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Quantum entanglement between excitons in two-dimensional materials
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The quantum entanglement between two excitons in two-dimensional materials, embedded in an optical
microcavity, was investigated. The energy eigenstates of a Jaynes-Cummings like Hamiltonian for two qubits
coupled to a single cavity mode have been calculated. The quantum entanglement between such states was
estimated by calculating the concurrence between two qubits in each of these eigenstates. According to the
results of our calculations, if the system is allowed to decay only through the emission of cavity photons at low
temperatures, then there is a maximally entangled eigenstate, protected from decay. We demonstrated that the
existence of such a state results in the counterintuitive conclusion that, for some initial states of the system,
the fact that the cavity is leaky can actually lead to an increase in the average concurrence on the timescales
of the average photonic lifetime. By briefly analyzing the three-qubit model, we have demonstrated that the
probability for the entanglement to be preserved is enhanced when the number of qubits is increased. In addition,
we calculated the time evolution of the concurrence between a pair of excitons in a strained graphene monolayer.
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I. INTRODUCTION

Modern quantum technologies and the prospects for their
development are based on the use of quantum two-level [two-
dimensional (2D)] systems as qubits. A number of physical
realizations of qubits in systems with discrete spectra have
been discussed. These include ultracold ions and atoms in
traps, impurities in diamond, and various types of super-
conducting qubits. Spatially extended semiconductors and
new 2D materials, as well as transition-metal dichalcogenides
(TMDCs), all have a band structure, However, in the presence
of a transverse magnetic field, a 2D system has a discrete spec-
trum consisting of degenerate Landau levels. When electrons
pass from filled Landau levels to unfilled excited electron
states, then due to the Coulomb attraction between electrons
and holes, they form 2D magnetoexcitons, the energy of
which depends continuously on the integral of motion in a
magnetic field, i.e., the magnetic momentum. This integral of
motion is a consequence of the invariance of the system with
respect to simultaneous translation and gauge transformation
(see Refs. [1,2]). As a result of the continuous dependence
of the magnetoexciton energy on the magnetic pulse, the full
spectrum of the system is not discrete but consists of bands
(see Ref. [3]).

Low-dimensional 2D materials have been the subject of
an enormous amount of scrutiny within the past few decades
[4-6], but since the already-historic work where Novoselov,
Geim and their collaborators managed to obtain both mono-
layer and bilayer samples of graphene in 2004 [7], interest
in the field has increased substantially by the exciting new
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physical frontiers it opened. Soon thereafter, a great number
of researchers began to investigate the properties of graphene
[8-10] as well as other 2D materials that quickly followed.
All those studies have been very well summarized in a variety
of review papers, of which one of the most well known was
published in 2007 by Katsnelson [11]. Fundamentally new
properties of 2D systems are exhibited in pseudomagnetic
fields, which arise, in particular, on deformation of graphene
(see Refs. [9,10,12,13]). One of the many interesting proper-
ties of 2D materials is that it is the perfect environment for
the development of magnetoexcitons [3], the pseudoparticle
consisting of the bound states of a negatively charged electron
and a positively charged hole. There are two types of excitons
that can appear on 2D materials. These are direct excitons,
when the electron and the hole are on the same layer, and
indirect excitons, when they are on different layers.

An interesting discovery in recent years has been the fact
that when mechanical strain is applied to a monolayer of
graphene, a pseudomagnetic field is generated within that
sheet [14]. For this system, excitons, formed by an electron
and a hole in different valleys, have dispersionless Landau
levels [15], whereas excitons in a uniform external magnetic
field display a nontrivial energy dispersion relation [3]. This
gives rise to well-defined energy gaps and might be employed
as qubits if one considers only the ground state and first
excited state of each exciton. Our focus in this paper will
be cases where we investigate the entanglement between two
such qubits induced by their interaction with a cavity mode.
Another way to restrict excitons to discrete energy levels in
2D is to trap them in harmonic potentials. One way to do this
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is through pinning the 2D material with a thin needle [16]
or to apply a potential difference between two layers of the
material [17]. These methods to achieve discrete energy levels
for excitons can be applied to various 2D materials, including
a class of monolayers of direct band-gap materials, namely
TMDCs [18,19].

Another important property of graphene is the chirality
of its two independent valleys. This leads to the fact that
circularly polarized light is absorbed in different valleys,
depending on the sign of the circular polarization. In addi-
tion, a consequence of the chirality of the valleys is that the
pseudomagnetic field arising during deformation has opposite
directions in different valleys. As a result of this, the appear-
ance of a pseudomagnetic field during deformation does not
contradict the absence of violation of invariance with respect
to time reversal in the system in the absence of a real magnetic
field.

When graphene is pumped by plane-polarized photons, the
absorption of photons occurs in both valleys, accompanied by
the appearance of electrons and holes in them. As a result of
Coulomb attraction, these electrons and holes form excitons.
Moreover, electrons can bind both with holes from their own
valley (intravalley excitons) and with holes from another val-
ley (intervalley excitons).

Since the pseudomagnetic field acts in the same way on an
electron and a hole, and the pseudomagnetic fields in different
valleys have the opposite direction (opposite sign), the spec-
trum of intervalley pseudomagnetoexcitons, as can be easily
shown, turns out to be discrete, in contrast to magnetoexcitons
in real magnetic fields. Therefore, intervalley excitons can be
used as quantum elements for quantum technologies. A pair
of intervalley excitons can be located either in the same pair
of graphene valleys, or in different pairs of valleys, and the
electrons in each pair of valleys have two choices for holes.
Therefore, there are four states for intervalley excitons that
have the same energies and other properties due to the symme-
try between the valleys. Thus, intervalley excitons are actually
ququarts, which can also be used as intermediate elements
in quantum technologies [20]. Note that the properties of the
considered ququarts can be controlled using an external real
magnetic field that removes degeneracy and splits levels. This
can be used in quantum technologies.

The discrete states for electrons in strained graphene
have been studied recently. The zero-temperature semimetal-
superconductor (Kekule insulator) transition in graphene and
for surface states of topological insulators was analyzed theo-
retically in Ref. [21]. An experimental study of electron states
and the resulting electronic transport properties of uniaxially
strained graphene has been reported in Ref. [22]. The the-
oretical study of electronic edge states in time-periodically
driven strained armchair terminated graphene nanoribbons,
performed by considering a short-pulse spatial-periodic strain
field, has been presented in Ref. [23]. A consistent experimen-
tal observation of valley polarization and inversion in strained
graphene via pseudo-Landau levels, splitting of real Landau
levels, and valley splitting of confined states using scanning
tunneling spectroscopy [24]. While in the research mentioned
above, the discrete level spectrum for electrons in strained
graphene which was analyzed, in this paper we apply the
approach, implying the discrete level spectrum for excitons

in strained graphene [15] to study the. quantum entanglement
between two and three excitons treated as two-level systems
(qubits).

Quantum entanglement is a degree of bonding which quan-
tum subsystems might have that has no classical counterpart.
Since it cannot be created locally (by acting on a single
subsystem), but it can be transferred from one subsystem to
another, it is usually treated as an important resource in quan-
tum information and quantum computation [25], and, like any
useful resource, quantifying it has become an important chal-
lenge. Many different ways of measuring the entanglement of
a quantum system have been suggested [26—29]. One of those
is concurrence [29], a measure of entanglement between a pair
of two-leveled quantum systems or simply two qubits.

Recently, the conditional concurrence created by the dy-
namical Lamb effect of two qubits within a microcavity which
changes its frequency suddenly was calculated [30]. In this
paper, we find the concurrence created by two pseudomag-
netic excitons on a graphene sheet under strain embedded in
a microcavity interacting with one of its modes in the rotat-
ing wave approximation (RWA). After that, motivated by the
well-known work of Greenberger, Horne and Zeilinger (GHZ)
[31], where it was shown that the study of the dynamics
of quantum systems of more than two elements is enough
to prove the validity of quantum mechanics, we do a brief
study of the dynamics of the entanglement between three
qubits.

The rest of our paper is organized as follows: In Sec. II,
we define the system under investigation, which consists of
a pair of excitons on a graphene sheet under strain inside an
optical microcavity. In Sec. III, we present and solve a model
Hamiltonian for the system. Section IV is devoted to a study of
the entanglement created by the dynamics through calculating
the concurrence between the excitons. We study in Sec. V
what happens when the system is subject to dissipation. In
Sec. VI, we investigate the time evolution of the entanglement
between those two excitons. This is accomplished by calcu-
lating the time evolution of the concurrence. In Sec VIII, we
generalize the model for more than two qubits. In Sec. VII,
we apply our model to the case of excitons on a graphene
sheet under strain and explain how to generalize the result to
other 2D materials. The possible physical realizations for the
system under consideration are analyzed in Sec. IX. In Sec. X,
we compare our results with those of some recent papers. In
Sec. XI, we present a summary of this work.

II. EXCITONS ON A GRAPHENE SHEET UNDER STRAIN

It has been shown that particles on a graphene sheet that is
subjected to strain obey a Hamiltonian which is equivalent to
one describing the effects of magnetic field [14]. The effect
of these so-called pseudomagnetic fields differs from real
magnetic fields by the fact that they are charge-independent,
affecting positively and negatively charged particles the same
way. Strain-induced pseudomagnetic fields in graphene, like
external magnetic fields, provide a favorable environment for
the formation of excitons, the quasiparticles formed by the
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FIG. 1. System studied throughout the paper, consisting of two
excitons on a strained sheet of graphene interacting with a single
mode inside an optical microcavity.

bound state of electrons and holes. Within this environment,
the resulting excitons, formed by an electron and a hole in dif-
ferent valleys, have a nondispersive discrete energy spectrum
[15]. In contrast, excitons in an applied magnetic field have
discrete energy levels, each of which is dispersive [3]. The
energy eigenvalues for the pseudomagnetoexcitons (PMEs)
have been calculated [15] and are given by

En,r”t,rh = &0n,ii + E,;”;,, (1)

where, for the simplest case in which the electron and hole
masses are the same,

gon.n = ho.(n+7i+1). 2)

The quantum numbers n and 7 quantify the cyclotron motion
of the center of mass and relative motion, respectively. The
term E; ;. represents the excitonic binding energy which de-
pends on a new quantum number 771. Calculated values for the
excitonic binding energies Ej ;, are presented in Ref. [15]. In
Eq. (2), the cyclotron frequency w, is given by w, = %, where
B is the intensity of the pseudomagnetic field (g has units of
teslas) and m is the electronic mass.

Since they present a discrete set of energy eigenstates,
under suitable conditions, PMEs can be treated as qubits.
Here we consider a system consisting of two such qubits that
are coupled to a single cavity mode and study the quantum
entanglement between them.

From this point forward, we consider a system consisting
of two such PMEs on a strained graphene sheet inside an
optical microcavity (Fig. 1). We consider the exciton-exciton
interaction to be negligible and the excitons do not interact
directly with one another, but both are in contact with the same
cavity mode and are allowed to become entangled by such.

II1. A JC-LIKE MODEL FOR TWO QUBITS IN A
MICROCAVITY

Qubits form the basics for quantum computing, and quan-
tum entanglement is the key resource present in quantum
computing that makes it such a powerful tool. Under the
right circumstances, we can consider excitons on a graphene
sheet under strain to be qubits. Under these conditions, we
applied a Jaynes-Cummings-like model to study the quantum
entanglement created between two qubits that are coupled to
a single cavity mode.

Let us consider a system consisting of two qubits interact-
ing with a cavity mode with Hamiltonian

H = Hy +V'rwa 3)

with the unperturbed Hamiltonian H, given by

2
ﬂ0=h<zw0|ej>(ej|+wﬂa>, )

j=1

where, in this notation, |e;) is the excited state of qubit j, fiwg
is the energy gap of the qubits, wy is the mode frequency,
and 4" and & are the creation and annihilation operators for
photons in the cavity. Here we consider the excited state for
the qubit, |e), to consist of an exciton in its first excited
state, and |g) to consist of that same exciton in the ground
state. Also, for simplicity, in Eq. (4), we relabel the excitonic
energies so that the energy of an exciton in the ground state is
set equal to 0. The energy gap /iwy comes directly from Eq. (1)
and is equal to fiwy = Ej | — E . Therefore, the eigenstates

of Hy are |n;ij), having energy E,;; given by
E,ij = hloo(i + j) + nawy], )

where i = 1 (j = 1) if the first (second) qubit is in the excited
state |e) and i = 0 (j = 0) if the first (second) qubit is in the
ground state |g).

The interaction Hamiltonian on the RWA, V’RWA, is given
by [32]

2
Viewa =AY (6] a+67a"), (6)

j=1
where 6% are the creation (+) and annihilation (—) operators

for the qubit j and A is the exciton-photon coupling constant.

This Hamiltonian is similar to that for the Jaynes-
Cummings model [33,34], except that it is for two qubits
in one cavity mode. Since the qubits interact with the mode
according to the RWA, the destruction (creation) of photons is
determined by the creation (annihilation) of qubit excitations.
Therefore, as for the Jaynes-Cummings model, we can treat
each manifold with fixed number of excitations, meaning the
sum of the number of photons and the number of qubit ex-
citations, individually. The nth manifold is composed of the
states with n total excitations, namely |n;00) = |0,), which
is the state with n cavity photons and no qubit excitations;
|[n —1;01) = |1,), the state with n — 1 cavity photons and
with qubit “1” in the excited state |e); |n — 1; 10) = |2,), the
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state with n — 1 cavity photons and with the qubit “2” in the
excited state |e); and |n — 2;11) = |3,,), the state with n — 2
total excitations and both qubits in the excited state. It is
important to note that each manifold is four dimensional with
exception to the n = 1, which is three dimensional, and to the
n = 0, which is composed only with the ground state, |0; 00).
The effective Hamiltonian, 1-7,1, on the nth manifold appears

J

nwy r/n
_ )Lﬁ (n — Doy + wyo
H,=hn W 0
0 Av/n—1

when n = 2,3, ---. For the ground state, H|0; 00) = 0. One
can find in a straightforward way the energy eigenstates for
the Hamiltonian in (7). The eigenvalues of (7) are

€0 = o
er = Mo+ o) £ V(o — o2+ 822, (9)

with eigenvectors
1
V2

1
J2+at

where a. is given by

[¥0) = —=(10;01) — |0 10))

[Vs) = (a+|1;00) —10;01) —10;10)), (10)

1
az = ﬁ[(wo — wp) £/ (w0 — @p)* + 8A2]. (11)

The eigenvalues and eigenvectors of (8), however, are
much more difficult to obtain. However, this problem is solved
when we consider the resonance case where the cavity fre-
quency is the same as the qubit transition frequency, wy =
wr = w. In this case, Eqgs. (7) and (8) become

o A A
A0 o
nw A/n A/n 0
H =i r/n nw 0 rvn—1 13
W) 0 nw Avn —1
0 Mmn—1 Avn—1 nw
The eigenvalues of (12) are
€ = W
€r = w £+ V2, (14)
with eigenvectors
1
[¥0) = —=(|0;01) — |0; 10)), (15)

/2
Ya) = L(EV211;00) — 0;01) — 05 10)),  (16)

which are simply Egs. (9) and (10) at resonance.
The eigenvalues of Eq. (13) are given by

€0 = N0, (17)

directly from Eq. (3) and is equal to

Wi A A
H=ilAx o 0], @)
A 0 wo
forn = 1 and
A/ 0
0 Mn—1 @)
(n — Doy + wy rvn—1 ’

n—1

(

(n —2)wr + 2wy

€,x = nw £ +/2Q2n — 1)A, (18)

where the first eigenvalue is doubly degenerate. The corre-
sponding eigenvectors are as follows:

L(ln—l;Ol)—|n—1;lO)), (19)

|wn0,l):ﬁ
1
|1/fn0,2> = ﬁ(vn — 1{n;00) — ﬁln = 2;11)),
(20)
1
= ——[+V2n|n; 2(n—1 —2;11
Wis) =~ V211 00) +/2(n = Din —2;11)

+ 21— 1(In — 1;01) + |n — 1; 10)]. 1)

Here |W,1) and |V, ,) are the two degenerate eigenstates
with eigenvalue €,9 and |, ) are the eigenstates correspond-
ing to the eigenvalue e=+£. It is interesting to note that the
eigenvalues and eigenvectors of Eqgs. (12) and (13) do agree
with each other for the case n = 1, with the exception of
the eigenvector |, ,), which, for n = 1, contains a vector
that does not exist in reality, corresponding to a state with 1
photon, as can be readily seen from Eq. (20).

IV. CONCURRENCE FOR ENERGY EIGENSTATES

Now that we have the energy eigenstates for the Hamilto-
nian, we can determine the quantum entanglement for each
of them. The most used measure for quantum entanglement
between two qubits is the concurrence [25], which is what
we employ here. We can use Eq. (19)—(21) to determine the
concurrence between a pair of qubits in energy eigenstates for
all n > 1 and Egs. (15) and (16) to calculate the concurrence
for all energy eigenstates corresponding to n = 1. The con-
currence for a pair of qubits in state |¢) = a|00) + b|11) +
c|10) + d|01), where [y|Y) = 1 is given by [25]

C(¥) = 2lab — cd). 22)

For a mixed state with density matrix p, the concurrence of
the system is defined by [29]

C = max{O, A.l — )\.2 — )\3 — )L4}, (23)

where A; are the eigenvalues in descending order of pp. The
matrix p is the result of applying the spin-flip operator to p so
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that
p = (0,®0,)p"(0, ® 7). 24)

By substituting Eq. (19)—(21) in Eq. (22), we obtain the con-
currence for the n > 1 energy eigenstates to be

C(WYno ) =1n2>1

2n /1 — %

n>=2
2n—1

C(Wno,z) =

[1-2n(1-1- %
4n —2

Also, for n = 1, we substitute Eqs. (15) and (16) into Eq. (22)
to find

CWny) = >‘;n> L (25)

Cl) =1
CW) = 3. (26)

It is interesting to note that, in the case when there is reso-
nance, the concurrence does not depend on any of the system
parameters (i.e., the energy gap w and the coupling strength
A). The concurrence of an eigenstate of the Hamiltonian which
is in a superposition of [V, ) and |¢,) such as |W) =

W(ahﬁnoﬂ + bl 1)) is given by

| -
CW=— |- " 27
W= Er e 2 — 1 @7

which can vary continuously between 0 and 1.
If the system is off resonance for the states represented by
Eq. (10) or (11), then the concurrence will be equal to

CWo) =1

Cz) = (28)

2+ay’
where a. is given by Eq. (11). We see that in this case the
concurrence depends only on the dephasing (wy — wy) and on
the coupling strength between the qubits and a cavity mode
photon, A, but not on the individual frequencies wy and wy. It
is reasonable to expect that the same will be true for n > 1.

V. DISSIPATIVE SYSTEM

So far, we have considered ideal systems that do not in-
teract with the environment. For those systems, the quantum
entanglement is preserved, not decaying with time. However,
real systems experience various forms of dissipation that end
up destroying the entanglement between the qubits. In this
section, we study the dynamics of the same system as de-
scribed above, but now in the presence of dissipation, in
order to see how the concurrence (and, with it, the quantum
entanglement) evolves in time.

From this point onward, we assume that this system is not
isolated and, therefore, it suffers dissipation. When a system
experiences any form of dissipation, its time evolution ceases
to obey Schrodinger’s equation. The most common forms of

dissipation force the system to evolve under a master equa-
tion such as [35]

2
p = —ilH, pl+L@p + Y [yL6; )+ vsL(6")p],
j=1
(29)
where p is the system’s density matrix, the Lindblad operators
L are defined as [35]

LA)p =ApAT — L(ATAp + pATA), (30)

and «, y, and y, represent possible channels of dissipation
representing, respectively, the cavity relaxation, qubit relax-
ation, and qubit dephasing.

First, let us consider the effect due to each term of Eq. (29).
The Schrodinger term (i[H, p]) neither creates nor destroys
excitations, it can only transform a photon on an excitation
on either qubit or transform an excitation on either qubit into
a photon, the Lindblad terms can only destroy excitations
or simply dephase the system. This means that if we start
with a system with a maximum value for n total excitations,
then we need only to concern ourselves with matrix elements
between states with n or less total excitations, because nei-
ther term in the master equation is able to create excitations,
only interchange them or destroy them. In particular, if we
are interested in systems with one excitation, then we need
only treat matrix elements between the states |0;00) = |0),
|0;10) = |1), |0;01) = |2) and |1;00) = |3), where this rela-
beling was made for a cleaner notation. In this case, we can
write the density matrix p(f) as [32]

3
p(t) =" pi® I, 31)
i,j=0
where the matrix elements obey the usual conditions, i.e.,
pij = pj» 0 < pi < 1 and ), p; = 1. Substituting (31) into
(42), we find
2

pij = —ililH, pllj) + (il {xw)p +) [vL©we

J=1

= psij + Pr; (32)
where

psij = —ilil[H, pllj)
2
pe, = (il [:«ﬁ(a)p + ) [vL©@ )+ veL(o])] {ol))-
j=1

(33)

In the low-temperature regime, we neglect the effect due to
phonons on the properties of the graphene sheet and the decay
of the system is governed by the cavity decay. In this regime,
we have y = y, = 0. Equation (32) gives rise to a set of 10
independent, linear differential equations that are dealt with in
Appendix for the case where the main form of dissipation is
through cavity decay. In the Appendix, we focus our attention
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FIG. 2. Concurrence between two qubits as a function of time for a system with no dissipation for four different initial states (a) py =
10; 10)]0; 10), meaning the first qubit starts in the excited state and the second in the ground state; (b) |0; W, )|0; W, ), the maximally entangled
state that is not an eigenstate of Eq. (3); and (c) |1;00)|1; 00), both qubits originally from the ground state and the cavity with a single photon.

on the steady states, which are preserved by the dynamics and
on finding the differential equations that govern the dynamics
for each element of the density matrix. The nontrivial steady
state is found in equations (A19) and (A20). The differential
equation system (A 14) was then used to create a program that
simulates the dynamics.

There are mainly two important results taken from the so-
lution in Eq. (32). The first one is that when dissipation comes
mainly from cavity decay, meaning that at low temperature 7',
the maximum entangled Bell state |0; W_),

L
V2

is a steady state and does not decay into the ground state.
Another is that the characteristic decay time for all other states
is of the order of t = 1/k, as it should be expected.

10; W_) = —=(]0;10) — |0;01)) (34)

VI. CONCURRENCE AS A FUNCTION OF TIME

As it was shown, the dynamics of a system that evolves
under a master equation such as Eq. (32) intertwines the
states of both qubits. This means that one should expect the
concurrence between those qubits to be a function of time.
At low temperature, the system can only decay through the
loss of cavity photons. In this case, the only two steady states
are the ground state, |g) = |0; 00), which has no concurrence
(C = 0) and the state |0; W_), given by Eq. (34).

A computer program that simulates the time evolution of
a system governed by Eq. (A14) was written and both the
concurrence and probability for the system to decay to the
ground state were calculated as a function of time. For all
the simulations shown in this session, we chose the Rabi
frequency to be %ns’l.

We start with Fig. 2 which presents the evolution of the
concurrence as a function of time for a system with no dis-
sipation (k = 0). The effect of the dynamics is such that it
creates oscillations between states |0; W) and |1;00) with
frequency @ = 2+4/2. The maximally entangled state [0; W_),
which has concurrence C = 1, is a steady state that has been
omitted from the figure for better visualization of the nontriv-
ial cases. The result is that the concurrence as a function of
time presents oscillations between a maximum and minimum
value that depends on the initial state. However, the most in-
teresting result appears when we take dissipation into account.

Figures 3 and 4 show what happens with such systems for two
different initial states.

Figure 3 shows how the concurrence evolves as a function
of time for a system originally with one qubit in the excited
state and one in the ground state for different cavity decay
rates «, while Fig. 4 shows the same information for a system
originally in the maximally entangled Bell state |0; W, ). The
interesting thing to note is that although for the one in Fig. 4
the concurrence eventually decay to zero as the system decays
to the ground state with probability 1, for the initial state
represented in Fig. 3, the decaying process actually increases
the concurrence as time passes, and the decay probability goes
to 0.5.

The expression for p(#y) is given by

o(to) = polo) (Yol + o [V ) (Yl + oY) (Y|

+ Z pijl i) (W] + pgl0;00)(0; 00,
oy

(35)

where, as in Eq (10), [yo) = |0; W_) and the sum is taken over
i, j =+, — and 0. The effect of the master equation on this
basis is to keep py constant while slowly of all other terms on
the first manifold (all p; ;s along with p.) and increasing the
probability for the system to be found on the ground state, .
The system will asymptotically decay to the final state
p(t — 00) = pol¥o) (Yol + (1 — po)|0;00)(0; 00[.  (36)
When the system reaches the state represented in Eq. (36),
the concurrence can be calculated in a straightforward way by
Eq. (23) and found to be
C(t — o) = pg, (37)
which is nothing more than the square of the probability for
the system to be found in the maximally entangled Bell state
|0; W_), defined in Eq. (34). The time which the system takes
to decay to such a state is clearly dependent on the decay
rate « of the cavity, but the final state only depends on the
initial state. This means that, in some cases, concurrence can
be protected from, and even created by, dissipation in the
system. This protection from decay comes from the fact that
we are considering that the system can only decay through the
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FIG. 3. In the first row, concurrence between two qubits as a function of time for a system with dissipation for three different values of «:
@)k =1ns"!, (b)x = 0.1 ns7!, and (c) k = 0.01 ns~'. In the second row, we have the probability for the system to decay to the ground state
as a function of time. In these simulation, the initial state of the system is always state py = |0; 10)(0; 10].

emission of cavity photons and there exists an eigenstate of
the Hamiltonian in which there are no cavity photons.

VII. CONCURRENCE BETWEEN EXCITONS ON A
GRAPHENE SHEET UNDER STRAIN

We can now combine the results obtained in the previous
sections to properly calculate the entanglement for our system
of interest. In order to do so, we consider the same system

as that in Ref. [15], which is that for a graphene sheet under
a strain-induced magnetic field of magnitude % =507, em-
bedded in a GaAs microcavity with dielectric constant ¢ = 13.
Assuming that the system is in resonance with the cavity, we
need only to find the value of the Rabi splitting in order to
calculate the time evolution of the concurrence between the
excitons.

The Rabi splitting for excitons in graphene under a
high magnetic field inside an optical microcavity has been

C(t)
t
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08 08
06 08
0.4 g 04
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FIG. 4. The first row displays the concurrence between two qubits as a function of time for a system with dissipation for three different
values of k: (a) k = 1 ns™!, (b) k = 0.1 ns™!, and (c) ¥ = 0.01 ns™!. In the second row, we have the probability for the system to decay to the
ground state as a function of time. In these simulations, the initial state of the system is always state pp = |0; W) (0; W, |.
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FIG. 5. In the first row, the concurrence between a pair of qubits averaged in a single Rabi cycle as a function of time for a system with
dissipation for three chosen initial states |Wy): (a) | Vo) = |0; 10) and (b) |¥y) = |0; W, ). The second row shows the probability for the system

decaying to the ground state as a function of time.

calculated and found to be [36]

hJTUprB);
hr=e , (38)
( V2eW

where e is the electronic charge, rg = //i/B, is the mag-
netic length for chosen magnetic field B,, € is the dielectric
constant of the cavity, vy is the Fermi velocity for electrons
in graphene, and W is the cavity’s volume. The calculations
in Ref. [36] that led to Eq. (38) depended only on a single
electron wave function and on the fact that the excitonic bind-
ing energy was much smaller than the band gap. The single
electron wave function for an electron in a pseudomagnetic
field is completely isomorphic to that of an electron in an ex-
ternal magnetic field and the excitonic binding energy is also
much smaller than the gap. This means that the Rabi splitting
for excitons on a graphene sheet under strain is the same as
the one for excitons on a graphene sheet in high magnetic
field and is also given by Eq. (38). Choosing the intensity
of the strain-induced pseudomagnetic field as % =50T,a
number that has been achieved experimentally for carbon
nanotubes [14], the Fermi velocity for electrons in graphene
to be vy = 10° m/s and a GaAs microcavity (¢ = 13) of vol-
ume W = 1.69 x 10° um3 [37], the Rabbi splitting becomes
Aix = 0.027 meV. The time evolution of the mean value of the
concurrence was calculated for such a system that is inside a

medium quality cavity, where photons have a medium lifetime
of 1 us (k = 1073 ns~"). Those results are shown in Fig. 5 for
many different initial states. The initial states |\V() considered
in Fig. 5 for t = 0 could be prepared, for example, by creating
the excitons by irradiating a precise femtosecond laser pump
on the graphene sheet.

Figure 5 shows that the effect due to cavity decay is not
always the one which might seem intuitive, i.e., destroying
the concurrence between excitons. This may be true if the
system starts with no component in the Bell state |0; W_),
when written in Bell’s basis. However, if there are components
on this basis vector, then the final concurrence will not be
zero and can occasionally even increase with time due solely
to the fact that the cavity decays. The maximally entangled
steady state |0; W_), that has concurrence C = 1 and has zero
probability to decay to the ground state has been omitted
from the figure for better visualization. For such systems, the
concurrence between two PMESs can be preserved throughout
the entire lifetime of the excitons on graphene which, at low
temperatures, can be a very long time since in this regime,
excitons can only decay by photon emission and the |0; W_)
state is protected from such decay. Even though we consid-
ered excitons on a graphene sheet under strain throughout
this paper, the same results apply to any excitonic system in
which excitons have a set of discrete energy levels. One such
example is for trapped excitons on a TMDC monolayer or
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FIG. 6. Probability P(z) for a three qubit system to decay to the ground state |0; 000) as a function of time for ik = x = 1 ns~
|0; 100)(0; 100], and (¢) pg =

initial states. (a) po = |1;000)(1;000], (b) po =

bilayer. One can make such a trap by, for example, pinning
the TMDC with a thin needle [16] or by applying a potential
difference between two layers at a given point [17].

VIII. THE THREE-QUBIT CASE

In order to check whether a system with more than two
qubits embedded in a single cavity mode would yield similar
results, we now carry out a brief study of the three-qubit
system. A system of three qubits in resonance with a single
cavity mode will obey a Hamiltonian

H = Hy + V'rwa, (39)
with the unperturbed Hamiltonian H, given by
3
Hy = hawy (Z lej)le;) + a*a), (40)
j=1
and the interaction in the RWA V/gwa
Virwa = fid Z(o a+674a"). 41)

As for the one- and two-qubit cases, this Hamiltonian
divides the system’s Hilbert space into manifolds with the
same total number of excitations. The manifold for n =1
total excitations is composed of the states |1;000), |0; 100),
|0;010), and |0; 001). Similarly to the two-qubit case, in the
presence of dissipation, the system will evolve under a Master
equation of the form [35]

p = —ilH, pl +kL(@)p, (42)
with the Lindblad operator L(a)p defined by Eq. (30). In
Fig. 6, we evaluated the probability for such a system to decay
to the ground state as a function of time for chosen initial
states.

In Fig. 6, we can see that just as for the two-qubit case,
the system does not decay to the ground state with probability
one for all initial states. Again, there exists a maximally en-
tangled state |W_) = \/%(|O; 100) — |0;010)) which has zero
probability for it to decay and was omitted from the figure for
a clearer presentation. We can assume that, just like for the

Lt (ns)
0

! for various

W) (W], where W) = f(IO 100) £ (0;010]).

two qubits case, the fact that the system does not decay with
probability one means that some quantum entanglement is
preserved. Additionally, by looking at Fig. 6(b), which starts
in an originally pure and unentangled state, at least for that
case, the average amount of quantum entanglement in the
system it is enhanced by the possibility for the system to
decay.

In Fig. 7, we compare our results for the dynamics for
two and three qubits, by analyzing the decay probability for
equivalent initial states in both cases. As it can be seen from
the figures, the time it takes for the system to thermalize is
independent of the number of qubits. We can also see that the
probability for the three-qubit system to remain in an exited
state after thermalization and, therefore, present some degree
of entanglement, is always equal or greater than that for the
two-qubit system, for equivalent initial states. This probability
is equal for the cases in which the system starts either in a state
with one photon in the cavity and no excitations of the qubits,
or the system starts with two qubits in the maximally entan-
gled Bell state |W_). For the cases in which the system starts
with no cavity photons and a single excited qubit or no cavity
photons and a pair of qubits in the maximally entangled Bell
state |\, ), the three-qubit system is less likely to decay than
the two-qubit one. One can understand this fact by noting that
for three qubits, there are actually two linearly independent
eigenstates of the original Hamiltonian with no cavity pho-
tons, namely |V_, ) = «/LEGO; 100) — |0;010)) and |W_, ,) =
-5(10:100) — 10:001)) (W—,,) = 5(10:010) —0;001)) is
also an eigenstate, but it is linear dependent of the previous
two since it can be written as |W_,,) = [V_ ,) —[¥_ ,)).
This means that there is an additional stable state that the
system can remain in as ¢+ — oo. This is the reason why the
probability for the system to remain entangled is greater for
the higher qubit count.

IX. POSSIBLE PHYSICAL REALIZATIONS

The following physical realizations are possible for similar
qubits based on intervalley excitons: First, for pristine (or
gapless) graphene with donor impurities or due to the control
electrode, the chemical potential will be in the upper (conduc-
tivity) band. Then a magnetic transition is possible between
Landau levels in the same conduction band. This transi-
tion requires pumping with terahertz photons. As a result of
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FIG. 7. Probability P(¢) for a three qubit system (upper row) or a two qubit system (lower row) to decay to the ground state (|0; 000)
for three qubits, or |0;00) for two) as a function of time for /i = k = 1 ns™' for various initial states. (a) The system starts with no qubit
excitations and one cavity photon. (b) The system starts with no cavity photons, one qubit in the excited state and all others in the ground state.
(c) The system starts with no cavity photons and one pair of qubits in the maximunly entangled Bell state [\ ).

pumping by terahertz photons with linear polarization, in-
tervalley excitons will arise. Second, in pristine graphene,
pumping by photons in the optical region of the spectrum is
necessary, which transfers electrons from the filled Landau
level in the valence band to an unfilled Landau level in the
conduction band.

Note that the results of this work are valid not only for
intervalley excitons in graphene in a pseudomagnetic field but
also for excitons in other physical systems with a discrete
spectrum. For example, one can use excitons in a TMDC
material in a 2D trap created by the deformation potential
from the tip of a scanning probe microscope. Another option
is a system of Frenkel excitons in 2D organic materials. For
efficient control of such qubits and their use in quantum tech-
nologies, these systems can be placed in a spatially limited
optical cavity with a discrete photon spectrum with resonant
frequencies for qubits.

The most important property of qubits used in quantum
technologies is quantum entanglement, and no entanglement
occurs during adiabatic changes in the system of qubits. For
entanglement, a nonadiabatic effect is necessary. With such
an effect, interesting phenomena also arise in quantum elec-
trodynamics in a cavity such as the dynamic Lamb effect (see
Refs. [30,38] and references therein). In fact, quantum entan-
glement should appear immediately on the above-described
appearance of intervalley excitons after pumping with linearly
polarized light. Similarly, quantum entanglement of qubits
should appear immediately after the pumping of excitons in
the trap or pumping of Frenkel excitons. Calculating the prop-
erties of such quantum entanglement and its time dependence
is the goal of our work. Modern quantum technologies and
the prospects for their development are based on the use of
quantum two-level systems, i.e., qubits.

Principally new properties of 2D systems arise in pseudo-
magnetic fields, which arise, in particular, in graphene under

strain. This is due to the fact that the effect of pseudomagnetic
fields does not depend on the sign of the charge and is the
same for electrons and holes. Another important property of
graphene is the chirality of only two independent valleys,
which leads to the fact that circularly polarized light is ab-
sorbed in different valleys of graphene, depending on the
sign of circular polarization. Additionally, the consequence
of chirality is that the resulting pseudomagnetic field during
deformation has a different sign in different valleys. Con-
sequently, the appearance of a pseudomagnetic field due to
deformation of graphene does not contradict the absence of
violation of invariance with respect to time reversal contrary
to the case of graphene in real magnetic field.

If graphene is pumped by plane polarized photons, then
they are absorbed in both valleys, accompanied by the ap-
pearance of electrons and holes in them. As a result of the
Coulomb attraction, these electrons and holes form excitons
not only in the same valley but also from different valleys.
They are more stable due to forbidden luminescence as a
consequence of the law of energy and momentum conserva-
tion. Consequently, intervalley pseudomagnetoexcitons have
discrete spectra and can be used as quantum elements in
quantum technologies.

X. DISCUSSION

The model which is studied here bears clear similarities
with the well-studied double Jaynes-Cummings model, where
two entangled qubits are each placed within a well-defined
cavity mode. The time evolution for the entanglement for such
a system has been thoroughly investigated in the past by other
research groups [39—41]. Additionally, it is important to em-
phasize the key difference between that model and ours. In our
model, two qubits that may or may not be initially entangled
are both inserted into a single cavity mode. This system has
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been briefly described by Casanova et al. [42], but since it was
not the main focus of their work, they did not provide details
of its dynamics. In the system under consideration in our
paper, entanglement can be created or destroyed, depending
on the system’s original state.

Another important comment is the generality of our model.
Here we applied our results to a system of excitons on a
graphene sheet under strain, but in reality any physical struc-
ture that can be approximated as a two-level system might be
used to study the model presented here. This generality might
lead to verification of the model in many different physical
setups.

XI. CONCLUDING REMARKS

In this paper, we have investigated quantum entanglement
between a pair of excitons, formed by an electron and a
hole from different valleys in a graphene monolayer under
strain within an optical microcavity. We first developed a
Jaynes-Cummings like model for two qubits coupled to a
single cavity mode which governs the system in the RWA.
We then calculated the energy eigenstates of such a model.
We measured the degree of entanglement of such states by
calculating the concurrence between the two qubits in each of
these eigenstates. It was shown that if the system is allowed
to decay only through the emission of cavity photons, which
is the case at low temperatures, then there is a maximally
entangled eigenstate which is protected from decay.

We have shown that the existence of such a state leads to
the counterintuitive consequence that, for some initial states
of the system, the fact that the cavity is leaky can actually
lead to an increase in the average concurrence on timescales
of the average photonic lifetime. After that, by analyzing the
three-qubit version of the model, we have not only shown that
these results also hold for multiqubits but also exhibited evi-
dence that the initial-state-dependent protection for quantum
entanglement from decay appears to increase with the number
of qubits. Last, we used the energy eigenfunctions and eigen-
values for PMEs obtained in Ref. [15] to formally calculate
the time evolution of the concurrence between two PMEs
in graphene. In addition, we have discussed the applicability
of our approach for different 2D materials, such as TMDC
monolayers. A worthy next step for this research will be to
study in greater depth the three-qubit model. Specifically, we
plan to analyze the evolution of the well-known GHZ state
[31]. The results of our calculations reveal that the quantum
entanglement for three qubits is more stable than for two
qubits. This may be explained by the fact that the three-qubit
system is characterized by more degrees of freedom than the
two-qubit system. Therefore, based on the reported results
of our calculations, one could conclude that the three-qubit
system based on excitons in a strained 2D material is a more
reliable candidate for quantum technologies than the two-
qubitsystem.
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APPENDIX: DISSIPATIVE DYNAMICS

We determine the solution for the set of differential equa-
tions represented by Eq. (32), in the case where only the cavity
decay is included (y = y4 — 0). For this, we first turn our
attention to the dissipative term represented by Eq. (33). If
y = ¥4 — 0, then this equation becomes

pr,; = (ilkL(@)pl])
= apa’ — L@'ap + pa'a). (A1)

On this manifold, the effect of the operator a is to take
the system from the state with one photon and zero excitonic
excitations, |3) = |1;00), to the ground state |0) = |0;00),
ie.,

(A2)

(A3)
Making use of Eq.] (A2) and (A3) in Eq. (A1), we find

1 2
L@)p = p33(10){01 - 13)(3)) — 5 D (31301 + sl H 3D,

Jj=0
(A4)
where p;; = |i)p(j|. This leads to
PLy = Kp33
p£33 = —Kp33
. K .
IO£;3 = —Z P31l = 07 15 2
2
pﬁm = Ibﬁoz = pﬁn = bﬁlz = pﬁzz =0. (AS)

All the other coefficients are obtained by recalling that p;; =
Pji . .

In order to find the terms Ps;;» We first determine the result
obtained when the Hamiltonian acts on each state of our basis,
ie.,

=}

0)
1) = woll) + Al3)

2) = wyl2) + Al3)
HI[3) = wi|3) + A(1) +[2)).

oo o

(A6)
Making use of this result in Eq. (30), we find

Psy =0

Psy = iwopor + iXpo3

0se; = iwopo2 + IXpo3

Psy; = iwrpo3 + iA(po1 + Po2)
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Ps;, = —iA(p31 — p13)
Ps,, = —iA(p32 — p13)
Ps;; = —i(wo — wp)p13 — iA(p33 — P11 — P12)
Psy = —iA(032 — 023)
Ps,; = —i(wo — wx)p23 — iA(p33 — P22 — P21)
Psy; = —iA(p13 — P31 + P23 — P32)- (A7)
|
0 O 0 0 0 0 0 0 0 0
0 wy 0 0 0 A 0 O 0 0
0 0 —wy O 0 0O —x 0 0 0
0 0 0 wo 0 A 0O O 0 0
0 O 0 0 —wy O -2 0 0 0
0 A 0 A 0 o 0 O 0 0
0o 0 - O -2 0 —w O 0 0
A= 0 O 0 0 0 0 0 0 0 0
—10 O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 0o A A 0
0 O 0 0 0 0 0O -2 0 —A
0 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 0O O 0 A
0 0 0 0 0 0 O 0 —A 0
0 O 0 0 0 0 0 0 0 0
and the matrix I' is given by
0O 0 0 0 0 O 0 O
O 0 0 0 0 O 0 O
0O 0 0 0 O 0 0 0
0O 0 0 0 0 O 0O O
0O 0 0 0 0 O 0 O
O 0 0 0 0 -1 0O O
0O 0 0 0 O 0O -1 0
r— 0O 0 0 0 0 O 0O O
~—10 0 O O O O 0 O
0O 0 0 0 0 O 0 O
0O 0 0 0 O 0 0 0
0O 0 0 0 0 O 0O O
0O 0 0 0 0 O 0 O
o 0 0 0 0 O 0O O
0O 0 0 0 O 0 0 0
o 0 0 0 0 O 0 O

First, we note that, as expected, poo = — (011 + P22 + 033),
which means that the equation for pyy is redundant and is
not needed to solve the system, so we can eliminate the first
entry to py and the first line and column of the matrices A
and I', without any effect. Then, we realize that the remaining
problem can be expressed as

py =Mpy, (A12)

By combining Eqs. (AS5) through (AS), with Egs. (A7) through
(A7) and using the fact that p;; = p;‘i, we can rewrite Eq. (32)
as

. . K
pv =i+ 3T v, (A8)
where py is the column vector
pv = (P00, Po1s P105 P025 L205 LO35 P305 P115 P12,
X P21y P13 P31, P225 P23 P32, P335 ) s (A9)
the matrix A is given by
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
A —A 0 0 0 0
A 0 0 0 - ol
0 —A 0 A 0 0
(wr — wp) 0 0 0 0 —A
0 (wo —ay) O 0 0 A
0 0 0 A - 0
0 0 A (a)k — a)()) 0 —A
0 0 —A 0 (wo — ) A
—A A 0 —A A 0
(A10)
0 0 0 0 0 0 0 2
0 0 0 0 O 0 0 0
0 0 0 0 O 0 0 O
0 O 0 0 O 0 0 O
0 O 0 0 O 0 0 0
0 O 0 0 O 0 0 0
0 0 0 0 O 0 0 O
0 0 0 0 O 0 0 O
00 0 00 0 00 (ALD)
0 0 0 0 O 0 0 0
0 0 -1 0 O 0 0 O
0 0 0 -1 0 0 0 O
0 0 0 0 O 0 0 0
0 O 0 0 0 -1 0 O
0 0 0 0 O 0 -1 O
0 O 0 0 O 0 0
[
where the matrix M can be written as
[ B Osxo
M = <09X6 A ) (A13)

where B is a 6 x 6 matrix, A is a 9 x 9 matrix and 0,5, is
a m x n matrix with all-zero elements. This means that the
time evolution does not mix elements po; with i £ 0 with
elements p;; with 7, j # 0, nor does it mix pgo With pp; with
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i # 0. Therefore, if |0)pli) =0 fori =1,2,3 att = 0, then
|0)p|i) = 0. These are the cases we are interested in, since we
want to see how the Hamiltonian eigenvalues |y) and [¥1)
evolve in time, and they do not involve the state |0; 00).

For such cases, the time evolution is given by

p=Ap (Al4)
|
0 0 0 iA
0 0 0 ir
0 0 0 0
iA iA 0 a
A=|—ir 0 —ik 0
0 0 0 0
0 0 iA 0
0 —i) 0 0
0 0 0 —ik
where a = —% + i(wr — wp). Now, all that needs to be done

is to find the eigenvectors of this matrix and select from these
the ones in which p;; = ,o;-‘i, which will be the ones with
meaningful physical reality.

The spectral decomposition of A is rather complicated
with very long expressions for most of the eigenvectors and
eigenvalues. However, there is one interesting solution that
arises with an eigenvalue of zero, which is represented by the
vector

o= (1,-1-1,0,0,1,0,0,0)", (A17)

which means that, by going back to the definition of the string
p from Eq. (A15) and using Eq. (42), the state represented by
the density operator p given by

pst = 3 (I (1] +12)2] = [1){2] = 12){1]) (A1)
is a stationary state. It is a simple mat-
ter to show that Eq. (Al8) can be expressed

with

P = (P11, P12, P21, P13, P31, P22, P23, P32, P33). (A1S)
and
—iA 0 0 0 0
0 0 0 —ik 0
—iA 0 i 0 0
0 0 0 0 —iA
& 0 0 0 il (A16)
0 0 i —ik 0
0 i a —ik
0 —iA 0 a* iA
i 0 —iA i —K
[
as
pstT = [WTNWT|, (A19)

where the maximum entangled Bell state |W™) is given by
[32]

_ b _ b
V2 V2

Itis important to note that all other eigenvalues have a negative
real part, which means that all other eigenvectors represent
states that decay to the ground state exponentially with time.
In the case of resonance (wy = wy), the eigenvalues of A are
)»1 =O, )»2 =)»3 = —%, )»4 =)\.5 = —% —i\/32)»2 — k2 and
A6 = A7 = Ag = Ao = —§ + i+v/32A2 — k2, which means that
all states other then pgr decay with a characteristic time no
larger than T = %.

=) a0 —12) (10;10) —10;01)).  (A20)
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