3 phases, the vector ψk is

(ak, bk, ck, a†
−k, b†

−k, c†
−k )† and the dynamical matrix is

6×6 with A and B being 3×3 matrices; in the D2 phase, they
are given by

A =
⎛
⎝ f − g+eik 0

g+e−ik h 0
0 0 f +

⎞
⎠,

B =
⎛
⎝ 0 0 − J2

4 e2ik

0 0 g−eik

− J2
4 e−2ik g−e−ik 0

⎞
⎠,

and we have

F (k) = J2 cos(2k) − Tr(A), (A4)

and in the D3 phase they are

A =
⎛
⎝ a−

1 −2g− cos k 0
−2g− cos k d 0

0 0 J2
2

⎞
⎠,

B =
⎛
⎝0 0 0

0 0 − J2
2 eik

0 − J2
2 e−ik 0

⎞
⎠,

and F (k) = J2
2 cos(2k) − Tr(A). All the dynamical matrices

in the F, N, D2, and D3 phases are positive-definite. Using ap-
propriate paraunitary transformations, we diagonalized these
matrices and obtained the magnonic band structures of the
system (see Fig. 4) as well as the ground-state phase diagram.

APPENDIX B: THE DETAIL CALCULATIONS
OF THE CVM

To calculate the matrix elements X{ �m′}{ �m} and O{ �m′}{ �m}, we
need to know the single block wave functions |φi({ �m})〉, which
construct the degenerate wave function of the system as

|ψ ({ �m})〉 =
N/2∏

i

|φi({ �m})〉, (B1)

where the direct product runs over the blocks of the system.
We rewrite the Hamiltonian Eq. (1) as a sum of two terms;
Hi and H ′

i, j , which include the intrablocks and the interblocks
interactions, respectively. In our case, we divide the system
into four-site blocks and write the Hamiltonian as

HCVM =
∑

i

Hi + (H ′
i−1,i + H ′

i,i+1)/2,

where

Hi = J1(�S2i · �T2i+1 + �T2i+1 · �S2i+2 + �S2i+2 · �T2i+3)

+ J2(�S2i · �S2i+2 + �T2i+1 · �T2i+3)

+ J3(S2i · Q2i+1 · S2i+2), (B2)

and the interactions between nearest-neighbor blocks are
given by

H ′
i−1,i = J1( �T2i−1 · �S2i ) + J2(�S2i−2 · �S2i + �T2i−1 · �T2i+1)

+ J3(S2i−2 · Q2i−1 · S2i )

and

H ′
i,i+1 = J1( �T2i+3 · �S2i+4) + J2(�S2i+2 · �S2i+4 + �T2i+3 · �T2i+5)

+ J3(�S2i+2 · Q2i+3 · �S2i+4).
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Therefore, the matrix elements of the Hamiltonian are written as

X{ �m′}{ �m} =
∑

i

〈ψ ({ �m′})|Hi + (H ′
i−1,i + H ′

i,i+1)/2|ψ ({ �m})〉

=
∑

i

{〈φi({ �m′})|Hi|φi({ �m})〉
∏
j 
=i

〈φ j ({ �m′})||φ j ({ �m})〉

+ 1

2
〈φi({ �m′})| ⊗ 〈φi−1({ �m′})|H ′

i−1,i|φi−1({ �m})〉 ⊗ |φi({ �m})〉
∏

k 
=i,i−1

〈φk ({ �m′})||φk ({ �m})〉

+ 1

2
〈φi+1({ �m′})| ⊗ 〈φi({ �m′})|H ′

i,i+1|φi({ �m})〉 ⊗ |φi+1({ �m})〉
∏

k 
=i,i+1

〈φk ({ �m′})||φk ({ �m})〉}. (B3)

Minimizing the variational energy, ECVM, with respect to the
variational parameters a{ �m} results in the CVM wave function.
To this end, we introduce a different normalized vector b, as

a = O−1/2 · b

and write the CVM energy in Eq. (17) as

ECVM = b† · H ′
CVM · b, (B4)

where

H ′
CVM = O−1/2 · HCVM · O−1/2. (B5)

Finally, the optimal superposition of the variational param-
eters a{ �m} is given by the ground state of the Hamiltonian
H ′

CVM. These coefficients construct the CVM wave function
in Eq. (15), which is useful for calculating order parameters.
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