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Hidden Markov model analysis for fluorescent time series of quantum dots
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We present a hidden Markov model analysis for fluorescent time series of colloidal quantum dots. A
fundamental quantity to measure optical performance of the quantum dots is a distribution function for the
light-emission duration. So far, to estimate it, a threshold value for the fluorescent intensity was introduced, and
the light-emission state was evaluated as a state above the threshold. With this definition, the light-emission
duration was estimated, and its distribution function was derived as a blinking plot. Due to the noise in the
fluorescent data, however, this treatment generates a large number of artificially short-lived emission states, thus
leading to an erroneous blinking plot. In the present paper, we propose a hidden Markov model to eliminate these
artifacts. The hidden Markov model introduces a hidden variable specifying the light-emission and quenching
states behind the observed fluorescence. We found that it is possible to avoid the above artifacts by identifying
the state from the hidden-variable time series. We found that, from the analysis of experimental and theoretical
benchmark data, the accuracy of our hidden Markov model is beyond human cognitive ability.
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I. INTRODUCTION

Recently, studies on analyzing various material data by
machine-learning techniques to propose new materials and
new synthetic methods have become active [1–9]. The devel-
opment of databases including material structures and their
physical properties is progressing [10–13], and the develop-
ment of software for facilitating machine-learning analyses
is also making great progress [14,15]. Most of the research
so far has focused on the correlation analysis of static data
of materials, but recently, there has been growing inter-
est in analyses for the dynamic data (time-dependent data)
[16–26].

In the present paper, we present an analysis for time-series
data on optical properties of single colloidal quantum dots
(QDs). The QD is a fine particle of several nanometers and is a
system that can confine electrons and holes in all dimensions.
Due to its unique electronic and fluorescent properties, there
are wide applications including single-electron transistors
[27], quantum teleportation [28], QD lasers [29], QD solar
cells [30], and quantum computers [31]. From the viewpoint
of the performance of QDs as emitters, it is desirable that the
light emission continue as long as possible under continuous
excitation, leading to a high performance on luminescence
quantum yield. However, it is known that the single colloidal
QDs show blinking behaviors [32] in most cases. As a fun-
damental property for this measure, a distribution function on
the light-emission states of the single QD is widely employed
and called a blinking plot [33].

In the experiment, we irradiate the QD with the light
continuously and observe a situation where the QD emits
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or quenches in real time. Figure 1 shows an example of the
observed fluorescent intensities of a single QD as a function
of time. As can be seen from the figure, the time series
of the fluorescent intensity is noisy due to the experimental
equipment and the measurement environment. It is difficult
to quantitatively distinguish the light-emission and quenching
states especially in such case that the noises are larger than or
comparable to the fluorescent signals. Conventionally, in order
to define the light-emission states, an artificial threshold is
introduced by hand in the intensity analysis, and all the states
beyond this threshold are evaluated as the light-emission state.
With this definition, the light-emission duration is estimated,
and a distribution function on the duration is evaluated. With
this method, however, the result will include a large amount
of short light-emission duration that does not actually exist,
and then the obtained distribution function would clearly be
erroneous.

In this study, we present a time-series data analysis us-
ing a hidden Markov model (HMM) [34,35] to solve this
problem. The HMM is a typical machine-learning method to
handle time-series data, and is applied to various dynamic
data analyses such as stock price prediction [36] and anomaly
detection [37]. In materials science, it is also beginning to
be used for several applications including random telegraph
noise [16–19], nitrogen-vacancy centers in diamond [20,21],
electron holograms [22], atom quantum jump dynamics [23],
fluorescence resonance energy transfer [24], and crack prop-
agation [25]. The HMM introduces hidden variables for
specifying states behind the observed real time series. We will
show that the above mentioned noises in the fluorescence data
can be eliminated with the HMM method; the time series of
the hidden variable are noise-suppressed, and as a result, the
duration evaluation becomes stable.

The present paper is organized as follows: In Sec. II, we
describe a basic idea for treating the present problem, details
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FIG. 1. Experimental fluorescence time-series data of quantum
dots. See Sec. III A for experimental details and conditions.

of the HMM, and how to analyze the time series data with the
HMM. In Sec. III, we present results of the HMM analysis
for experimental fluorescence data. On top of that, to verify
accuracy of the present HMM analysis, we show performance
for the theoretical benchmark data. Section IV summarizes
conclusions. We also in the Appendix describe details for the
blocking Gibbs sampling to solve the HMM.

II. METHOD

A. Basic idea on state identification

Before presenting details, we first show the basic idea for
studying blinking phenomena. As an example, we consider a
time series of a fluorescent intensity I (t ) in Fig. 2(a). In this
time series, the intensity is high at the regions of t1 � t � t2
and low in the range of 0 � t � t1 and t2 � t . Here, we define
the former region as an ON (bright) state and the latter region
as an OFF (dark) state. The time series contains a noise η,
which makes it difficult to determine the ON or OFF state; if
the level difference � between the two states competes with
the η, the state assignment becomes difficult.

In the conventional method, a threshold intensity Ith in
panel (a) is introduced to define the ON and OFF states; if
the intensity I (t ) is larger than the Ith, the state at the time t is
specified as the ON states. On the other hand, if the intensity
I (t ) is smaller than the Ith, the state is classified as the OFF
state. Figure 2(b) shows the statistics on the duration τ of the
ON state, based on the conventional method (see Sec. II C for
details). Since the intensity I (t ) largely fluctuates due to the
noise, many short-duration states of τ ∼ 0.1–0.5 s are gen-
erated. In the normal sense, however, in the case of this time
series, the ON duration would be t2 − t1 = 62.6 s and there are
no shorter ON states. From this discussion, the evaluation of
the duration with the conventional method would bring about
an erroneous result for the noisy time series.

Next, we consider the state assignment by the HMM.
The HMM introduces a time series of a hidden variable s(t )
that governs the generation of the I (t ) (see Sec. II B). When
s(t ) = 1, the state at the time t is ON associated with the
high fluorescent intensity, while when s(t ) = 0, the state at the
time t is OFF with the low intensity. The s(t ) time series can
be determined with the Bayesian inference for the observed
time series I (t ). Note that the noise is suppressed in the s(t )
time series [Fig. 2(c)]. Since the s(t ) has basically a binary
feature, by introducing a threshold sth in panel (c), we can
perform a stable state assignment.

FIG. 2. Summary of an analysis for fluorescent time series.
(a) Time series of the fluorescent intensity I (t ), where ION and IOFF

are the guides representing baselines of intensity for the ON and OFF
states. � and η are the level difference between the two states and
noise, respectively. Ith is a threshold to distinguish the ON and OFF
states, which is represented by a solid line (see the text). (b) Number
of appearances of the ON (bright) state, where we count the appear-
ances by duration for the time series in panel (a). (c) Time series
of a hidden variable s(t ) obtained from HMM simulations for the
fluorescent time series in panel (a) (see Sec. II B for details), where
s(t ) = 1 and s(t ) = 0 indicate the ON and OFF states, respectively.
Note that the noise is totally suppressed in the s(t ) time series.

B. Hidden Markov model

The HMM is in general expressed with a combination
of various probability distributions of stochastic variables
[34,35]. The form of the HMM employed in the present study
is shown below:

p(I, S,�,π, A) = p(I|S,�)p(S|π, A)p(�)p(π)p(A). (1)

Here, I is observed data, S is hidden variables, � describes
parameters characterizing the distribution function of I, π is
parameters to set the initial step of the hidden variable, and A
describes a transition matrix for the time evolution of hidden
variables. The p(S|π, A) in Eq. (1) describes the conditional
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probability distribution of S with A and π fixed, and similarly,
p(I|S,�) is the conditional probability distribution of I after
S and � are determined. We note that the form in Eq. (1) is
a standard type; it is not a special one which is optimized or
modified for the present problem, and is basically the same as
that used in the usual time-series data analysis such as stock
price and seismic wave data.

I in Eq. (1) is discrete time-series data written as

I = (I1, I2, . . . , IN )T , (2)

where In is an observed value at the nth time grid, and the total
number of grids is N . In the present study, the I corresponds
to the time series of the fluorescent intensity of a single QD.

S in Eq. (1) is hidden variables written as

S = (s1, s2, . . . , sN ), (3)

which is also a time series. The component sn is a vector and
consists of K components as

sn = (s1n, s2n, . . . , sKn)T . (4)

The sn describes an internal state behind the fluorescence data
at the time tn. In the present study, the number of the internal
states is 2 (K = 2), and thus, the sn is described with the
binary as

sn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
0

)
(ON state),(

0
1

)
(OFF state).

(5)

Note that this variable satisfies a sum rule as
K∑

k=1

skn = 1. (6)

� in Eq. (1) expresses variables to characterize a prob-
ability distribution function of the time series I in Eq. (2).
Since the total number of the internal states is K , we con-
sider K distribution functions and prepare parameters for each
distribution function. In the present study, we assume that the
distribution function of each state follows the Gaussian dis-
tribution, which is based on the observation that experimental
fluorescence intensities exhibiting blinking often follow the
Gaussian distribution [38]. This is also true in our present
experimental results (see Sec. III A). This assumption on the
distribution function of the fluorescent intensity might not be
true in the case where the photon antibunching tendency is
strong. In that case, however, one first examines what kind
of distribution of the fluorescence intensities there is, and
changes the distribution form from the Gaussian type to the
other one.

In the Gaussian function, it is characterized by mean μ and
precision λ, where λ−1 represents a variance. Thus, we rewrite
� as {μ,λ}, where μ contains the mean of each state as

μ = (μ1, μ2, . . . , μK )T , (7)

and λ contains the precision of each state as

λ = (λ1, λ2, . . . , λK )T . (8)

Here, μk and λk are the mean and precision of the kth
Gaussian distribution.

π in Eq. (1) describes parameters to set an initial-step
hidden variable s1, and this is also a K-component vector as

π = (π1, π2, . . . , πK )T (9)

with πk being the probability of taking the kth state at the
initial step. Note a normalization of

∑K
k=1 πk = 1.

A in Eq. (1) is variables for describing the transition be-
tween successive hidden variables, which are expressed as

A = (A1, A2, . . . , AK ) (10)

with

Ak′ = (A1k′ , A2k′ , . . . , AKk′ )T (11)

representing a transition probability from the k′th state to
other states. Thus, A is a K × K matrix, and the matrix ele-
ment Akk′ expresses a transition probability from the k′th state
to the kth state. Note the normalization of

∑K
k=1 Akk′ = 1.

We now rewrite the right-hand side of Eq. (1) by consider-
ing independence of the stochastic variables as [34,35]

p(I|S,μ,λ)p(S|π, A)p(μ,λ)p(π)p(A)

=
(

N∏
n=1

K∏
k=1

p(In|μk, λk )skn

)

×
(

p(s1|π)
N∏

n=2

K∏
k′=1

p(sn|Ak′ )sk′n−1

)

×
(

K∏
k=1

p(μk, λk )

)
p(π)

(
K∏

k′=1

p(Ak′ )

)
. (12)

Here, we note that the forms of
∏K

k=1 p(In|μk, λk )skn and∏K
k′=1 p(sn|Ak′ )sk′n−1 in Eq. (12) select only one of the K states

due to the binary feature of the hidden variable sn [Eqs. (5)
and (6)]. The variable dependency in this model is represented
as a graph in Fig. 3. Arrows represent a dependency between
variables; for example, in this model, In depends on sn, μ, and
λ, which corresponds to

∏K
k=1 p(In|μk, λk )skn of the right-hand

side in Eq. (12).
Concrete forms of each probability distribution in Eq. (12)

are summarized as follows:
(1) p(In|μk, λk ) is the Gaussian distribution as

p(In|μk, λk ) = N (In|μk, λ
−1
k )

=
√

λk

2π
exp

(
−λk

2
(In − μk )2

)
. (13)

(2) p(s1|π) and p(sn|Ak′ ) are the categorical distribution
as

p(s1|π) = Cat(s1|π) =
K∏

k=1

π
sk1
k (14)

and

p(sn|Ak′ ) = Cat(sn|Ak′ ) =
K∏

k=1

Askn
kk′ , (15)

respectively.
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FIG. 3. A graphical model for HMM defined as Eq. (12). {In}
are observed time series [Eq. (2)] and the observed data are drawn
with a shadow. {sn} is a time series of hidden variables [Eq. (3)]. μ

and λ in Eqs. (7) and (8) are parameters characterizing distribution
functions that time series I follows. An initial-step hidden variable s1

is generated based on the parameter π in Eq. (9), while sn is generated
by the previous step sn−1 and the transition matrix A in Eq. (10).
Stochastic variables are represented with nodes and the dependency
between the variables is represented by arrows.

(3) p(μk, λk ) is the Gaussian-Gamma distribution as

p(μk, λk ) = NG(μk, λk|m, ν, a, b)

= N (μk|m, (νλk )−1)Gam(λk|a, b)

=
{√

νλk

2π
exp

(
−νλk

2
(μk − m)2

)}

× {
CG(a, b)λa−1

k e−bλk
}
, (16)

where m, a, b, and ν are hyperparameters in the Gaussian-
Gamma distribution, and CG(a, b) is the normalization
constant as

CG(a, b) = ba

�(a)
(17)

with �(a) being the Gamma function.
(4) p(π) and p(Ak′ ) are the Dirichlet distribution as

p(π) = Dir(π|α) = CD(α)
K∏

k=1

π
αk−1
k (18)

and

p(Ak′ ) = Dir(Ak′ |βk′ ) = CD(βk′ )
K∏

k=1

Aβkk′−1
kk′ , (19)

respectively, and α and β are hyperparameters in the Dirichlet
distribution. Also, CD(x) is the normalization constant written
as

CD(x) = �
( ∑K

k=1 xk
)

∏K
k=1 �(xk )

. (20)

In the practical simulation, we need to calculate the con-
ditional distribution function under the observed time-series

data I in Eq. (2) as

p(S,μ,λ,π, A|I) = p(I, S,μ,λ,π, A)

p(I)
, (21)

where p(I) is a marginal distribution written as

p(I) =
∑

S

∫∫∫∫
p(I, S,μ,λ,π, A)dμdλdπdA. (22)

In the present study, we used the blocking Gibbs sampling
[39] based on the Bayesian inference to optimize the condi-
tional distribution function in Eq. (21). Details can be found
in the Appendix. Anyway, by evaluating the conditional dis-
tribution function, the time-series data of the hidden variable
S in Eq. (3) can be obtained, which is used for the following
analysis of the ON/OFF duration.

C. Duration estimate based on HMM

We next describe an evaluation of the duration of the ON
or OFF state of QDs. We first consider a sampling average for
the time-series data of the hidden variable as

S̄ = 1

Nitr

Nitr∑
i=1

S(i), (23)

where S(i) is the time-series data of the hidden variable in the
ith Gibbs sampling step, and Nitr is the total number of the
Gibbs sampling. The S̄ is given in the same form as in Eq. (3):

S̄ = (s̄1, s̄2, . . . , s̄N ). (24)

In the present study, the sn has two components: the ON and
OFF states. Therefore, the s̄n is written as

s̄n =
(

sON
n

sOFF
n

)
=

(
sON

n

1 − sON
n

)
(25)

with sON
n = (1/Nitr )

∑Nitr
i s(i)

1n and sOFF
n = (1/Nitr )

∑Nitr
i s(i)

2n .
Also, the sum rule in Eq. (6) was used in the transformation
from the middle to right-side equations. We note that the com-
ponent sON

n is a real number, not a binary, after the ensemble
average. Now, using sON

n , we define a time series sON as

sON = (
sON

1 , sON
2 , . . . , sON

N

)T
. (26)

Figure 4 shows a schematic diagram of sON denoted by a
thick green solid curve. Generally, in the sON, statistical noise
is suppressed and smooth behavior is obtained (see Sec. III).
We thus estimate the ON duration τON and the OFF duration
τOFF from the sON data, where a threshold sth denoted by the
thin red solid line is introduced. Since the sON takes a value
from 0 to 1, sth = 0.5 is adopted. It is defined as entering
the ON state when the sON curve exceeds the sth. We set this
time to tON

α with a suffix α to specify the number of the ON
event. On the other hand, when the sON curve becomes smaller
than the sth, it is defined as entering the OFF state. We set this
time to tOFF

α . From these two times, the duration of the ON
state is defined as

τON
α = tOFF

α − tON
α . (27)

Similarly, we define the duration of the OFF state as

τOFF
α = tON

α+1 − tOFF
α . (28)
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FIG. 4. A schematic diagram of a time series of sON [Eq. (26)]
which is described by a thick green solid curve. sth is a threshold to
distinguish the ON and OFF states, which is represented by a thin
solid red line. Since the sON takes a value from 0 to 1, sth = 0.5 is
adopted. It is defined as entering the ON state when the sON curve
exceeds the value of sth. We set this time to tON

α with a suffix α

specifying the number of the ON event. Similarly, when the sON

curve becomes smaller than sth, it is defined as entering the OFF
state. We set this time to tOFF

α . From these two times, the ON and
OFF duration, τON

α and τOFF
α , are estimated with using Eqs. (27) and

(28), respectively.

With the obtained {τON
α } and {τOFF

α } data, the probability
distributions of the ON and OFF durations are calculated
by

PON(τ ) = 1

NON

N ′
ON∑

α′=1

f ON
α′ wON

α′ δ
(
τ − τON

α′
)

(29)

and

POFF(τ ) = 1

NOFF

N ′
OFF∑

α′=1

f OFF
α′ wOFF

α′ δ
(
τ − τOFF

α′
)
, (30)

respectively, where N ′
ON and N ′

OFF are the total numbers of
independent ON and OFF events, respectively. We note that,
in this calculation, the two durations are considered equal
within the grid spacing �τ . f ON

α′ and f OFF
α′ are the numbers

of events with the same ON and OFF durations, respectively.
Also, wON

α′ and wOFF
α′ are weights given as [33]

wON
α′ = 2�τ

τON
α′+1 − τON

α′−1

(31)

and

wOFF
α′ = 2�τ

τOFF
α′+1 − τOFF

α′−1

, (32)

respectively. Lastly, the denominators NON and NOFF in
Eqs. (29) and (30) are the total numbers of the ON and OFF
events, which satisfy the following sum rules:

NON =
N ′

ON∑
α′=1

f ON
α′

wON
α′

SON
(33)

and

NOFF =
N ′

OFF∑
α′=1

f OFF
α′

wOFF
α′

SOFF
, (34)

TABLE I. Initial hyperparameter setting for the present HMM
simulations. K is the number of the hidden states, and ν, m, a, and
b are the hyperparameters for the Gaussian-Gamma distribution of
p(μk, λk ) in Eq. (16). α is the hyperparameter for the distribution
function p(π) in Eq. (18), which is a K-component vector. Also, β is
the hyperparameter for the distribution function p(Ak′ ) in Eq. (19),
which is represented by a K × K matrix. The matrix elements are
characterized by N , D, and γ , where N is the total length of the time
series, and D and γ were set to 1 and 0.01 in the present simulation,
respectively. Nitr is the total number of the iteration steps of the Gibbs
sampling, which depends on the simulations.

K in Eq. (4) 2

(ν, m, a, b) in Eq. (16) (1, 0, 1, 1)

α in Eq. (18) (100, 100)T

β in Eq. (19)

( (1−2γ )N+4(1−γ )D
4γ

D

D (1−2γ )N+4(1−γ )D
4γ

)

Nitr in Eq. (23)

⎧⎪⎨
⎪⎩

1000 [Expt. (Figs. 6, 7)]

200 [TS-I and TS-II (Figs. 9(a), 9(b))]

1000 [TS-III (Fig. 9(c))]

respectively, where we introduced correction factors SON and
SOFF which are determined from the normalization conditions
of PON(τ ) and POFF(τ ).

III. RESULTS AND DISCUSSION

We implemented the method described in Sec. II into the
program code written by PYTHON. With this program, we
performed HMM simulations for experimental and theoretical
benchmark data. Table I summarizes the present setting of our
HMM simulation and the employed hyperparameters. In the
simulations, the observed fluorescence data I in Eq. (2) are
standardized as

Ĩn = In − Ī

σI
(35)

with a mean of

Ī = 1

N

N∑
n=1

In (36)

and a standard deviation of

σI =
√√√√ 1

N

N∑
n=1

(In − Ī )2. (37)

The standardized time series Ĩ has a mean value of 0 and a
standard deviation of 1, which is used as input as the HMM
simulations.

A. HMM analysis for experimental data

1. Experimental fluorescence data

Here, we apply the above method to analysis of the
experimental data. Before presenting the analysis results,
we first describe experimental details. The QDs used in
the experiment are CdSe/ZnS core-shell QDs capped with
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20nm

5nm

(a) (b)

2  m

(c)

A

B

FIG. 5. (a) Transmission electron microscope (TEM) and
(b) scanning TEM images. These images were taken with a FEI
Tecnai 20 TEM. (c) Scanning fluorescence image of the QDs. The
circled areas A and B in the panel show examples of ON (bright) and
OFF (dark) states in the QDs, respectively.

trioctylphosphine oxide and hexadecyl amine, synthesized via
the pyrolytic decomposition of organometallic compounds
[40]. The QDs have a spheroid shape (minor axis: 4.1 ±
1.2 nm; major axis: 5.3 ± 1.3 nm), as confirmed in the
transmission electron microscope (TEM) [Fig. 5(a)] and the
scanning TEM [Fig. 5(b)] images. The thickness of the ZnS
shell is 1.7 monolayers. The QDs were spin-cast from a
toluene solution at 3000 rpm onto silica glass plates with
a hydrophobic surface. The spin-cast samples were set in a
sealed chamber with optical windows.

We measured scanning fluorescence images and time series
of a fluorescent intensity of single QDs using a scanning
laser microscope [41] equipped with an objective lens (100×;
0.9 NA) and avalanche photodetector. The laser-light wave-
length and excitation intensity were 488 nm and 133 W/cm2,
respectively. The fluorescence images were acquired by
raster-scanning a laser spot on the sample surface. The laser
spot size and scanning step length were the diffraction-limited
size (less than 1 μm) and 0.1 μm, respectively. An exposure
time for each step was 0.1 s. The time series data of the
single QDs were recorded at fixed positions on the sample
surface with an exposure time of 0.1 s under continuous laser
illumination. We confirmed that the noise due to the dead
time of the detector, i.e., the blind time after each photon
detection, on the experimental time series to be analyzed is
sufficiently small [42]. The fluorescence images and the time
series were measured for two different environments: vacuum
and wet-nitrogen atmospheres. The wet-nitrogen atmosphere
was prepared by bubbling nitrogen gas through distilled water.
We took 12 samples with a length of 1200 s for each of the
vacuum and wet-nitrogen atmospheres.

Figure 5(c) shows a typical fluorescence image of the spin-
cast sample in vacuum. There are several circular spots like A
with diffraction-limited size and several line segments like B
along the scanning direction (vertical direction). All the circu-
lar spots and the line segments correspond to the fluorescence
images of individual single QDs; the circular spots indicate
that the QDs were in the ON state during the raster scanning,
while the line segments indicate that the QDs were mainly
in the OFF state and temporally in the ON state. All time
series data of single QDs shown below were recorded at the

TABLE II. A summary of the fitting of f (τ ) [Eq. (38)] to the
data of Fig. 8, where we list the inverse exponent m and its standard
errors.

Vacuum Wet

ON OFF ON OFF

Conventional 1.99 ± 0.05 2.14 ± 0.04 2.09 ± 0.06 1.83 ± 0.04
HMM 1.10 ± 0.05 1.20 ± 0.04 0.88 ± 0.06 1.08 ± 0.05

center positions of the bright spots in scanning fluorescence
images.

Figures 6(a)–6(c) and 7(a)–7(c) show typical time series
of the experimental fluorescent intensity in vacuum and wet-
nitrogen atmospheres, respectively, which are described by
red solid lines. The single QDs in both environments exhibited
blinking phenomena [32], i.e., an irregular change between
the ON and OFF states. The blinking occurrence rate appeared
to be reduced in the wet-nitrogen atmosphere, as demonstrated
qualitatively in Ref. [41]. It is known that the OFF state of
blinking corresponds to the trapping of photogenerated elec-
trons (or holes) in trap site(s) located on or near QD surfaces
[32,33]. Thus, we can qualitatively infer that suppression in
the wet-nitrogen atmosphere is due to inactivation of the trap
site(s) by photoadsorption of water molecules in the envi-
ronment [41]. However, it is difficult to quantify blinking
properties with commonly used conventional analysis, assum-
ing an artificial threshold between the ON and OFF states
(Sec. II A), due to the low signal-to-noise ratio of the data
in Figs. 6 and 7. As such, we can apply an HMM analysis
described in Secs. II B and II C to quantify blinking within the
noisy data.

2. HMM analysis

The green dashed lines in Figs. 6 and 7 show time series of
the hidden variable sON in Eq. (26), which are obtained from
the HMM simulations for the time series of the experimental
fluorescent intensity I in Eq. (2). We see from the figure that
the behavior of the sON is in good agreement with the variation
in the experimental intensities (red solid lines). Also, the sON

basically takes 1 or 0 discontinuously and is hardly affected
by noise. For such data, the duration can be estimated stably
by the method described in Sec. II C. The blue dotted line Ith

is a threshold to distinguish the ON and OFF states for the I
data, while sth denoted by the black solid line is a threshold
for the sON data. When estimating the duration in the conven-
tional way with using Ith (Sec. II A), it becomes erroneous.
For example, in the case of Fig. 6(c), the difference in the
experimental intensity of the ON and OFF states is clearly
smaller than the noise. In this case, it would be difficult to
distinguish the two states from fluorescent time series with Ith.
If the way is forcibly performed for estimating the duration,
a large amount of short duration due to noise will occur. In
contrast, in the analysis for sON with using sth, since the noise
is suppressed in sON, the ON/OFF assignment can be stably
performed.

Figure 8 is our calculated probability distributions for the
ON/OFF duration, PON(τ ) in Eq. (29) and POFF(τ ) in Eq. (30),
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FIG. 6. Three typical time series of the fluorescent intensity measured in a vacuum atmosphere, denoted by red solid lines. These are used
in the HMM simulations as the observed time series I in Eq. (2). The grid spacing of the time series is 0.1 s. The green dashed lines describe
the time series of the hidden variable sON in Eq. (26) obtained from the HMM simulations. The left scale is for the fluorescent intensity and the
right scale is for the hidden variable. The Ith denoted by blue dotted lines is a threshold to distinguish the ON (bright) and OFF (dark) states
for the I time series, and is set by hand artificially. The sth denoted by black solid line is a threshold for the sON time series, and is set to 0.5.

denoted by red dots. Left-side panels (a), (c), (e), and (g) are
the results of the ON duration, and the right-side panels (b),
(d), (f), and (h) are the results of the OFF duration. Also, the
upper four panels [(a), (b), (c), and (d)] show the results for the
vacuum condition, and the lower ones [(e), (f), (g), and (h)]
show the results under the wet conditions. The (a), (b), (e),
and (f) panels contain the results based on the conventional
method, while the (c), (d), (g), and (h) ones represent the
results based on the HMM. To analyze trends of each data,

we performed a fitting of the following function [43] to the
data as

f (τ ) = Aτ−m, (38)

where A is a coefficient and m is an inverse exponent. The fit-
ted function is described by a black solid line and the obtained
m values are summarized in Table II. A small m indicates that
long-duration states tend to be formed; for example, the plot
of panel (g) exhibits the smallest m = 0.884 and therefore

FIG. 7. Three typical time series of the fluorescent intensity measured in a wet-nitrogen atmosphere, denoted by red solid lines. These are
used in the HMM simulations as the observed time series I in Eq. (2). The grid spacing of the time series is 0.1 s. The green dashed lines
describe the time series of the hidden variable sON in Eq. (26) obtained from the HMM simulations. The left scale is for the fluorescent intensity
and the right scale is for the hidden variable. The Ith denoted by blue dotted lines is a threshold to distinguish the ON (bright) and OFF (dark)
states for the I time series, and is set by hand artificially. The sth denoted by black solid line is a threshold for the sON time series, and is set
to 0.5.
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FIG. 8. Our calculated probability distributions for the ON/OFF
duration in the experimental fluorescent time series, PON(τ ) in
Eq. (29) and POFF(τ ) in Eq. (30), denoted by red dots. Black solid
lines are f (τ ) in Eq. (38) and the inverse exponent m represents a
slope of the line, whose result is summarized in Table II. Also, the
small slope corresponds to the high frequency of long duration. Left-
side panels (a), (c), (e), and (g) are the results of the ON duration, and
the right-side panels (b), (d), (f), and (h) are the results of the OFF
duration. Also, the upper four panels [(a), (b), (c), and (d)] show the
results for the vacuum condition, and the lower ones [(e), (f), (g), and
(h)] show the results under the wet conditions. Panels (a), (b), (e), and
(f) contain the results based on the conventional method, while (c),
(d), (g), and (h) represent the results based on the HMM.

has many long-duration data compared with the other plots.
In contrast, in the largest m plot of panel (b), the data con-
centrate in the short-duration regime. By comparison of m of
each plot, we found that the probability distributions based
on the conventional method are approximated by τ−2, while
the probability distributions based on the HMM decay as τ−1.
Thus, the plots based on the conventional method tend clearly
to reflect many artificial short-duration states, and the HMM
corrects the long-duration data. We note that, on the results
based on the HMM, the m values with the wet condition are
basically small compared to the m with the vacuum condition,
indicating that single QDs emit long and quench long in the
wet atmospheres, while in the vacuum atmosphere, the single
QDs blink with moderate length.

We also note that, in the HMM analysis, the evaluation of
long-duration events is rather accurate, while the evaluation
for short-duration events is partially limited. For example, in
the case of the present experimental data, the time-series data
are taken at an interval �t of 0.1 s, and in this case, the reliable
lower bound of the evaluated duration would be about 0.5 s or
more (i.e., ∼5 × �t). We will discuss this point in Sec. III B
in more detail.

B. HMM analysis for theoretical benchmark data

In this part, we check the quantitative accuracy of the
present HMM simulation. In Sec. III A, we have shown that
there is a discernible difference between the results based on
the conventional method and the HMM simulation, but it does
not mean the quantitative accuracy for the HMM. In order to
verify the accuracy of the HMM, it is necessary to perform
HMM analyses for a time series with correct answers and
check whether the HMM can reproduce the correct results.

1. Generation of model time series

For this purpose, we consider the following model distri-
bution functions for the ON and OFF duration [38] as

pON(τ ) = AONτ−qe−τ/ξ θ (τ − τmin)θ (τmax − τ ) (39)

and

pOFF(τ ) = AOFFτ−lθ (τ − τmin)θ (τmax − τ ), (40)

respectively, where AON and AOFF are normalization constants.
θ (x) is a step function, and q, ξ , and l are parameters of
the model functions. τmin and τmax are respectively lower
and upper cutoffs of the duration considered in the present
model. These functions have been widely used in analyses for
the blinking phenomena with the power law of QDs [38,44].
The exponential term in Eq. (39) is valid in the case of the
truncated power law. In the simulation, we first generate a time
series with the model distribution functions. Next, we perform
an HMM analysis for the generated time series, and evaluate
the ON and OFF duration. Finally, we check whether the
distribution function calculated with the simulation [Eqs. (29)
and (30)] reproduces the original model distribution functions
[Eqs. (39) and (40)].

The model time series is generated as follows:
(1) We first define baselines for the ON and OFF intensi-

ties (ION and IOFF) and their difference

� = ION − IOFF. (41)

(2) We next sample {τON
α } from pON(τ ) in Eq. (39) and

{τOFF
α } from pOFF(τ ) in Eq. (40) with α specifying a sampling

number. The τON
α and τOFF

α represent the duration of the ION

and IOFF intensities, respectively. With these data, we make a
sequence τ as

τ = (
τON

1 , τOFF
1 , τON

2 , . . . , τON
Ne

, τOFF
Ne

)
, (42)

where Ne is the total number of the ON or OFF events.
(3) Then, based on the above τ, ION, and IOFF, we construct

a bare time series

I0 = (
I0
1 , I0

2 , . . . , I0
N

)T
(43)
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FIG. 9. Model time series I [Eq. (2)] generated in the manner of Sec. III B, denoted by red solid lines. White dashed lines are the bare
time series I0 in Eq. (43). � = ION − IOFF in Eq. (41) represents the bare intensity difference. (a) TS-I (� = 0.7), (b) TS-II (� = 0.5), and
(c) TS-III (� = 0.3). The noise η is 0.5. The time-grid interval �t was set to 0.01 s for TS-I and TS-II and 0.005 s for TS-III and a single time
series contains 20 ON and 20 OFF events (Ne = 20).

which are discretized at interval �t and in a similar form to
Eq. (2).

(4) Finally, we add an artificial noise η to the above time
series I0, where η is sampled from the Gaussian functions as

η ∼ N (η|0, σ 2) = 1√
2πσ 2

exp

(
− η2

2σ 2

)
(44)

with σ being a standard deviation of the Gaussian function.
Thus, the final model time series I in Eq. (2) is obtained.

Figure 9 shows the generated time series I in Eq. (2) (red
solid lines). The bare time series I0 in Eq. (43) is also shown
with white dashed lines. Parameters in generating the time se-
ries and characterizing the model functions pON(τ ) in Eq. (39)
and pOFF(τ ) in Eq. (40) are summarized in Table III. In the
present study, we consider three time series with different �

(0.7, 0.5, and 0.3) in Eq. (41) with the noise amplitude η in
Eq. (44) kept at 0.5. We call the time series with � = 0.7, 0.5,
and 0.3 TS-I, TS-II, and TS-III, respectively. The time-grid
interval �t of the time series was set to 0.01 s for TS-I and
TS-II and 0.005 s for TS-III, and one time series contains
20 ON and 20 OFF events (Ne = 20). We generated 1000
samples for each time series and took an ensemble average
of them in the analysis. Panels (a), (b), and (c) in Fig. 9
compare TS-I, TS-II, and TS-III. As the � becomes smaller
(� = 0.7 → 0.5 → 0.3), it becomes difficult to distinguish
between the ON and OFF intensities. At � = 0.3 (TS-III), it
would be no longer possible for the human eye to distinguish
between the ON and OFF states correctly.

We note that, to ensure numerical accuracy of the HMM
simulation, a proper choice of a grid spacing �t of the time se-
ries is important; �t must ideally be small enough compared
to a grid spacing �τ of the duration grid which is introduced
in the calculation of PON(τ ) in Eq. (29) and POFF in Eq. (30).
Then,

�t � �τ. (45)

By definition, �τ represents the minimum duration. In order
to evaluate it accurately, the �t must be small enough. In the
present study, �t and �τ were respectively set to 0.01 s and
0.1 s for TS-I and TS-II and 0.005 s and 0.1 s for TS-III.

TABLE III. Parameters for generating model time series of
Fig. 9, based on the model functions pON(τ ) in Eq. (39) and pOFF(τ )
in Eq. (40). ξ , q, l , τmax, and τmin are parameters characterizing
pON(τ ) and pOFF(τ ). ION and IOFF are baselines for the ON and
OFF intensities, respectively, and � is their difference [Eq. (41)].
According to the �, we named the time series with � = 0.7, 0.5, and
0.3 TS-I, TS-II, and TS-III, respectively. σ is a standard deviation of
the Gaussian function to generate noise η [Eq. (44)]. Ne is the total
number of the ON or OFF events [Eq. (42)] in the time series. Note
that the total number of the ON and OFF events in the time series is
the same. �t is a grid spacing of time series, and �τ is a grid spacing
of the duration grid, which is introduced in the calculation of PON(τ )
in Eq. (29) and POFF(τ ) in Eq. (30). The τmax, τmin, �τ , and �t are
given in units of s.

Eq. TS-I TS-II TS-III

ξ (39) 1800 1800 1800
q (39) 1.3 1.3 1.3
l (40) 1.7 1.7 1.7
τmax (39), (40) 1000 1000 500
τmin (39), (40) 1 1 1
�τ (45) 0.1 0.1 0.1
ION (41) 1.7 1.5 1.3
IOFF (41) 1.0 1.0 1.0
� (41) 0.7 0.5 0.3
σ (44) 0.5 0.5 0.5
Ne (42) 20 20 20
Nitr (23) 200 200 1000
�t (45) 0.01 0.01 0.005
Nsample 1000 1000 1000
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FIG. 10. Calculated time series of hidden variable sON [Eq. (26)] with the HMM simulations, denoted by green solid lines. Panel (a) shows
the sON obtained for TS-I (� = 0.7) in Fig. 9(a). Similarly, panels (b) and (c) are the results for TS-II (� = 0.5) in Fig. 9(b) and TS-III
(� = 0.3) in Fig. 9(c), respectively. Bare time series I0 denoted by red dotted lines are also shown for comparison. If the HMM simulation is
successful, the sON should match I0.

We also comment on the computational time on the
present HMM simulation. If the time-series length is long, we
can understand the longer-duration behavior of the blinking
phenomena rather accurately. On the other hand, in this case,
the calculation time will become long. So, in an actual treat-
ment, rather than analyzing a single long time series, we
divide it and analyze multiple samples of medium-size time
series. For the present case, to analyze the data of one time se-
ries, it takes about 7 days with a single-core machine. Also, we
considered 1000 samples for the statistical average. Since we
used 20 computer nodes and each node consists of 28 cores,
the total computational time was 1000/(28×20) × 7 ∼ 12.5
days.

2. The time series of hidden variables

We show in Fig. 10 results of our HMM analysis for the
time series in Fig. 9. Panels (a), (b), and (c) correspond to
the results for TS-I [Fig. 9(a)], TS-II [Fig. 9(b)], and TS-III
[Fig. 9(c)], respectively. The solid green line describes the
time series of the hidden variables sON in Eq. (26), which is
compared with the bare time series I0 in Eq. (43) (red dotted
line). We see that the behavior of sON rather well reproduces
the I0. There are almost no misjudgments even for the time
series with � = 0.3 (TS-III), and thus our HMM has very
high accuracy.

3. Probability density of duration time

From the analysis to the sON time series as shown in
Fig. 10, we evaluated the durations {τON

α } and {τOFF
α } using

the method described in Sec. II C, and calculated their proba-
bility distributions PON(τ ) in Eq. (29) and POFF(τ ) in Eq. (30).
The resulting blinking plots are shown in Fig. 11 by red dots.
The left-side panels represent PON(τ ), and the right-side pan-
els are POFF(τ ). Also, the upper (a) and (b) panels describe the
results for the model time series TS-I [Fig. 9(a)]. Similarly, the
middle (c) and (d) and lower (e) and (f) panels describe the re-

sults for the time series TS-II [Fig. 9(b)] and TS-III [Fig. 9(c)],
respectively. We also give the original model distributions

FIG. 11. Our calculated probability distributions for the ON/OFF
duration in the fluorescent time series, PON(τ ) in Eq. (29) and POFF(τ )
in Eq. (30), denoted by red dots. Black solid lines represent model
probability distributions pON(τ ) in Eq. (39) and pOFF(τ ) in Eq. (40).
The upper (a) and (b), middle (c) and (d), and lower (e) and (f) panels
correspond to the results for the time series with � = 0.7, 0.5, and
0.3, respectively. Note that each result is obtained for Nsample time
series. Also, left (a), (c), and (e) panels are the results for the ON
duration, while right (b), (d), and (f) panels are the results of the OFF
state.
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TABLE IV. Analysis of the HMM prediction accuracy. Upper, middle, and lower blocks describe the analysis results for the time series
with � = 0.7, 0.5, and 0.3, respectively. Note that each result is obtained for Nsample time series. In the table, we present the duration results
digit by digit. Nans is the total number of actual events in the ON or OFF states, which is evaluated from I0 in Eq. (43). Nsim is the total number
of events in the ON or OFF states, which is estimated from the time series sON in Eq. (26), based on the HMM simulation. Nsuc is the total
number of correctly predicted events. Recall and precision are Nsuc/Nans in Eq. (46) and Nsuc/Nsim in Eq. (47), respectively. These results are
for Nsample time series in Table III. The unit of τ is sec.

ON OFF

τ Nans Nsim Nsuc Recall Precision Nans Nsim Nsuc Recall Precision

0–1 0 358 0 – 0 0 363 0 – 0
1–10 11832 11804 11625 0.983 0.985 16058 16025 15682 0.977 0.979

TS-I 10–100 5728 5728 5728 1.0 1.0 3325 3325 3325 1.0 1.0
100–1000 2440 2440 2440 1.0 1.0 617 617 617 1.0 1.0
1000– 0 0 0 – – 0 0 0 – –

0–1 0 1396 0 – 0 0 1459 0 – 0
1–10 11702 11620 10747 0.918 0.925 16123 15978 14501 0.899 0.908

TS-II 10–100 5844 5844 5844 1.0 1.0 3247 3247 3247 1.0 1.0
100–1000 2454 2454 2454 1.0 1.0 630 630 630 1.0 1.0
1000– 0 0 0 – – 0 0 0 – –

0–1 0 2031 0 – 0 0 2163 0 – 0
1–10 12085 11926 10398 0.86 0.872 16236 15945 13458 0.829 0.844

TS-III 10–100 5933 5934 5931 0.999 0.999 3210 3212 3208 0.999 0.999
100–500 1982 1982 1981 0.999 0.999 554 554 554 1.0 1.0
500– 0 0 0 – – 0 0 0 – –

pON(τ ) in Eq. (39) and pOFF(τ ) in Eq. (40) by black solid
lines. We see that the calculated blinking plots well reproduce
the original distribution functions. As emphasized in Fig. 9(c),
it is difficult for humans to identify the ON or OFF state in the
I time series TS-III (� = 0.3, η = 0.5), but the present HMM
simulation is able to discriminate between the ON and OFF
states with a fairly high accuracy.

4. Quantitative accuracy of HMM analysis

To check the HMM-simulation accuracy quantitatively, we
evaluated recall and precision, which are defined as

Recall = Nsuc

Nans
(46)

and

Precision = Nsuc

Nsim
, (47)

respectively. Here, Nans, Nsim, and Nsuc are the number of
actual events with a certain duration, the number of events
with a certain duration obtained by the HMM simulation, and
the number of correctly predicted events, respectively. In the
present model time series, we introduce cutoffs τmin and τmax

[Eqs. (39) and (40)], and then the actual events exist only
in 1–1000 s. In this analysis, we tolerate a 10% error. For
example, in the case of data with the duration of τ = 1 s,
if the simulation evaluates it within 0.9–1.1 s, it is regarded
as a success event. Table IV shows analysis results for the
HMM simulation, where we accumulated the duration data
from the Nsample time series, where Nsample is given in Table III.
In the table, we present the duration results digit by digit.
From the table, we see that, for all the time series, accuracy
of the recall and precision is satisfactory. Certainly the accu-

racy of the short duration is less good; especially, simulations
slightly observe a duration of 0–1 s that does not actually exist.
Overall, however, the accuracy is very high and satisfactory,
and the ability of the reproduction of the ON/OFF states based
on the present HMM is impressive.

IV. SUMMARY

We have presented an HMM analysis for experimental and
theoretical fluorescent time series of QDs. In this simulation,
we have calculated the time series of hidden variables to
evaluate the ON/OFF duration of the fluorescence. With the
resulting duration data, we have calculated blinking plots. The
blinking plots are well-known fundamental data for under-
standing the optical property and performance of the QDs
and microscopic modeling for the emission and quenching
processes are done based on this plot. So, the quantitative
reliability of the blinking plot would be important for real
understanding of the QD physics.

Through the comparison between the results based on the
conventional and HMM analyses, we have found discernible
quantitative differences; in the conventional method, the ON
or OFF state is directly evaluated for the noisy fluorescent
time series, thus leading to a large amount of artificial short
duration data. On the other hand, in the HMM analysis, the
hidden-variable time series which is noise-suppressed is cal-
culated for the ON/OFF assignment, so we can accumulate
reliable duration data; the artificial short-duration data are
suppressed and long-duration data are properly evaluated. It
was found that these differences in the evaluation methods
have a great influence on the analysis for the noisy time-series
data; in the case of the experimental fluorescence data of the
single colloidal QDs, it had a significant effect on the power
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of the duration probability distribution. Also, in order to show
the accuracy of the present HMM analysis, we have analyzed
the theoretical benchmark time series generated from model
distribution functions for the duration. The distribution func-
tions obtained from the HMM simulations well reproduce
the model distribution functions, and we have found that the
ON/OFF assignments can be performed rather accurately even
for the low signal-to-noise time series.

In the present simulation, we have focused on two-state
analysis, but the HMM can also be applied to analysis of three
or more states. If such an analysis is performed successfully, it
will be possible to construct a more detailed model on fluores-
cence of QDs, especially on the relaxation from photoexcited
to ground states [45], which is left as a future task.
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APPENDIX: BLOCKING GIBBS SAMPLING

In this Appendix, we describe how to calculate the con-
ditional distribution function p(S,μ,λ,π, A|I) in Eq. (21).
For this purpose, we use the Gibbs sampling [35,46] which
gives the approximate solution of p(S,μ,λ,π, A|I). The cal-
culation proceeds as follows:

(1) We first calculate a conditional probability distribution
of p(S(i)|μ(i−1),λ(i−1),π(i−1), A(i−1), I) fixed by μ(i−1), λ(i−1),
π(i−1), A(i−1), and I, and sample S(i) from the resulting condi-
tional probability distribution as

S(i) ∼ p(S(i)|μ(i−1),λ(i−1),π(i−1), A(i−1), I), (A1)

where the upper suffix i specifies the iteration step of the
Gibbs sampling, and the variables of the initial step, μ(0), λ(0),
π(0), A(0), are evaluated with the hyperparameters in Table I.

(2) We next calculate a conditional probability distribution
p(μ(i),λ(i)|S(i),π(i−1), A(i−1), I) with fixed S(i), π(i−1), A(i−1),
and I, and sample μ(i), λ(i) from the obtained conditional
distribution function as

μ(i),λ(i) ∼ p(μ(i),λ(i)|S(i),π(i−1), A(i−1), I). (A2)

(3) The same treatment applies to π(i); we evaluate a con-
ditional distribution function p(π(i)|S(i),μ(i),λ(i), A(i−1), I)
and sample π(i) as follows:

π(i) ∼ p(π(i)|S(i),μ(i),λ(i), A(i−1), I). (A3)

(4) Finally, we sample A(i) from a conditional distribution
function with fixed S(i), μ(i), λ(i), π(i), and I as follows:

A(i) ∼ p(A(i)|S(i),μ(i),λ(i),π(i), I). (A4)

One iteration loop of the Gibbs sampling consists of
Eq. (A1) → Eq. (A2) → Eq. (A3) → Eq. (A4) → Eq. (A1).
The S(i), μ(i), λ(i), π(i), A(i) are optimized by repetition of
this iteration. In the present HMM, since each conditional

probability distribution is analytically obtained (see below),
the Gibbs sampling is especially effective.

We next describe the conditional distribution for Eqs. (A1),
(A2), (A3), and (A4). The calculation is a little complicated,
but the derivation itself is straightforward, so only the results
are shown.

(1) p(S(i)|μ(i−1),λ(i−1),π(i−1), A(i−1), I) [Eq. (A1)]:
We used a blocking Gibbs sampling based on a forward-

backward algorithm [34,35,47]. In this treatment, we utilize a
marginalization as

p(sn|μ,λ,π, A, I) =
∑
S\n

p(S|μ,λ,π, A, I), (A5)

where we drop the upper suffix (i) or (i − 1) on the itera-
tion step for simplicity. Also, S\n is a subset of S minus sn.
p(sn|μ,λ,π, A, I) is described with the following category
distribution:

p(sn|μ,λ,π, A, I) = Cat(sn|ηn) =
K∏

k=1

η
skn
kn (A6)

with

ηkn = η̃kn∑K
k′=1 η̃k′n

(A7)

and

η̃kn = fknbkn. (A8)

Here, fkn and bkn on the right-hand side are given as follows:

fkn = f̂kn∑K
k′=1 f̂k′n

(A9)

with

f̂kn =
{

p(I1|μk, λk )πk, (n = 1),
p(In|μk, λk )

∑K
k′=1 Akk′ fk′n−1, (n �= 1),

(A10)

and

bkn = b̂kn∑K
k′=1 b̂k′n

(A11)

with

b̂kn =
{∑K

k′=1 p(In+1|μk′ , λk′ )Ak′kbk′n+1, (n �= N ),
1, (n = N ).

(A12)

In this calculation, μ(0), λ(0), π(0), A(0) are required to find
p(sn|μ,λ,π, A, I) [Eq. (A6)] in the initial step. These are
evaluated with the hyperparameters in Table I.

(2) p(μ,λ|S,π, A, I) [Eq. (A2)]:
This conditional probability distribution is described as the

Gaussian-Gamma distribution:

p(μ,λ|S,π, A, I)

= p(μ,λ|S, I)

=
K∏

k=1

NG(μk, λk|m̂k, ν̂k, âk, b̂k ) (A13)
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with

ν̂k =
N∑

n=1

skn + ν, (A14)

m̂k =
∑N

n=1 sknIn + νm

ν̂k
, (A15)

âk = 1

2

N∑
n=1

skn + a, (A16)

b̂k = 1

2

(
N∑

n=1

sknI2
n + νm2 − ν̂km̂2

k

)
+ b, (A17)

where the original hyperparameters (ν, m, a, b) of the
Gaussian-Gamma distribution are renormalized in as
(ν̂k, m̂k, âk, b̂k).

(3) p(π|S,μ,λ, A, I) [Eq. (A3)]:

This is the Dirichlet distribution:

p(π|S,μ,λ, A, I) = p(π|s1) = Dir(π|α̂), (A18)

where

α̂k = sk1 + αk (A19)

with α̂k being the renormalized hyperparameter of the Dirich-
let distribution.

(4) p(A|S,μ,λ,π, I) [Eq. (A4)]:
This is also the Dirichlet distribution as

p(A|S,μ,λ,π, I) = p(A|S) =
K∏

k′=1

Dir(Ak′ |β̂k′ ), (A20)

where β̂kk′ is the renormalized hyperparameter from a bare
parameter βkk′ as

β̂kk′ =
N∑

n=2

sk′n−1skn + βkk′ . (A21)
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