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Topological order and entanglement dynamics in the measurement-only XZZX quantum code

Kai Klocke 1 and Michael Buchhold2

1Department of Physics, University of California, Berkeley, California 94720, USA
2Institut für Theoretische Physik, Universität zu Köln, D-50937 Cologne, Germany

(Received 17 August 2022; accepted 15 September 2022; published 23 September 2022)

We examine the dynamics of a (1 + 1)-dimensional measurement-only circuit defined by the stabilizers of
the [[5,1,3]] quantum error correcting code interrupted by single-qubit Pauli measurements. The code corrects
arbitrary single-qubit errors and it stabilizes an area law entangled state with a D2 = Z2 × Z2 symmetry
protected topological (SPT) order, as well as a symmetry breaking (SB) order from a twofold bulk degeneracy.
The Pauli measurements break the topological order and induce a phase transition into a trivial area law phase.
Allowing more than one type of Pauli measurement increases the measurement-induced frustration and the SPT
and SB order can be broken either simultaneously or separately at nonzero measurement rate. This yields a
rich phase diagram and unanticipated critical behavior at the phase transitions. Although the correlation length
exponent ν = 4

3 and the dynamical critical exponent z = 1 are consistent with bond percolation, the prefactor
of the logarithmic entanglement growth may take noninteger multiples of the percolation value. Remarkably,
we identify a robust transient scaling regime for the purification dynamics of L qubits. It reveals a modified
dynamical critical exponent z∗ �= z, which is observable up to times t ∼ Lz∗

and is reminiscent of the relaxation
of critical systems into a prethermal state.
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I. INTRODUCTION

The competition between noncommuting operators lies at
the heart of quantum mechanics, e.g., inducing correlations
and frustration in quantum many-body systems and forming
the cornerstone of quantum technology, including quantum
computation and quantum error correcting codes (QECC).
The latter has recently been scrutinized from the viewpoint
of monitored quantum circuits and measurement-induced en-
tanglement transitions. In a quantum circuit, frequent local
measurements, which do not commute with the generators
of the unitary dynamics, induce a phase transition in the
dynamics of entanglement [1–3]. This phenomenon has been
observed in random quantum circuits, where the unitary evo-
lution is generated by Clifford [2–17] or Haar [1,3,18–26]
random gates and in Hamiltonian systems, where the unitary
time evolution is continuous [27–39]. Due to the inherent
randomness of the measurement process, the entanglement
phase transitions do not manifest on the level of ensemble
averaged, local order parameters but only in higher moments,
or replicas of the state [11,20,31,40,41], a feature shared in
common with many topological phase transitions.

Comparable entanglement transitions happen in
measurement-only quantum circuits, where the evolution
of the wave function is exclusively generated by
projective measurements. Frustration is induced when
the measured operators are drawn from distinct sets of local,
incommensurate operators. This may lead to, e.g., the buildup
of a volume law entangled state due to measurements and
induce an entanglement transition into an area law entangled
state [42,43] or a phase transition between two area law

entangled states with different topological order [44,45].
Measurement-only dynamics are naturally related to the
idea of quantum error correcting codes, where we may
imagine a competition between the measurement of parity
check operators for a particular error correcting code and
single-qubit measurements mimicking the adverse influence
of the environment [41,44].

Although a realistic error correcting scenario involves
intermediate gates corresponding to both the desired com-
putation and the corrections made based on the parity check
syndrome, measurement-only circuits offer a minimal model
for understanding entanglement dynamics in this setting.
The measurement-only version of the quantum repetition
code, for instance, displays an entanglement phase tran-
sition corresponding to two-dimensional bond percolation
[4,41,44], which signals the spoiling of the logical qubit due
to single-Pauli errors. The repetition code represents the most
elementary QECC, correcting exclusively “classical” bit flip
errors, while more advanced codes are required in order to
correct arbitrary single-qubit errors. For the latter, one may
expect a more nuanced, genuine quantum dynamics due to the
enhanced number of noncommuting measurements. In (2 +
1) dimensions, for instance, this was confirmed recently in the
measurement-only variant of the toric code, where a volume
law phase is observed once arbitrary single-qubit errors are
allowed [42]. Due to the recent progress in implementing sta-
bilizer codes in near-term quantum devices [46,47], probing
entanglement transitions in experimentally relevant stabilizer
codes and understanding their relation to the capability of
performing fault tolerant error correction in quantum circuits
appear as promising near term goals to advance QECCs.
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FIG. 1. (a) Phase diagram for a measurement-only evolution driven by measurement of stabilizers XZZX and single-site Pauli operators
X and Z , with probabilities pStab

M , pX
M , and pZ

M , respectively. For weak error measurement, the system falls into an area-law phase with twofold
degenerate bulk symmetry (blue). With only Z measurements, the stabilizer phase preserves an SPT order (maroon). (b) Phase diagram now
allowing only Y and Z error measurements. Here the SPT order is preserved throughout the entire stabilizer phase, whereas the bulk symmetry
is broken at weaker error probability pZ

M , pY
M . (c)–(f) Different entanglement measures calculated for the depicted subsystems reveal the

transition from the error phase to the stabilizer phase when only one flavor of Pauli measurement is allowed. (c) The mutual information
I2(A, B) between well-separated regions A and B probes the existence of globally shared qubits. (d) The conditional mutual information Sc

topo

reveals the critical point and log-law coefficient c̃. (e) The generalized topological entanglement entropy St
topo probes both SPT order and

symmetry breaking. (f) Similarly, Sq
topo probes only the SPT order.

In this work we examine the measurement-only variant
of the (1 + 1)-dimensional [[5,1,3]] QECC, which is capable
of correcting arbitrary single-qubit errors. In our setting, the
“errors” are represented by single Pauli operator measure-
ments (either X,Y, Z). The code space hosts a D2 symmetry
protected topological (SPT) order and a Z2 bulk symmetry
breaking order, which can both be broken by the Pauli errors
at a sufficiently large measurement rate. The case of unique
single-qubit errors (e.g., only Pauli-Z or only Pauli-X ) turns
out to be, up to minor modification, equivalent to the quantum
repetition code and displays an entanglement phase transition
in the universality class of two-dimensional (2D) bond perco-
lation. The scenario changes when multiple single-qubit errors
are allowed (e.g., Pauli-X and Pauli-Z).

In the presence of multiple, incommensurate errors, the
bulk symmetry and SPT order can be broken at separate,
nonzero single-qubit measurement rates, with the order at
which the two transitions occur being sensitive to the al-
lowed type of errors. In both cases, however, only one of the
transitions appears to display critical behavior, i.e., shows a
logarithmic growth of the entanglement entropy. Depending
on the types of measurements, the critical point shifts to
larger or smaller error rates and we find that the logarith-
mic entanglement entropy scaling can be enhanced along the
transition by measurement frustration between single-qubit
errors. A strong effect of incommensurate errors is observed in
the dynamics of entanglement. The entanglement growth in a
pure state and the entanglement fluctuations in the asymptotic
state both confirm a dynamical critical exponent z = 1. The
evolution of an initial mixed state, however, reveals the emer-
gence of a second, transient scaling regime in the purification

dynamics. It exhibits a distinct dynamical exponent z∗ �= z
that is sensitive to the allowed error measurements and persists
up to time scales t ∼ Lz∗

(L is the system size), when the
number of unpurified qubits is O(1). Overall, the additional
measurement frustration caused by incommensurate single-
qubit errors gives rise to a diverse phenomenology, including
previously unanticipated dynamical scaling and topological
phase transitions.

The paper is organized as follows. In Sec. II we pro-
vide a brief review of the essential features of the [[5,1,3]]
code, including the associated SPT order and symmetry
breaking order in the code space. We then establish the
entanglement measures in Sec. III, which we will use to
characterize the entanglement transition and the topological
order in each phase. To set the stage, we focus on a single
type of Pauli error in Sec. IV and show that this scenario,
up to minor modifications, is reminiscent of the repetition
code. Finally, in Secs. V and VI, we examine the more di-
verse phenomena which arise from multiple competing error
measurements.

II. XZZX CIRCUIT MODEL

We examine the entanglement dynamics in a measurement-
only variation of the [[5,1,3]] QECC. This is the smallest
QECC capable of correcting an arbitrary single qubit error,
and in this sense it is the smallest true “quantum” code.
In general an [[n,k,d]] code employs n physical qubits to
encode k logical qubits with a code distance d . In the
[[5,1,3]] code, a single logical qubit is encoded across five
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physical qubits, with stabilizers defined by the Pauli strings
Mi = XiZi+1Zi+2Xi+3, i = 1, . . . , 4 and periodic boundary
conditions (

∏4
i=1 Mi = M5). The code space is the twofold

degenerate subspace, for which all stabilizers Mi = +1. The
logical operators for the encoded qubit in this subspace are
X̄ = XXXXX and Z̄ = ZZZZZ .

We extend this code to an arbitrary number (L) of qubits
and take open boundary conditions (OBC), for which we have
stabilizers Mi with i = 1, . . . , L − 3. From hereon we refer to
this extended version of the [[5,1,3]] code as the XZZX code.
With periodic boundary conditions this would amount to an
[[L, 1, 3]] code with macroscopic classical distance (e.g., for
bit-flip errors only). See Figs. 1(a) and 1(b) for a schematic
of the stabilizers extended across the 1D chain. Closely re-
lated XZZX models in one and two spatial dimensions have
been considered in the error correcting context [48,49], where
they exhibit a robust error threshold for single-qubit Pauli
noise and can be modified for maximal code distance with
biased noise channels. For OBC we can define three addi-
tional pairs of global operators (X̄l , Z̄l ) with l = 1, 2, 3 and
Z̄l = ∏L/3

i=0 Z3i+l and equivalent for X̄l . These Z̄l mutually
commute with each other and with all the stabilizers Mi [50].
This gives rise to an eightfold degenerate code space, which
hosts both the logical qubit (equivalent to a Z2 bulk sym-
metry breaking order) and also a D2 = Z2 × Z2 symmetry
protected topological (SPT) order [51,52]. In the language
of fermions, the Z̄l operators correspond to the sublattice
fermion parity.

The origin of the D2 SPT order and the logical qubit
can be understood by observing that each stabilizer may
be written as the product of smaller overlapping stabilizers,
Mi = (XiYi+1Xi+2)(Xi+1Yi+2Xi+3), where all XiYi+1Xi+2 com-
mute with all Mi [52]. Then fixing a measurement outcome
for each stabilizer Mi, the logical qubit arises from the twofold
degeneracy in assigning expectation values to all XiYi+1Xi+2.
Similarly, the product of all stabilizers Mi is a Pauli string
X1Y2X3 · · · XL−2YL−1XL. The isolated XY X strings at each
end anticommute with the total parity operator P = Z̄1Z̄2Z̄3,
thereby generating the D2 symmetry. The Z2 bulk symmetry
associated to the logical qubit and the D2 SPT order can be
separately probed and broken by the measurement of appro-
priate Pauli operators, which we explore in the remainder of
this work.

In our measurement-only circuit, the dynamics is generated
by projective measurement of (i) the stabilizers Mi of the
XZZX code and (ii) single site Pauli operators Xi,Yi, Zi. We
refer to the single site measurements as “errors,” which aim to
break the globally encoded qubit. The circuit evolution con-
sists of alternating layers [44]. On even layers, the stabilizers
Mi are measured, each with probability pStab

M . On odd layers,
single site errors are applied with probability 1 − pStab

M . If an
error happens at site i then the corresponding Pauli operator
αi = Xi,Yi, Zi is chosen with probability qα ∈ [0, 1] such that
qX + qY + qZ = 1. Our unit of time will be the number of
layers and a steady state is typically reached after O(L) steps.
We apply different entanglement measures to map out a family
of measurement-induced phase transitions, as a function of the
error probabilities. Since all measurements correspond to the
Pauli group, the circuit can be efficiently simulated by track-

(a) (b)

FIG. 2. Measurement frustration graph. (a) With only stabilizer
and Z measurements, the graph consists of three disconnected bi-
partite subgraphs. This yields a tripling of c̃ compared to the case
with only X errors, which corresponds to a single one of the bipartite
subgraphs. (b) With both Z and X error measurements allowed, the
graph is no longer bipartite nor does it contain any disconnected
subgraphs. The critical measurement strength is thus shifted away
from pStab

M = 1
2 .

ing the set of generators G = 〈S1, . . . , SL〉 of the stabilizer
group S for the state [53,54].

The circuit dynamics exhibits a competition between
stabilizer measurement and errors. When either type of mea-
surements dominates, the steady state is stabilized by a set of
(quasi)local Pauli operators and therefore obeys an entangle-
ment area law. The correlations and entanglement properties
are then determined by the class of operators, i.e., stabiliz-
ers Mi or errors {Xi,Yi, Zi}, which dominantly stabilize the
steady state. We denote the phase, which is dominated by
stabilizer measurements stabilizer phase and the one domi-
nated by Pauli measurements as error phase. A continuous
phase transition separates the stabilizer phase from the error
phase, roughly at values where the measurement rates are
comparable (pStab

M � 0.5). At the transition one finds a loga-
rithmic entanglement growth and several additional features,
depending on the errors, which we characterize in this paper.

III. MEASURES OF ENTANGLEMENT

In order to characterize the dynamics and the steady state
in the circuit, we use a combination of different entanglement
measures, which we briefly overview below. All measures
are based on the von Neumann entanglement entropy SA =
− Tr(ρA log2 ρA), where ρA is the reduced density matrix for
a (sub)region A [55]. In the stabilizer formalism, SA is deter-
mined by the number of well-defined, independent stabilizers
acting only on A [56,57].

In order to distinguish between the two area-law phases, we
consider the mutual information I2(A, B) between separated
regions A and B defined as

I2(A, B) = SA + SB − SAB, (1)

where AB ≡ A ∪ B. Throughout this work we take A =
{1, 2, . . . , L

8 } and B = { L
2 , L

2 + 1, . . . , 5L
8 }, as shown in

Fig. 1(c). I2(A, B) corresponds to the total number of inde-
pendent stabilizers on A and B which are not independent
on AB. When stabilizer measurements dominate, they gener-
ate extensive clusters, leading to single nonlocally encoded
logical qubit and potentially edge modes. The bulk-encoded
qubit yields a mutual information of exactly I2(A, B) = 1. In
a corresponding error correction protocol, this is equivalent
to preserving the information of an initial state |ψ〉 = α |0̄〉 +
β |1̄〉, though scrambled, in the wave function.
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The eightfold ground state degeneracy of the XZZX code
with OBC leads to richer physics, including the discussed
topological order, than can be probed through the mutual
I2(A, B). To this end, we consider the more general conditional
mutual information,

I2(A,C|B) = I2(A, BC) − I2(A, B), (2)

for a partitioning of the system into at least three regions
A, B, C. Depending on the partitioning, I2(A,C|B) acts as a
generalized topological entanglement entropy, which distin-
guishes different types of topological order [45,51,58]. We
use three distinct ways to partition the system, each of which
is depicted in Figs. 1(d)–1(f). The corresponding conditional
mutual information and their interpretations are given below.

(i) St
topo. For a partitioning of the system into three

contiguous regions A, B, C [see Fig. 1(e)], the conditional mu-
tual information I2(A,C|B) probes the nonlocal information
shared between well-separated regions [51]. In particular, it
counts all the nontrivial global operators stabilizing the state.
Here this corresponds to the two possible generators of the D2

SPT order and the single generator of the Z2 bulk symmetry,
yielding a maximum value of St

topo = 3.
(ii) Sq

topo. The conditional mutual information evaluated on
a partitioning of the system into four equally sized regions A,
B, D, C such that C is spatially separated from A and B [see
Fig. 1(f)]. Since I2(A,C|B) involves only the reduced density
matrix on ABC, bulk subsystem D is traced out, leaving Sq

topo

insensitive to bulk symmetries. Instead Sq
topo counts only the

symmetry generators carried at the boundaries (i.e., from SPT
order) [27,45] and so takes a maximal value of 2.

(iii) Sc
topo. For a partitioning of the system into four con-

tiguous and equally sized regions A, B, C, D [see Fig. 1(d)],
all boundary and volume terms cancel, leaving only a pos-
sible contribution from a log-law term. For a log-law with
SA = c̃

3 log2[ L
π

sin( π |A|
L )], Sc

topo = c̃
3 . This provides a conve-

nient means by which to identify the critical point and extract
the entanglement scaling c̃ from a single quantity.

In addition to the stationary entanglement in the steady
state, we examine the dynamics of entanglement. We deter-
mine the following dynamical measures: (i) the growth of
the half-chain entanglement entropy SL/2(t ) starting from an
initial product state, (ii) the power spectrum |SL/2( f )| of the
fluctuations of SL/2(t ) in the steady state, and (iii) for a mixed
state, we consider the residual entropy 〈SL〉 = − Tr(ρ log2 ρ),
which counts the number of mixed qubits left to be purified.
For a single trajectory, the residual entropy is the logarithm
of the purity and provides a useful metric for the dynamics of
purification in the circuit.

IV. UNIQUE PAULI ERRORS

When only one type of single-site Pauli error is allowed
(i.e., some qα = 1), the dynamics in the code is, up to minor
modifications, equivalent to the previously studied quantum
repetition code [41,44]. This can be understood from the
so-called measurement frustration graph [43]. For a given
realization of errors and stabilizers, the graph consists of
vertices for every operator which can be measured and edges
connecting any anticommuting operators. Associating every
vertex with a weight set by the measurement probability, we

may infer properties of the circuit and transition from this
graph. For a single type of on-site Pauli (either X , Y , or Z), the
graph is bipartite [e.g., for Z see Fig. 2(a)] and thus invariant
under exchange of the two subgraphs when pStab

M = 1
2 . This

pins the critical point precisely at pStab
M = 1

2 for any unique
type of errors. Collapsing the entanglement measures to a
single function F ((pStab

M − pc)L1/ν ) yields a critical exponent
consistent with ν = 4

3 , expected from 2D bond percolation
[59]. See Appendix A for details on the scaling collapse and
error estimation. For α = X, Z the mapping from the circuit
dynamics to a 2D bond-percolation problem is equivalent to
the known mapping for the repetition code [44] in terms of
the colored cluster model [41]. Depending on the type of error
some characteristics vary at the transition, which we discuss
below.

Only X errors, qX = 1. Here the dynamics has a one-to-
one correspondence to the repetition code [44]. Due to the
commutation relations, the stabilizers are effectively reduced
to Mi ≡ Zi+1Zi+2 for all i. With open boundary conditions, the
first and last site are never acted upon by the stabilizers. Thus
any SPT order will be immediately destroyed by measuring
X1 or XL, which anticommute with the global operators Z̄l

for OBC. This is reflected in Figs. 1(e) and 1(f), where both
Sq

topo and St
topo are reduced by 2 for any nonzero pX

M . The
twofold degeneracy associated to the bulk-symmetry remains,
however, intact at nonzero pX

M and we find St
topo = 1 through-

out the stabilizer phase [see Fig. 1(f)]. The critical point
separating the two area-law phases features a logarithmic
entanglement scaling, reflected by the narrow peak in Sc

topo.

In particular, c̃ = 3
√

3 log(2)
2π

, as in 2D percolation and related
measurement-only circuits [41,44,45].

The relation to 2D bond percolation can be summarized
as follows. Measuring a stabilizer Mi puts sites i + 1 and
i + 2 into the same quasi-GHZ state. Subsequent stabilizer
measurements thus nucleate, grow, or merge clusters, while
measuring Xi will remove site i from any cluster. The spread
of entanglement corresponds to the development of exten-
sive clusters which may connect (and thus entangle) distant
regions of the system. Two qubits are in the same cluster
state if and only if there exists a connected path of stabilizer
measurements unbroken by errors in the circuit’s history.

Only Z errors, qZ = 1. Here, the stabilizers reduce to Mi ≡
XiXi+3 on all reachable states. The measurement frustration
graph then consists of three disconnected components, each
of which realizes a copy of the repetition code [see Fig. 2(a)].
Each of the three copies yields a percolation transition on the
corresponding sublattice, with measurement of a stabilizer Mi

now placing sites i and i + 3 into the same quasi-GHZ cluster.
The entanglement entropy is the sum of the three copies,

giving three times the percolation value c̃ = 3 3
√

3 log(2)
2π

[see
Fig. 1(d)]. Since Z measurements commute with the global
operators Z̄l , the SPT order remains unbroken by nonzero
pZ

M and only vanishes at the transition. As such, Sq
topo = 2

and St
topo = 3 throughout the stabilizer phase. Similarly, for

the XZX cluster model with Z-only errors, two copies of the
repetition code form a stabilizer phase with SPT order [45].

Only Y errors, qY = 1. Concerning the topological prop-
erties, this setup closely resembles that found with Z
measurements. Since Y1 anticommutes with both M1 and Z̄1,
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measuring Y1 will not remove the global operator and SPT
order survives throughout the entire stabilizer phase. More-
over, if one considers a particular (bulk) symmetry sector,
where the effective stabilizers take the form XY X , we see
that Y measurements will not lift the SPT order within this
sector. The measurement frustration graph is bipartite but does
not easily factorize and therefore a direct mapping to the
repetition code is not available. As a result, the quasi-GHZ
cluster picture is necessarily distinct from the repetition code.
For an initial state G = 〈Y1, . . . ,YL〉, measuring the stabilizer
M1 yields G = 〈M1,Y1Y2,Y1Y3,Y1Y4,Y5, . . . ,YL〉, forming the
overlapping clusters stabilized by Y1Y2,Y1Y3,Y1Y4. More gen-
erally, measuring a stabilizer Mi will put site i into three
clusters, with sites i + 1, i + 2, and i + 3, while measuring Yi

removes site i from all clusters. As clusters grow, this picture
becomes more complicated and measuring a stabilizer Mi will
merge only clusters which anticommute with Mi. The failure
of the frustration graph to factorize into copies of the repeti-
tion code corresponds to the formation of overlapping cluster
states, altering the entanglement structure. Nonetheless, at
the transition, Sc

topo reveals a log-law coefficient consistent

with four copies of percolation, c̃ = 4 3
√

3 log(2)
2π

. This is in line
with the observation that (overlapping) cluster states remain a
good description of the entanglement structure and that every
stabilizer Mi anticommutes with four different Yj .

V. X AND Z ERRORS

In the case of X and Z errors (qX + qZ = 1), the measure-
ment frustration graph, Fig. 2(b), is no longer bipartite. This
leads to observable consequences both for the static critical
behavior as well as for the dynamics. The critical point of
the phase transition is shifted away from the value pc = 0.5,
which was generically observed for unique measurements, to
larger values, with a maximum value of pc ≈ 0.562 ± 0.002
when qX = 1

4 . Along the critical line we find that ν ≈ 4
3 (see

Fig. 3), consistent with a percolation transition. The most
drastic consequence is, however, observed in the dynamics,
where a transient but robust dynamical critical exponent z∗ <

1 is found.
The steady state phase diagram for X and Z errors is shown

in Fig. 1(a). Similar to the case of qX = 1, for any nonzero
probability of X errors, the SPT order remains broken in
the stabilizer phase, yielding Sq

topo = 0 and St
topo = 1. Further-

more, for qZ < 1, due to the immediate coupling of the three
sublattices by X errors, the log-law coefficient c̃ drops to the

value c̃ = 3
√

3 log(2)
2π

, which was found for a single copy of
the percolation transition. This value jumps discontinuously
at qZ = 1 (see Appendix C).

We note that the entanglement transition is equally well
reproduced by examining the steady-state residual entropy
〈SL(t → ∞)〉 resulting from purification of a maximally
mixed initial state (see Appendix C). In the error phase 〈SL〉
vanishes since Pauli measurements on each site fully purify
the state. On the other hand, 〈SL〉 remains nonzero in the sta-
bilizer phase, counting the number of intact global operators
which remain mixed, and so is similar to St

topo.
Next, we examine the dynamics at the critical point of the

entanglement transition with X and Z errors and we focus

(a) (b)

FIG. 3. X and Z errors: data collapse for (a) the mutual in-
formation I2(A, B) between well separated segments A and B and
(b) Sc

topo for L = {48, 64, 96, 128, 192, 256}. The top row shows data
for qX = qZ = 1

2 , where pc ≈ 0.555 ± 0.002 and ν ≈ 4
3 . Similarly

the bottom row shows data for qX = 1
4 , qZ = 3

4 , where pc ≈ 0.562 ±
0.002 and ν ≈ 4

3 . While the critical point shifts as a function of qα ,
the exponent ν remains consistent with the percolation value.

on the dynamical critical exponent z. If the critical point
corresponds to percolation, one expects z = 1. This value is
confirmed in three different dynamical regimes: (i) the en-
tanglement growth starting from an initial pure state, (ii) the
asymptotic entanglement fluctuations in a pure state, and (iii)
the asymptotic purification dynamics starting from a maxi-
mally mixed state. However, we also detect a new, transient
scaling regime where the dynamics reveals a robust dynami-
cal critical exponent z∗ < 1. This scaling regime is absent if
only X or Z errors are present (i.e., qX = 1 or qZ = 1) and
describes the purification of an initial mixed state up to the
number of unpurified qubits as O(1). It thus dominates an
extensive time regime in the thermodynamic limit L → ∞.

Entanglement growth in a pure state. Starting from an ini-
tial product state, the half-chain entanglement entropy grows
logarithmically in time like SL/2 ∼ c̃t

3 log2(t ). The dynamical
exponent z can be found by comparing the rate of entangle-
ment growth in time and space so that z = c̃/c̃t . In either
limit qX , qZ = 1, one finds z = 1 owing to the exact mapping
between the circuit evolution and classical 2D bond perco-
lation. This is confirmed in Appendix C by the numerical
simulations, and moreover we find that for all qX + qZ = 1 the
entanglement growth from an initial pure state is consistent
with z = 1.

Asymptotic entanglement fluctuations in a pure state.
Starting again from a pure state, we evaluate the temporal
fluctuations of SL/2(t ) in the steady state. These persistent
fluctuations are caused by measurements which break and
restore stabilizers crossing between the left and right half of
the system and can be used to evaluate the dynamical critical
exponent [60]. We numerically compute the power spec-
trum |S( f )|2 of the entanglement fluctuations and find that it
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(a) (b) (c)

FIG. 4. Asymptotic entanglement dynamics revealing an exponent z = 1 at criticality with qX + qZ = 1. (a) Power spectrum |S( f )|2 for
fluctuations in the half-chain entanglement entropy in the steady state of the pure-state dynamics. Observation of 1/ f noise is consistent with
z = 1. The frequency feature associated with the alternating circuit structure has been truncated here. Comparable results are obtained with
a circuit in which all measurements may occur in each layer (as in Ref. [45]). (b) Power-law decay of the residual entropy density 〈SL (t )〉/L
at intermediate times for qX = 0 (blue), 1 (red), 1

2 (green), and 1
4 (purple). Decay is consistent with 1/t (dashed black line), corresponding to

z = 1. (c) Data collapse with z = 1 of the residual entropy at late times, where it decays exponentially fast. For qX = 0, 1, the relative decay
rates correspond to the relative magnitudes of c̃.

exhibits a characteristic 1/ f pattern for all qX + qZ = 1 at the
critical point [see Fig. 4(a)], again yielding z = 1 [60].

Asymptotic purification dynamics from a mixed state. The
dynamical critical exponent can also be determined by study-
ing the purification of an initial maximally mixed state ρ ∼ 1

due to measurements [5]. We compute the time evolution of
the residual entropy 〈SL(t )〉. Its asymptotic evolution at late
times is expected to follow an exponential decay ∼e−γLt , with
a rate that scales with the system size as γL ∼ Lz. For qX = 1
and qZ = 1 the late time residual entropy scales exactly as
〈SL(t )〉 ∼ exp(−c̃t/L) [43,61]. At large times, where the aver-
age number of unpurified qubits is �1, we observe a collapse
of the purification data after rescaling t → tL−1, see Fig. 4(c),
for system sizes up to 256. This further confirms z = 1 in the
asymptotic state.

Transient dynamical critical scaling exponent z∗ < 1. In a
transient time regime, the residual entropy density 〈SL(t )〉/L
is independent of system size and decays as a power law. This
gives another direct means to extract the dynamical critical
exponent. For qX = 1 and qZ = 1 this unambiguously yields
z = 1. However, when both X and Z errors are present si-
multaneously we find a transient time regime, which exhibits
different scaling behavior. In this case, a scaling collapse
of the purification data is obtained by rescaling time with a
different critical dynamical exponent t → tL−z∗

. This scaling
collapse is robust, present up to times t ∼ Lz∗

, and works for
all system sizes and for values of pStab

M in the neighborhood of
the critical point (see Fig. 15). For qX , qZ > 0 the dynamical
critical exponent in the transient regime turns out to be smaller
than the steady state value z∗ < z, e.g., for qX = qZ = 1

2 it is
z∗ ≈ 0.85 as shown in Fig. 5. While numerical simulations
indicate z∗ is insensitive to the value of pStab

M , it depends ex-
plicitly on qX , qZ . We find that it does not take on a universal
value but rather varies continuously through z∗ ∈ [0.8, 0.9]
for qX ∈ [ 1

4 , 3
4 ]. Moreover, as one of the errors vanishes (i.e.,

qX → 0, 1), z∗ approaches z = 1 again. The exponent z∗
controls the scaling until 〈SL(t )〉 ∼ O(1), such that there is
approximately only a single remaining qubit to purify. In the
thermodynamic limit, the measurement frustration thus gives
rise to an anomalous scaling regime with z∗ �= 1 which is
supplanted by z = 1 scaling only after extensive times.

VI. Y AND Z ERRORS

In the case of Y and Z measurements (qY + qZ = 1), we
observe a new scenario of entanglement transitions: two topo-

FIG. 5. Residual entropy versus rescaled time tL−z for qX =
qZ = 1

2 at the critical point pc = 0.56 with system sizes L ∈
{24, 36, 48, 64, 96, 128, 256}. We contrast the fitted exponent z∗ =
0.85 (blue) with the asymptotic z = 1 (red), highlighting that the dy-
namics in the transient regime indeed exhibit an anomalous exponent
z∗ �= 1. This regime terminates when the number of qubits remaining
to be purified is of order 1 (dashed gray lines at 1). Moreover, we find
that this scaling persists in the neighborhood of the critical point and
that the exponent z∗ �= 1 is robust against variations in pStab

M .
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(a) (b)

(c) (d)

FIG. 6. Entanglement measures for system sizes
L = {48, 64, 96, 128, 256} with qY = qZ = 1

2 . (a) The mutual
information between well-separated regions of size L/8 vanishes
at pStab

M ≈ 3
4 , where the bulk symmetry is broken. (b) From Sc

topo,
we observe a critical point at pStab

M ≈ 0.466 ± 0.007 with log-law
entanglement scaling characterized by finite c̃. (c),(d) St

topo and Sq
topo

show a bulk-symmetry breaking transition which occurs deeper into
the stabilizer phase than the SPT breaking transition. It is the SPT
breaking transition for which we find log-law entanglement scaling.

logical phase transitions that take place at different, nonzero
values of the error measurement rate; see Fig. 6. The two
transitions correspond again to the breaking of the SPT order
and the SB order by the errors. In this case, however, the
order of breaking them is reversed compared to the previous
scenarios. Here again we find a transient dynamical regime
with a different dynamical critical exponent z∗ �= z. However,
in this case z∗ > z.

Neither Y nor Z measurements alone immediately break
the SPT order, and we observe that the SPT order survives
throughout the entire stabilizer phase for arbitrary qY + qZ =
1. Unlike the qY = 1 and qZ = 1 limits, however, the SPT
order and bulk symmetry are broken at two separate transi-
tions. Here, the bulk symmetry breaking (SB) transition takes
place at a nonzero error measurement rate 1 − pStab

M , which
is smaller than the critical rate for the SPT order breaking
(see Fig. 6). Since the global qubit protected by the XZZX
code is encoded via the bulk symmetry, the SB transition is
accompanied by a vanishing of the mutual information. In
contrast to all previously inspected cases, the SB transition
and the vanishing of the mutual information notably are not
accompanied by any signature of critical behavior in Sc

topo. In-
terpreting a vanishing mutual information as the point where
a globally encoded logical qubit is irreversibly destroyed by
the errors, this implies that the information loss in the qubit is
not signaled by a critical point if Y and Z errors are present
simultaneously.

The subsequent SPT transition remains near the original
phase boundary pStab

M = 1
2 and is accompanied by a nonzero

log-law entanglement scaling, indicating a critical point, con-
sistent with ν = 4

3 . Interestingly, the magnitude of c̃ along the
SPT critical line in the pY

M—pZ
M plane is enhanced relative to

the qY = 1 and qZ = 1 end points. For pY
M = pZ

M at criticality

we find c̃ ≈ 4.1 ≈ 7.1 3
√

3 log(2)
2π

, as can be seen from the peak
value of Sc

topo in Fig. 6. Unlike with X and Z errors, here
c̃ varies continuously with qY , qZ without any discontinuous
jumps. In this case, c̃ might no longer serve as a universal
indicator of the underlying percolation transition. Instead, it
might be thought of as counting the (average) number of over-
lapping cluster states. The full phase diagram in the pY

M—pZ
M

plane can be found in Appendix D.
We want to stress that the type of topological phase tran-

sitions observed in the previous regimes, i.e., for qα = 1 and
for qX + qZ = 1, have a counterpart in a purely Hamiltonian
system. In particular, the measurement-only evolution can be
connected to imaginary-time evolution under a corresponding
Hermitian Hamiltonian constructed from the stabilizers. The
ground state of a XZZX -stabilizer Hamiltonian with addi-
tional magnetic fields in the α direction [51,52,58] undergoes
a topological phase transition with equivalent signatures in
the topological entanglement entropies. Due to the inher-
ently different generators of the dynamics, the ground state
phase transition corresponds to the one-dimensional Ising
universality class instead of 2D bond percolation. However,
the breaking of the topological order and the position of
the critical point indicate the same topological order in the
Hamiltonian and the measurement-only dynamics. However,
we emphasize that a separation of the SPT and SB transitions
appears to be unique to the measurement-only circuit and to
have no counterpart in the Hamiltonian setting. The ground
state of a XZZX -stabilizer Hamiltonian with both Y and Z
fields, obtained from exact diagonalization, undergoes only a
single transition at which all orders are broken simultaneously
(see Appendix D 1).

In the dynamics at the critical point of the SPT breaking
transition, we observe a similar scenario as with X and Z
errors. The entanglement growth when starting from a pure
state, the entanglement fluctuations in the steady state, and
the asymptotic purification dynamics all confirm z = 1 in
the steady state. Again, the transient scaling regime yields a
dynamical critical exponent. Unlike the qY = 0 case, however,
the exponent is enhanced z∗ > 1 compared to the steady state.
Around qY = qZ = 1

2 it reaches a plateau with z∗ ≈ 1.17 (see
Fig. 7) and, as qY → 0, 1 we have z∗ → 1.

VII. CONCLUSION

Here we studied the entanglement dynamics which arise
in the one-dimensional XZZX code subject to single site
Pauli measurement errors. When only a single type of error
is permitted, the dynamics corresponds to the repetition code,
admitting an explanation of the entanglement transition in
terms of quasi-GHZ clusters and 2D bond percolation. For
multiple incommensurate error measurements, the critical be-
havior still appears to be controlled by 2D bond percolation,
although the interplay of measurement frustration and sym-
metry not only may yield a continuously varying c̃ along the
critical line but shifts the relative positions of the SPT and
bulk-symmetry breaking transitions. In addition, we observe
a separation of the topological phase transitions for Y and Z
errors in Sec. VI, which does not possess a ground state coun-
terpart in a translationally invariant Hamiltonian setting. It is
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FIG. 7. Decay of the residual entropy 〈SL〉 for
qY = qZ = 1

2 at the critical point pc = 0.46 for system sizes
L = {24, 36, 48, 64, 96, 128, 256}. Time is rescaled with exponent
z∗ = 1.17 (blue) and z = 1 (red). We see a much better data collapse
for z∗ �= 1. As with X and Z errors, the transient scaling regime
persists until O(1) qubits remain unpurified (dashed gray lines).

an interesting challenge for future work to figure out whether
this transition may be unique to the measurement setting or
may have a counterpart in an appropriate Hamiltonian, e.g., in
the strong-randomness limit.

Along the critical line, we find that the pure-state dynamics
and asymptotic purification dynamics are characterized by a
dynamical critical exponent z = 1. However, incommensu-
rate errors yield an extensive scaling regime with anomalous
exponent z∗ �= z in the purification dynamics. An exponent
z∗ < 1 is particularly striking as it suggests superluminal en-
tanglement spread not found in more conventional 1D critical
points, highlighting the potentially nonlocal effect of pro-
jective measurements. Very recently, in the 2D toric code
subject to only Y errors, z > 1 was found [42] at a tricritical
point of entanglement transitions. Our results indicate that
transient dynamical scaling with a modified critical dynamical
exponent may be a general feature of quantum error correct-
ing codes, which correct incommensurate errors. The scaling
regime is absent when starting from a pure state, which may
hint towards a generally modified dynamical critical behavior
of mixed states. As such, it might prevail when the measure-
ments are balanced by a nonzero dephasing rate that drives
the system toward a mixed-state close to equilibrium at late
times. On the other hand, when comparing the purification
dynamics of an initial mixed state in the measurement setting
with the relaxation of an excited state back to equilibrium,
the emergence of a transient dynamical critical exponent is
reminiscent of the dynamical behavior of prethermal states at
a critical point in Hamiltonian or Lindblad dynamics [62,63].
The decrease (increase) of z∗ compared to z is consistent with
the shift of the critical point to larger (smaller) values of pStab

M
for qY = 0 (qX = 0), indicating that both may be traced to
a change in the GHZ cluster formation in the presence of
incommensurate errors.
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APPENDIX A: FINITE-SIZE SCALING

The critical exponent pc and exponent ν are found by
finite-size scaling of the various entanglement measures (e.g.,
Sq,c,t

topo ) as in Fig. 3. Letting x = (p − pc)L1/ν and y be an
entanglement measure (e.g., I2 or St,q,c

topo ), under optimal data
collapse, the data (xi, yi ) fall along a single smooth curve.
For sufficiently dense data, each data point yi should then be
well approximated by a linear interpolation of its adjacent data
points,

ȳ = yi−1 + xi − xi−1

xi+1 − xi−1
(yi+1 − yi−1)

= (xi+1 − xi )yi−1 − (xi−1 − xi )yi+1

xi+1 − xi−1
. (A1)

The deviations (yi − ȳ)2 then provide a metric for how far
from an ideal data collapse is achieved under the rescaling.
More precisely, the deviations are normalized against the un-
certainty in the data. If si is the uncertainty in yi, then we may
define the expected variance

|	(y − yi )|2 = s2
i +

(
xi+1 − xi

xi+1 − xi−1

)2

s2
i−1

+
(

xi−1 − xi

xi+1 − xi−1

)2

s2
i+1 (A2)

FIG. 8. Normalized cost function ε(pc, ν ) in the pc–ν plane eval-
uated for Sq

topo at qX = qZ = 1
2 . The cost is minimized for (p∗

c, ν
∗) =

(0.558, 1.33), marked with a blue star. The dashed red contour
denotes the region where ε(pc, ν ) � 1.3 ε(p∗

c, ν
∗), giving an uncer-

tainty estimate of ±0.001 for pc and ±0.09 for ν.
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(a)

(b)

FIG. 9. Normalized fitting cost for the dynamical exponent z
via purification at criticality. Costs are normalized against the min-
imum cost, which determines z∗. (a) Fitting cost for times where
〈SL (t )〉 > 1. Here we fit a linear relationship between log(tL−z ) and
log(〈SL (t )〉) to capture the power-law purification. (b) Fitting cost
for late times where 〈SL (t )〉 < 1. Here we fit a linear relationship be-
tween tL−z and log(〈SL (t )〉) to capture the exponential purification.

and a normalized deviation

wi =
(

yi − ȳ

	(yi − y)

)2

. (A3)

FIG. 10. Entanglement entropy of subregion A = [1, . . . , �] as a
function of � for unique errors (qα = 1) at criticality (pStab

M = 1
2 ) with

system size L = 256.

FIG. 11. Purification dynamics for Y errors only with system
sizes L = {24, 36, 48, 64, 96, 128, 256}. (Top) The average residual
entropy density at intermediate times decays as 1/t (dashed black
line), consistent with z = 1. (Bottom) The residual entropy at late
times exhibits data collapse under rescaling t → tL−z with z = 1.

The total deviation

ε = 1

n − 2

n−1∑
i=2

wi (A4)

then provides a global cost function which we may minimize
with respect to pc and ν to find the optimal scaling collapse
[6,18,64]. We estimate the critical values p∗

c and ν∗ by min-
imizing ε. Similarly the error in these values is estimated by
identifying the region in parameter space where ε(pc, ν) �
1.3ε(p∗

c, ν
∗). Figure 8 gives an example of minimizing the

cost function ε.
For purification, the functional form of 〈SL(t )〉 is known,

and so we may find the dynamical exponent z (or z∗ in the
transient scaling regime) by regression. Fixing a time interval
(e.g., t/L < 1) we minimize the error with respect to z for
fitting a power law to the residual entropy density. Similarly
at late times one can minimize the error with respect to fitting
an exponential decay. As with the cost function ε, the error in
the estimate of z∗ can be approximated by a threshold (e.g.,
1.3 times the minimum fitting error). This gives comparable
results to the linear interpolation cost function approach used
for finding (pc, ν). In Fig. 9 we show the normalized fitting
error for the purification dynamics in the transient (power-
law) regime and the late-time (exponential) regime, showing
a distinct z∗ �= 1 which gives way to z ≈ 1 at asymptotically
late times.

APPENDIX B: ADDITIONAL DATA FOR UNIQUE PAULI
ERRORS

Here we provide supporting figures for the case of unique
Pauli errors. In Fig. 10 we show explicitly the logarithmic
entanglement growth at the critical point. This confirms the
relative values of c̃ indicated by the peak values of Sc

topo in
Fig. 1(d).
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(a) (b)

FIG. 12. Phase diagram in the pX
M—pZ

M plane, with pY
M = 0, for L = 128. (a) St

topo reproduces the schematic phase diagram in Fig. 1(a),
where SPT order survives only when pX

M = 0. The dashed red line indicates pStab
M = 1

2 , showing that with X and Z measurements the stabilizer
phase is reduced in area. (b) Sc

topo reveals both the phase boundary and the log-law coefficient c̃. We clearly observe a discontinuous jump at

qZ = 1, with c̃ remaining very near to the percolation value
√

3 log(2)
2π

everywhere else along the transition.

In Fig. 4(b), we show that the purification dynamics with
only X or only Z errors is consistent with z = 1 at all times. In
Fig. 11, we verify that this is also the case when only Y errors
are allowed.

APPENDIX C: ADDITIONAL DATA FOR X AND Z ERRORS

Here we provide supporting figures and data for the case of
X and Z errors. In Fig. 12 we show the phase diagram in the
pZ

M—pX
M plane measured via St

topo and Sc
topo. This provides an

exact numerical verification of the schematic phase diagram
presented in Fig. 1(a). Furthermore, it provides the values of

(a)

(b)

(c)

FIG. 13. Logarithmic growth of the half-chain entanglement en-
tropy SL/2(t ) at criticality with (a) qX = 1, (b) qX = qZ = 1

2 , and
(c) qZ = 1. Here we average between odd and even layers of the
circuit to remove the finite average difference in entanglement be-
tween subsequent steps owing to the alternating layer structure of
the circuit. The dashed black line corresponds to z = 1. The data
represent the average of between 103 and 104 individual trajectories
for system sizes L = {24, 36, 48, 64, 96, 128, 256, 512}.

c̃ along the transition, including the discontinuous jump at
qZ = 1. We note that the shifting of the critical point is not
symmetric about qX = qZ = 1

2 . Rather, the stabilizer phase is
reduced in area more appreciably for larger qZ .

Figure 13 shows the logarithmic growth of the half-chain
entanglement entropy at criticality as a function of system
size. The dashed line corresponds to c̃t = c̃, corroborating the
claim that z = 1.

For pure states we found a transition with critical exponent
ν = 4

3 . The steady state of the purification dynamics repro-
duces the same entanglement transition as is found in the pure
states. This can be seen in Fig. 14, which shows the critical
scaling of the steady-state residual entropy 〈SL〉 at fixed time
t = 103.

As we note in Sec. V, within a neighborhood of the critical
point (p − pc)L1/ν � 1, the exponent z∗ describing the tran-
sient purification regime is robust against small perturbations
in pStab

M . In Fig. 15 we show this for pStab
M ∈ [0.53, 0.57] with

FIG. 14. Average residual entropy 〈SL (t )〉 at time t = 103 for
system sizes L = {16, 24, 36, 48, 64, 96, 128}. The data collapse un-
der a rescaling of the measurement strength with critical exponent
ν = 4

3 , as in the pure-state transition.
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FIG. 15. Decay of the residual entropy 〈SL〉 in the transient
regime near criticality for L = {24, 36, 48, 64, 96, 128, 256}. Here
time is rescaled with exponent z∗ = 0.85. The exponent z∗ is insen-
sitive to pStab

M within a narrow range of the critical point pc up until
times where 〈SL (t )〉 is O(1) (dashed gray lines at 1 and 3).

z∗ = 0.85 giving a good data collapse up until there are O(1)
remaining qubits to be purified.

APPENDIX D: ADDITIONAL DATA FOR Y AND Z ERRORS

This section consists of supplemental data and figures for
the case where both Y and Z errors are allowed. In Fig. 16,
we show the phase diagram via St

topo and Sc
topo in the pZ

M—pY
M

plane as measured via St
topo, providing a numerical verification

of the schematic version shown in Fig. 1(b). We see here
explicitly that the stabilizer phase is enlarged relative to the
case with only one type of allowed error. From Sc

topo we
also observe the enhancement of the prefactor of the loga-
rithmic entanglement growth in the presence of measurement
frustration. As we discuss in Sec. VI, we find logarith-
mic entanglement scaling only at the SPT-breaking transition,

(a) (b)

FIG. 17. Scaling collapse for Sq
topo and Sc

topo at the SPT-breaking
transition with qY = qZ = 1

2 . Data are consistent with an exponent
ν ≈ 4

3 and critical point pc ≈ 0.47 ± 0.01.

whereas for X and Z errors this was found at the bulk-
symmetry breaking transition. Nonetheless, Fig. 17 shows the
scaling collapse near the critical point for qY = qZ = 1

2 still
gives the percolation exponent ν = 4

3 . We note also that the
vanishing of the mutual information at the bulk-symmetry
breaking transition appears consistent with an exponent ν = 4

3
despite not being accompanied by a log-law entanglement
scaling.

1. Exact diagonalization

Here we comment briefly on the origin of the separation of
the SPT and bulk-symmetry breaking transitions. For X and
Z errors, the SPT order is naturally broken by any finite pX

M .
On the other hand, for Y and Z errors we have shown that the
bulk symmetry and SPT order break at two distinct but finite
error measurement probabilities. We are interested in iden-
tifying whether the splitting of the SPT and bulk-symmetry
transitions is a feature unique to the measurement scenario.

(a) (b)

FIG. 16. Phase diagram in the pY
M—pZ

M plane, with pX
M = 0, for L = 128. (a) St

topo reproduces the schematic phase diagram in Fig. 1(b), with
SPT order extending through the entire stabilizer phase, while the bulk symmetry breaks at a smaller but finite error measurement probability.
The dashed red line indicates pStab

M = 1
2 , showing that with Y and Z measurements the stabilizer phase is enlarged in area. (b) Sc

topo reveals both
the phase boundary and the log-law coefficient c̃. Here we find no discontinuous jumps. Furthermore, we clearly observe an enhancement of c̃
for mixed errors. Due to finite size L and grid spacing, the values here underestimate slightly those reported with a finer mesh, as in the main
text (e.g., Fig. 6).
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FIG. 18. Data collapse for entanglement measures calculated in
the ground state of the uniform XZZX Hamiltonian [Eq. (D1)]
with open boundary conditions, J = 1, and hZ = 1

4 for system sizes
L ∈ [12, 21]. The entanglement measures show good data collapse
under rescaling of hY to (hY − hc )L1/ν with hc ≈ 0.94 and ν ≈ 0.73.
Moreover, all data suggest that the SPT and SB transitions occur
simultaneously in this model.

Let us consider the uniform XZZX model with external
field,

H = J
∑

i

XiZi+1Zi+2Xi+3 +
∑

i

(hY Yi + hZZi ). (D1)

Fixing J = 1 and hZ = 1
4 , we vary hY and extract the entangle-

ment measures in the ground state via exact diagonalization.
As seen in Fig. 18, the bulk symmetry and the SPT order
both break at the same value of hY . Moreover, the finite-size
scaling analysis in Fig. 18 gives an estimated critical point
hY ≈ 0.94 ± 0.01 and critical exponent ν ≈ 0.7 ± 0.05 con-
sistent with an Ising-type transition. This then suggests that
the separation of the two transitions may arise either (i) purely
from the randomness in measurements or (ii) genuinely from
the measurement. For the former, we might consider quenched
disorder in the infinite-randomness limit. We leave further
disambiguation of the origin of this separation of transitions
to a future work.
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