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Texture fluctuations and emergent dynamics in coupled nanomagnets
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We analyze the thermal fluctuations of magnetization textures in two stray field coupled elements, forming
mesospins. To this end, the energy landscape associated with the thermal dynamics of the textures is mapped out,
and asymmetric energy barriers are identified. These barriers are modified by changing the gap that separates
the mesospins. Moreover, the coupling between the edges leads to an anisotropy in the curvature of the energy
surface at the metastable minima. This yields a dynamic mode splitting of the edge modes and affects the attempt
switching frequencies. Thus, we elucidate the mechanism with which the magnons in the thermal bath generate
the stochastic fluctuations of the magnetization at the edges.
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Single domain magnetic nanoislands with binary magne-
tization states—mesospins—are used as building blocks for
magnetic metamaterials. Contemporary examples are, e.g.,
artificial spin ices (ASI) [1–5], Ising chains and lattices
[6,7], and reconfigurable magnonic crystals [8–10]. These
magnetic metamaterials can be viewed as having thermal fluc-
tuations, associated with switching of the magnetic states of
the mesospins [11–15], in an activated process [12,13,16,17].
However, the magnetic fluctuations are not solely restricted
to the switching of rigid mesospins, but they can also occur
in the interior textures of the mesospin, which necessitates a
more nuanced view of their thermal excitations. Furthermore,
a finite temperature leads to the excitation of magnons, which
take place on timescales of the magnetization dynamics, much
smaller than those of the fluctuations of individual mesospins
[18].

Resonances can occur in mesospins when the wavelength
of magnons matches their extension. At frequencies below the
uniform (Kittel) mode, there is a band gap characterized by
the absence of magnon modes in the interior of the mesospins.
However, dynamic edge modes may occur at frequencies in-
side the band gap, which can be used for spectral detection
of topological defects in ASI [19]. We have previously con-
firmed the existence of additional modes [17,20], associated
with a binary stochastic fluctuation of the magnetization at
the edges, from hereon called edge fluctuations. These edge
fluctuations cause switching between S or C states [21], and
their presence results in a residual entropy in magnetic meta-
materials [17,22]. They have recently also been confirmed
experimentally, and were found to occur at shorter time- and
lengthscales than conventional mesospin switching [17]. Thus
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so far, the intrananomagnet excitations are well understood,
however an understanding of the coupling between intra- and
intermesospin degrees of freedom has not been developed for
magnetic metamaterials.

For Ising-like mesospins, the edge fluctuations of the tex-
ture occur in the transverse direction with respect to the
switching of the net magnetization [e.g., in the example of
Fig. 1(a), my is the relevant reaction coordinate in phase
space]. The height of the barrier associated with these fluc-
tuations depends on the size of the nanomagnets, and the
corresponding balance between exchange and demagnetiza-
tion energies. In the case of a single mesospin, the relevant
phase space for the edge fluctuations can be captured in a
one-dimensional energy landscape. When adding one more
mesospin, the texture excitations are influences by inter-
mesospin interactions, with the phase space extending over
a two-dimensional energy landscape. The two-nanomagnet
system is in the ground state when the two mesospins are
magnetized in the same direction, in which case the flux
exiting one mesospin will be absorbed by the other, which
results in a reduction of the transverse magnetization at the
edges. In terms of the energy landscape, this situation leads
to a single, global energy minimum, which is associated
with the two edges being aligned. In this case, the coupling
causes the splitting of dynamic edge modes into one in-phase
and one out-of-phase mode. On the other hand, when the
two mesospins are oppositely magnetized [as illustrated in
Fig. 1(a)], there will be two degenerate metastable states for
the edge magnetization, leading to nontrivial behavior upon
thermal excitation.

In this work, we discuss the fluctuations of two oppositely
magnetized mesospins. To this end, we start by exploring
and quantifying the energy landscape associated with the
intermesospin excitations. We then perform micromagnetic
simulations with a temperature implementation, in order to
inspect the behavior of the system under thermal excitation,
for a range of different temperatures and spacings between
the mesospins. The observed switching events are used to
infer the energy barriers and attempt frequencies utilizing
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FIG. 1. (a) Definition of the geometrical parameters and the edge
magnetization states (A and B). (b) The energy barriers associated
with switching the edge magnetization of one of the edges, with
indication of the points A, S, and B, for different gap values g.
(c) Morphology of the energy landscape as a function of the perpen-
dicular edge components for a g = 30 nm gap between the elements.

Arrhenius analysis [23]. Finally, the Arrhenius prefactors are
discussed, relating them to the dynamic modes of the system
and the curvatures in the energy landscape.

For the numerical investigation, we performed micro-
magnetic simulations in MUMAX3 [24], which is based on
the use of a finite-difference method to solve the Landau-
Lifshitz-Gilbert (LLG) equation of motion. The size of the
stadium-shaped mesospin used in this work is l × w × h =
360 × 120 × 4 nm3, using rectangular cells of size 2.5 ×
2.5 × 4 nm3. We use parameters that are relevant for permal-
loy, i.e., saturation magnetization Ms = 1 × 106 A/m, an
exchange stiffness of Aex = 1 × 10−12 J/m, and a Gilbert
damping of α = 0.001. More information on the details of the
simulations can be found in Ref. [20].

Two mesospins are placed in line, separated by a gap,
g, that defines the edge-to-edge distance, as illustrated in
Fig. 1(a). We define the magnetization in the edges as the
averaged transverse magnetization over the half-circle that
constitutes an edge, i.e., my,1 = 1

V

∫
edge1

my(r, t )d3r for the
edge of mesospin 1, and similarly for mesospin 2, where
V is the volume of the mesospin edge. The lowest energy
configuration, state A, has opposing transverse magnetization
components, my,1 = −my,2, and state B has aligned transverse
components, my,1 = my,2; see Fig. 1(a).

We represent these states in an energy landscape,
parametrized by my,1 and my,2; see Fig. 1(c). This is an ap-
proximate representation of the energy landscape, since the
Zeeman energy, EZ , is included in the total energy, therefore it
only serves to indicate the morphology. Aside from the states

A and B (and the degenerate states A′ and B′), one can observe
the saddle points at S and the top of the energy barrier at C.
As the gap g between the mesospins increases, the points A
and B shift towards the same energy, while the points S and C
merge having the same height. Bringing the mesospins closer
together causes the energy hill to emerge at point C, pushing
the states A and B outwards, and breaks the twofold symmetry.
Thus, the gap between the mesospins provides a handle to
tailor the energy landscape.

When switching from state A to the opposite state A′, it is
not energetically favorable to take the direct route A − C − A′,
corresponding to both moments switching simultaneously. In-
stead, it is more favorable to take the route A − B − A′ via the
saddle points, which corresponds to consecutive switchings
of the nanomagnet edges. Due to the symmetry of the energy
landscape, it is only necessary to know the minimum energy
path A − S − B for an understanding of the fluctuations. We
map out the energy barrier along the path that is highlighted
in Fig. 1(c) (see Appendix A for the method); the resulting
morphologies are shown in Fig. 1(b). As previously noted,
the energy landscape becomes increasingly asymmetric as the
gap between the mesospins is reduced. The states A and B
are simultaneously pushed away from the center. Furthermore,
the saddle point moves away from the center position towards
state B. From hereon, we refer to the energy difference be-
tween A and S as the high-energy barrier (EH ), and the energy
difference between B and S is referred to as the low-energy
barrier (EL).

Next, we will discuss the thermally induced dynamics
of the two oppositely magnetized mesospins. To this end,
we use micromagnetic simulations at a finite temperature,
as described in Ref. [25]. The thermal bath is imitated by
transforming the LLG equation to a Langevin equation using
a stochastic thermal field, given by

μ0Htherm = η

√
2αkBT

MsγV �t
, (1)

where kB, T , γ , V , and �t are the Boltzmann constant,
temperature, gyromagnetic ratio, volume of the cell, and the
time step, respectively. In addition, η is a random vector that
changes direction and size at every time step. We run the
simulations for temperatures from T = 25 to 450 K in steps of
50 K, and eight different gaps, ranging from g = 25 to 200 nm.
We analyze the time traces of the perpendicular component of
the magnetization in the two edges my, j (t ), where j denotes
the particular edge. Examples of these time traces are shown
in Fig. 2(a) for a large (g = 200 nm) and a small (g = 25 nm)
spacing. Each edge can be seen to switch between the two
different states, and the absolute value of the perpendicular
magnetization component increases as the spacing becomes
smaller. The thermal energy kBT required to switch the edge
magnetization needs to be increased by more than an order of
magnitude for g = 25 nm compared to g = 200 nm, in order
to obtain a similar switching rate. Furthermore, the magnetiza-
tion at the edges is weakly anticorrelated when the mesospins
are placed far apart, and strongly anticorrelated when they are
close together. This correlation can be quantified using the
Pearson correlation coefficient, ρ(my,1, my,2), which is shown
in Appendix C for different spacings and temperatures.
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FIG. 2. (a) Time traces of the edge magnetization for two dif-
ferent gaps and temperatures. The shaded regions mark the system
being in state B, while the regions without shading mark state A.
(b) Switching events for a gap of 25 nm and a temperature of 400 K.
Upper panel: a true switching event, lower panel: a false switching
event. (c) Arrhenius plots for the relaxation times associated with
the high barrier, τA. (d) The energy barriers EH and EL against the
inverse gap values obtained via Arrhenius law, and direct mapping
of the energy barrier. The dashed lines are linear fits in the case of
EL and the low gap regime of EH , and a parabolic fit to the high gap
regime of EH .

When the two mesospins are strongly coupled, the edges
seemingly switch simultaneously, but zooming in on the
switching process [upper panel of Fig. 2(b)] reveals that the
two edges switch in a consecutive manner, as was predicted
on the basis of the energy landscape. Another possibility for
a fluctuation is that the edge magnetization switches back to
its initial state, as seen in the lower panel of Fig. 2(b). We
have observed (see Appendix D) that the process A − B − A′
occurs more often that the process A − B − A, while in prin-
ciple these two processes are the same in terms of the energy
barrier. This asymmetry becomes more pronounced as the gap
between the nanomagnets is reduced.

We will now set out to determine the thermal energetics of
the textures in the mesospins. The average time in each state
is determined, and we use Arrhenius law to extract the energy
barriers and attempt frequency:

τi = τ0,ie
Ei

kBT , (2)

where i indicates A or B for τ , and H and L for E , respec-
tively, with τ0,i being the inverse attempt frequency. Generally,
for inverse gaps larger than 1/g = 0.027 nm−1, the errors
for EL diverge, due to the high temperatures used for the
relatively low barriers, resulting in erroneous estimations of
the switching time. For the largest gap, 200 nm, there is
no notable difference between EL and EH , and the energy
barrier (E = 8 meV) is close to that of a single mesospin
[20] (E = 5 meV). Bringing the mesospins closer together

leads to an expected increase in EH and EL. Whereas EL

scales with the inverse gap, EH shows two different scaling
regimes, as shown in Fig. 2(d). It can be seen that up to
an inverse gap of 1/g < 0.02 nm−1, EH shows a parabolic
scaling with 1/g, whereas for values 1/g � 0.02, there is a
linear scaling. The transition between the two regimes occurs
between 1/g = 1/65 and 1/50 nm−1, which means that the
radius of the half-circle at the edge (60 nm) defines the scale
of the transition length. Overall, good agreement can be found
between the energies obtained via the stochastic simulations
and the energy landscape method, confirming the Arrhenius
law.

Next, we shall focus on the attempt frequency, f0, calcu-
lated as the inverse of τ0,i. Similar to the energy barriers, the
attempt frequencies for states A and B also show a diverging
behavior upon a decrease of the gap [see Fig. 3(a)]. At the
largest spacing, the attempt frequencies at A and B become
equal, although they are not equal to that of a single mesospin
[20]. Interestingly, it can be observed that f0,A increases when
the nanomagnets are being brought closer together, while f0,B

shows a slight decrease. To understand the scaling of the
attempt frequencies, we shall inspect the mode frequencies
at the edge of the mesospins, as well as the curvature in the
energy landscape at A and B.

The spectrum of magnon modes at the A state is different
from those at B; see Fig. 3(b). The edge modes reside in
the frequency band below the Kittel mode (∼ 6 GHz) due
to the demagnetizing field counteracting the effective field
at the edges, thus lowering the eigenfrequencies with respect
to the modes inside the mesospin [20]. We can observe, for
both cases, that a mode splitting occurs as the mesospins
are brought closer together. The mode splitting in B hap-
pens at a larger spacing than the splitting in A, which can
be understood as being due to the difference in strength of
the dipole coupling: in B, the sources of the stray field are
closer together than in A. In both cases, the two resulting
branches after the splitting have opposite phases in the in-
and out-of-plane directions of the precession. By using phase
maps of the mesospins with the full inner texture taken into
account (see Appendix E), we determine the in-plane (�ϕ‖)
and out-of-plane (�ϕ⊥) phase differences of the modes in
the two edges. The out-of-plane components are very small
compared to the in-plane ones, i.e., the precessional motion
is highly elliptical, therefore we will only consider the in-
plane component, where in- and out-of-phase oscillations are
indicated by ++ and +−, respectively. From Fig. 3(b), it
can be seen that the phases of the high- and low-frequency
branches in B are inverted with respect to the branches in A.
Moreover, at state A, both modes increase in frequency as the
gap is decreased, whereas in B, the −+ mode decreases in
frequency, which suggests that the −+ mode is responsible
for switching from B to A.

We turn to the energy landscape to investigate this scenario,
where we map the trajectories of the modes at A and B,
shown in Fig. 3(c), for a gap of g = 25 nm. The −+ and
++ modes represent straight paths in the diagonal direction
in the (my,1, my,2) phase space. The mode splitting occurs
because the curvatures of the (my,1, my,2)-energy landscape
at the metastable minima become anisotropic, which is a re-
sult of the dipolar coupling between the edges. We plot the
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FIG. 3. (a) Attempt frequency dependence on the gap for the
states A and B. (b) Dynamic mode spectra for the states A and B,
generated by a small thermal field. (c) The minimum energy path
emerging from A and B (blue) with the corresponding direction
of the in-phase and out-of-phase modes (black). The contours in
the background are the same as in Fig. 1(c). (d) Curvatures in the
direction of the minimum energy path.

minimum energy path from A to B in the vicinity of the
minima, and we inspect the tangent with the directions of the
dynamic modes. At point A, the path is mostly tangential to
the ++ mode. In contrast, the path emerging from point B is
mostly tangential to the −+ mode, which indeed shows that
the −+ mode is the dominant contribution for switching from
B to A. These findings suggest that the transitions from A to
B can be stimulated using an applied microwave field with a
frequency in the ++ branch, and vice versa with a frequency
in the −+ branch, although the latter will be problematic in a
ferromagnetic resonance experiment because of the symmetry
of the mode.

Since the damping is low, we can assume that f0,i ≈ fi,
i.e., the attempt frequency is approximately equal to the eigen-
mode in the direction of the minimum energy path [26]. The
frequency is related to the curvatures in the energy land-
scape via f ∝ √

(K ) [27], where K is the total curvature,
given in terms of the principal curvatures by K = κ‖κ⊥, here

κ j = d2E/dm2
j , where j runs over the in- and out-of-plane

components (see Appendix B for more details). Thus, upon
decreasing g, the curvature in the −+ direction at point B
should decrease, while at point A, both curvatures in the −+
and ++ directions increase. We found that the curvature as-
sociated with bringing the magnetization out of the plane, κ⊥,
is more or less constant as a function of g, which is due to the
strong out-of-plane demagnetizing field overwhelming any
effects of proximity to the other edge. The in-plane component
κ‖ varies strongly, as seen in Fig. 3(d). At A, κ shows an
increase with 1/g, in qualitative agreement with f0,A, whereas
the curvature at B remains constant, which is not in line with
the decrease of f0,B. A possible explanation for this discrep-
ancy could be attributed to the path B − A′ being favored over
B − A as the gap is reduced (see Appendix D), thus suppress-
ing one of the channels for switching. The suppression of
this channel effectively lowers the entropic contribution by
reducing the multiplicity. It has been seen before in works by
Desplat et al. [28] and Desplat and Kim [27] that entropic
contributions can have large effects on the attempt frequency,
which occur when the positive curvatures at the saddle point
are small, allowing for an increased number of paths from A
to B. In our case, the positive curvature at the saddle point
increases with the height of the energy barrier, thus restricting
the saddle point and lowering the amount of paths. However,
this effect is compensated for by the increase in the curvature
at the minima.

In conclusion, we have mapped out the energetics asso-
ciated with the coupling of intra- and intermesospin degrees
of freedom in a system of two interacting mesospins. It
was found that, upon thermal excitation, a stochastic switch-
ing occurs between two degenerate states, A and B, and
that the reciprocal gap between the nanomagnets provides
a handle on the symmetry and barrier height in the energy
landscape, modifying in turn the correlations between the
edges. These correlations feature a strong temperature depen-
dency that could potentially be harvested in nanomagnetic
neuromorphic-like systems, having the opportunity to operate
at sub-ps timescales controlled by light, as demonstrated by
Pancaldi et al. [29] and Mishra et al. [30]. Moreover, by
associating the dynamic modes of the system with directions
in the energy landscape, we were able to explain the trends
in the attempt frequency upon a variation of the gap value. As
such, we shed light on how the thermal bath, i.e., the magnonic
excitations, couples to the stochastic fluctuations on the next
lengthscale. The stochastic fluctuations of the edges may in
turn affect fluctuations on the next lengthscale, i.e., the full
switching of the mesospin. For example, a certain state A can
induce a preferred helicity for switching the magnetization in
the mx direction, similar to the symmetry breaking pointed out
by Leo et al. [31]. The double degeneracy of the metastable
states of the edge magnetization can in this case cause an
increase of a factor 2 in the switching rate of the mesospin
island. Tunable magnetization texture states have also been
recently shown to be useful building block of arrays, where
their magnonic properties can be harnessed for hardware im-
plementations of reservoir computing schemes [32,33].

The data that support the findings are available upon
request.
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APPENDIX A: ENERGY BARRIER CALCULATIONS

The energy barrier morphology is mapped out by “push-
ing” the system to a point close to the saddle point using an
external field, and then letting it relax according to the Landau
Lifshitz Gilbert (LLG) equation, which is given by

dm
dt

= − γ

1 + α2
[m × H + αm × (m × H)], (A1)

where γ , α, m, and H are the gyromagnetic ratio, Gilbert
damping constant, magnetization vector, and the effective
field, respectively. The effective field acts as a proxy for in-
cluding the different energy contributions in the equation of
motion via

H = − 1

μ0Ms

∂E

∂m
, (A2)

where μ0 is the permeability of free space, and Ms is the
saturation magnetization. The total energy is a sum of the
separate energies: E = Edemag + Eexchange + EZeeman. The first
term on the right-hand side of the LLG equation describes
the precession of the moment around the effective field, and
the second term describes the movement of the magnetization
towards the effective field. For the LLG equation to correctly
predict the minimum energy path, the precession needs to be
suppressed, therefore we set the damping to the high value of
α = 10.

The system is first configured in either the A or B state
[see Fig. 4(a)]. Then, the field is applied to region 1 to push
one of the edges to a point close to the saddle point S, after
which the field is taken away, and the system evolves for
60 ns to either local minimum, A or B. During this process, the
energy is recorded every 1 × 10−12 s, giving a highly resolved
trajectory in phase space. The resulting curves can be seen
in Figs. 4(b) and 4(c). The minimum energy path indicates
that the majority of the change occurs in my,1, with a small
response of my,2.

A cusp is visible near the saddle point, which is a result
of the system having relaxed in an external field, thus not
being precisely positioned on the minimum energy path. Thus,
the cusp signifies the system moving from the position in
the field to the minimum energy path. This cusp is relatively
small and can be removed, after which we fit a tenth-order
polynomial to the curve projected on the (my,1, E )-plane. This
fitting procedure mostly serves to bridge the gap around the
saddle point [see Fig. 4(d)]. Strictly, the fitting should take
place in three dimensions (my,1 my,2, and E ), but since my,2

varies very little, we are only interested in the height of the
energy barrier; later on the curvature at S, fitting the curve
only to the projection is justified. With this method we recover

FIG. 4. (a) The two mesospins, prepared in state B. The field is
applied to region 1, which is defined by the half circle that constitutes
the edge on mesospin 1. This field pushes the state towards the saddle
point S. (b) The paths from a point in the vicinity of S to A and to
B, mapping out the majority of the minimum energy path from A
to B. (c) The projections of the paths shown in (b) on the (my,1, E ),
(my,2, E ), and (my,1, my,2) planes. (d) The simulated path with the
cusps removed, after fitting to a tenth-order polynomial.

the minimum energy path from A to B, yielding the energy
barriers, EL and EH .

This method is relatively simple and can be entirely car-
ried out using MUMAX3 in the LLG framework. The only
drawback is that it demands prior knowledge of the mini-
mum energy path through phase space, in contrast to more
sophisticated methods such as the nudged elastic band (NUB)
method, and variations thereof [34].

104405-5



SAMUEL D. SLÖETJES et al. PHYSICAL REVIEW B 106, 104405 (2022)

FIG. 5. (a) In-plane curvatures of the minimum energy path at
A, B, and S. (b) Out-of-plane curvatures at A and B. (c) The “wig-
gling” of the magnetization at A, for different applied field strengths,
and (d) the curvatures for different guiding fields. The dashed line
denotes the extrapolation to 0.

APPENDIX B: CURVATURE CALCULATIONS

As stated in the main text, we evaluate the curvatures by
taking the second derivative of the energy to the magnetiza-
tion, κ = ∂2E/∂m2, at certain points in the energy landscape.

1. Curvature at S

From the minimum energy path, we obtain the in-plane
curvature at the saddle point, κS

‖ , for which ∂E/∂my,1 = 0 at
the top of the energy barrier. We evaluate the curvature only
in the (my,1, E )-plane, as the change in the my,2-component is
negligible at S.

2. Curvatures at A and B

Next we calculate the curvature at A and B via a different
method, as the morphology that we previously mapped out
only provides one-half of the metastable minimum. Instead,
we use a “guiding” field parallel to the edge magnetization to
wiggle the edge around A and B. The guiding field method
is similar to the one used for mapping out the energy land-
scape. However, to obtain the precise value of the curvature,
we should eliminate the Zeeman energy, EZ , contribution.
To eliminate this contribution, we extrapolate to the zero
field value of the curvature after calculating the curvature for
different sizes of guiding fields, from 15 to 1 mT in steps of

FIG. 6. Correlation values: The symbols are calculated from the
time traces for the spacings indicated in the legend and in nm. The
dashed lines are fits using Eq. (C2).

1 mT [see Fig. 5(c)]. Mathematically, this can be expressed as

κA,B
‖ = lim

Bext→0

∂2E

∂m2
y,1

(Bext ). (B1)

The extrapolation method is based on a spline method,
performed in MATLAB. An example of such an extrapolation
for a gap value of g = 25 nm is shown in Fig. 5(d).

Here, it is necessary to take into account both perpendicular
components, my,1 and my,2, since the angle of the path with
the my,1 axis can be quite substantial at A and B, and it varies
as a function of 1/g, especially at state B [see Fig. 5(d)]. We
can determine the curvature of the parabola projected on the
my,1-axis, given by ∂2E/∂m2

y,1, which in turn provides the total
curvature of the parabola through

E ′′ = ∂2E

∂m2
y,1

cos2(θ ), (B2)

where θ is the angle between the my,1 and my,2 components of
the path.

The square root of the in-plane curvatures for all the simu-
lated gap values is shown in Fig. 5(a).

3. Out of plane curvatures at A and B

The out-of-plane curvatures were determined by simply re-
laxing the magnetization to either A or B, by slightly pushing
the magnetization out of the plane using an external field and
measuring the energy versus the magnetization response, mz,1.
Here, the contribution from the Zeeman interaction can be ne-
glected, since the field is perpendicular to the magnetization,
and EZeeman = −μ0m · H. A parabola can be fitted to find the
out-of-plane curvature, κA,B

⊥ . The result is shown in Fig. 5(b).

APPENDIX C: CORRELATIONS

The edge magnetization correlations were quantified by the
Pearson correlation coefficient, given by

ρ(my,1, my,2) = 1

N

∫
(my,1(t ) − μy,1)(my,2(t ) − μy,2)dt

σy,1σy,2
.

(C1)
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FIG. 7. The asymmetry between A − B − A′ (“true switches”) vs
A − B − A (“back switches”) against the inverse gap (upper panel)
and temperature (lower panel). The two outliers are likely the result
of low statistics.

The results of this calculation for some values of the gap are
shown in Fig. 6. It can be seen that the correlations decrease
with increasing temperature, as well as an increasing gap. We
fitted these data points using the following function [35]:

ρ(my,1, my,2) = − tanh
(EH − EL

2kBT

)
. (C2)

This implies that the correlations are only dependent on
the difference between the energy barriers, as well as the
temperature.

APPENDIX D: RATIO OF A − B − A TO A − B − A′

SWITCHING EVENTS

Figure 7 shows the ratio of switching processes in which
the system starts at state A, propagates to state B, and then
goes to either state A or A′. It can be seen that this ratio scales
mostly with the inverse gap, the temperature not playing a
large role.

FIG. 8. The intensity and phase of the magnonic excitations for
(a) state A, in which case the edge excitations lie below 5 GHz, and
the inner excitations which lie above this value. The relevant edge
excitations are highlighted by a pink square. (b) Side view of the
modes, where the two modes representing the in- and out-of-phase
modes can be clearly distinguished. The thermal noise causes some
spreading of the mode intensity. (c) The edge mode cross section for
state B.

APPENDIX E: DYNAMIC MODES
AND PHASE DETERMINATION

The dynamic modes are produced by applying a thermal
field at low temperatures in order to excite all the possi-
ble modes. This is done for a given time interval, during
which the integrated magnetization at the edges is recorded,
and subsequently taking the Fourier transform medge( f ) =
F{medge(t )}. The amplitudes are then given by nedge( f ) =
|medge

y ( f )|2 + |medge
z ( f )|2.

The phases of the oscillations were determined by plotting
the sine of the phase, multiplied by the magnon intensity. To
this end, we first prepare the system in either state A or B using
an external magnetic field. We then run the simulation for a
certain amount of time, exposed to a low enough temperature
such that the system does not switch from A to B or vice versa.
During the simulation, we save the spatial magnetization ev-
ery 5 × 10−12 s. We then stack these states in a 3D matrix
(x, y, t ) and take a Fourier transform to the frequency space:

my,z(x, y, f ) = F{my,z(x, y, t )}, (E1)

after which the magnon density can be obtained through

n(x, y, z, f ) = |my(x, y, f )|2 + |mz(x, y, f )|2. (E2)

From the Fourier transformation, we can also obtain the
phase information of the magnons by means of the angle of
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the Fourier components in the complex plane:

φy,z(x, y, f ) = ∠F{my,z(x, y, t )} (E3)

We then generate a 3D intensity plot with the phase in-
cluded as sin(φy), and the amplitude as n, giving a total

amplitude of n × sin(φy). The 3D intensity plot is generated
using the “vol3d.m” MATLAB code, which uses voxels to
represent intensities in 3D space. The code for vol3d.m is
written by Woodford [36], and it is available from Matlab File
Exchange. The resulting plots are shown in Fig. 8.
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