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Quantum information spreading and scrambling in many-body systems attract interest these days. Tripartite
mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring
them. In this paper, we study random spin chains that exhibit phase transitions accompanying nontrivial changes
in topological properties. In their phase diagrams, there are two types of many-body localized (MBL) states
and one thermalized regime intervening these two MBL states. Quench dynamics of the EE and TMI display
interesting behaviors, providing an essential perspective concerning the encoding of quantum information. In
particular, one of the models is self-dual, but information spreading measured by the TMI does not respect this
self-duality. We investigate this phenomenon from the viewpoint of spatial structure of the stabilizers. In general,
we find that knowledge of the phase diagram corresponding to the qubit system is useful for understanding the
nature of quantum information spreading in that system. The connection between the present paper and random
circuit of projective measurements and also topological Majorana quantum memory is remarked upon.
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I. INTRODUCTION

Study of many body localization (MBL) is one of the
central issues in condensed matter physics [1–4]. In particular,
the entanglement property in the bulk for excited states has
been investigated and it is verified that its system-size scaling
law behaves differently from that of the thermal phase [3,5].
Also, MBL exhibits a nontrivial dynamical aspect for the
quenching time evolution of entanglement entropy (EE). In
typical MBL phases, for a specific type of initial state, the
EE exhibits a logarithmic growth due to the presence of in-
teractions, where particles (or spin) are not transported but
the EE gradually spreads into an entire system [6,7]. Var-
ious types of the MBL states have been proposed through
many theoretical and numerical works, such as spin-glass
MBL (SG-MBL) [8,9], MBL induced by quasiperiodic po-
tential [10], topological MBL [8,11–13], MBL emerging
in lattice gauge theories [14–16], and various disorder-free
MBLs [17–27], etc. However, it is expected that there are
still many different types of MBL categories which have
not been explored yet. Moreover, the unique spectral and
entanglement structures associated with each type of MBL
are diverse and study of these detailed structures gives us an
insight to understand how quantum information is encoded
and stored in MBL regimes. Study of these issues is useful for
understanding, deeply encoding, and storing mechanisms of
quantum information in localization systems.

In this paper, we study two disordered spin models ex-
hibiting characteristic multiple topological MBL phases. The
disordered spin models exhibit rich phase diagrams because of
the emergence of different sets of effective stabilizers for each
phase, local integrals of motion (LIOMs) [1] in the context of

MBL, and these different sets of stabilizers are noncommuta-
tive with each other. The stabilizers in the disordered models
respect symmetries of the models and become basic building
blocks of the topological order [11,12,28–31]. Furthermore,
the spatial structure of the stabilizers influences the bulk en-
tanglement structure in the MBL phases and also degeneracy
of the energy spectrum in the whole band [11,12] (related to
the presence of gapless edge modes).

One of our target spin models, random transverse field
Ising model at infinite temperature, was extensively studied
recently [13,32–34]. There, the global phase diagram, which
includes two types of MBL phases (paramagnetic MBL and
SG-MBL phases), was obtained by numerical investigation.
In this paper, we shall study detailed properties of these MBL
phases such as quenching dynamics of the EE from the view-
point of duality. Then we employ some quantum information
theoretic quantity, and tripartite mutual information (TMI)
proposed in Ref. [35] to investigate the topological MBL from
the viewpoint of information spreading. As a measure of the
scrambling, the out-of-time-ordered correlator (OTOC) was
proposed [36,37], and it was applied to some kind of quantum
spin models [38–40]. Compared with the OTOC, the TMI is
state and operator independent, and it is becoming a bench-
mark of the quantum information spreading nowadays. In this
paper, we shall numerically demonstrate that the system-size
dependence of the TMI is valid to identify phase boundaries
of the system. Furthermore, we shall study another disordered
spin model having two different types of topological MBLs
in its phase diagram. We clarify the model’s global phase
structure by varying the strength of two types of disorders, and
observe the bulk information spreading in the whole parame-
ter region. In particular, we show that the bulk structure of the
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information spreading in the topological MBLs is captured by
using the TMI and also is determined by the spatial structure
of the stabilizers in each phase of MBL.

Among the findings in this paper obtained by the numerical
calculation, an interesting observation concerns the infinite
random criticality (IRC) and Griffiths phase [41–43] in the
random transverse field Ising spin chain. This model has been
studied for a long time as one of the most important mod-
els for understanding random systems. We shall shed light
on its physical properties from the viewpoint of quantum
information scrambling in this paper. As another interesting
observation, by calculation of the TMI, we acquire an im-
portant insight into how quantum information in the bulk is
encoded in quantum spin chains and how disorder influences
quantum information spreading. Calculation of the TMI in the
two-site partitioning of the chain reveals that quantum infor-
mation is encoded in stabilizer qubits in the MBL regimes.

The rest of this paper is organized as follows. In Sec. II,
we shall introduce our target two disordered spin models
and explain the basic properties of them. We also introduce
the TMI and explain its practical calculation methods briefly.
In Sec. III, we show the results of the numerical study by
means of the exact diagonalization. Detailed discussions on
the numerical results are given there to obtain observations
explained in the above. Section IV is devoted to discussion
and conclusion.

II. MODELS AND TRIPARTITE MUTUAL INFORMATION

In this section, we introduce two types of spin chains and
briefly study their phase diagrams. Then we explain the TMI
and methods of the practical numerical calculation.

A. Models

The first model describes a self-dual random Ising spin
chain, whose Hamiltonian is given as follows:

HIC =
∑

i

[
Jiσ

x
i σ x

i+1 + hiσ
z
i

] + Hg,

Hg = g
∑

i

[
σ x

i σ x
i+2 + σ z

i σ z
i+1

]
, (1)

where σ x
i , σ z

i are Pauli matrices residing on site i of the
chain, Ji and hi are random couplings drawn from uniform
distributions [0,WJ ] and [0,Wh], respectively, and g is a non-
negative coupling constant. By symmetry of the free part of
the Hamiltonian, HIC|g=0, {Ji} and {hi} can be transformed
to positive values, and therefore we have chosen the above
parameter region. For the practical calculation, we set WJ =
(Wh)−1 = W and introduce a parameter such as δ = 2 ln W =
ln WJ − ln Wh. We are interested in the phase diagram of the
system HIC [Eqs. (1)] in the (δ − g) plane.

It is easily verified that the system HIC has Z2 symmetry
by P ≡ ∏

i σ
z
i , and it is also self-dual by the following duality

transformation:

τ z
i = σ x

i σ x
i+1, τ x

i =
∏

j�i

σ z
j , (2)

and under Eqs. (2), δ → −δ. The above properties of HIC

play an important role in the subsequent investigation of

quantum information spreading in that model. Also, for large
W , the model can be regarded as a projective Hamiltonian
with effective stabilizers, i.e., LIOMs in the localization lit-
erature. These are a set of dimers {σ x

i σ x
i+1}, each of which

approximately commutes with HIC, [σ x
i σ x

i+1, HIC] ≈ 0 for any
i. The presence of the stabilizers gives an insight into the bulk
property of information spreading [44].

In this paper, we are interested in the system HIC at infinite
temperature. A phase diagram of that system has been ob-
tained recently [32], and there exist three phases in the phase
diagram, i.e., a paramagnetic MBL phase (PM-MBL) for δ <

δ1c, an ergodic regime for δ1c < δ < δ2c, and a MBL phase
with a spin-glass/topological order (SG-MBL) for δ2c < δ.
Values of the criticality δ1c, δ2c depend on the strength of the
coupling g, and δ2c = −δ1c ≡ δc by duality. For the pure trans-
verse random Ising model (TRIM) at g = 0, δc = 0 showing
IRC as in the ground state [41]. For the infinite-temperature
system, detailed investigation of the EE and gap ratio for small
g by using the system-size dependence and scaling indicates
the possibility of an intermediate ergodic phase in a finite
δ region such as − ln 2 < δ < ln 2 in the limit g → 0 [32].
This result supports the avalanche picture of the localization-
delocalization transition. It is a very interesting problem if the
avalanche picture emerges in dynamics of quantum informa-
tion spreading. We shall comment on this after studying the
TMI, which is a benchmark of the scrambling.

In Fig. 1(a), we show the numerical calculations of the half-
chain EE for energy eigenstates of HIC for g = 0.2, which is
defined as follows:

EE(s) = −TrA
[
ρ (s)

r log(ρ (s)
r )

]
, ρ (s)

r = TrĀ[|ψs〉〈ψs|],
EE = average of EE(s) over states and randomness,

where the suffix (s) denotes the combined label of sample
number and state label, A and Ā are the half chain and its
complement, respectively. (Hereafter, log denotes log2.) The
calculations exhibit the critical value δc � 2.0 for g = 0.2.
The EE has a nonvanishing value ∼ log 2 for the deep SG-
MBL regime, whereas it reduces to very small in the deep
PM-MBL. This result indicates that in the deep SG-MBL, cat
states of a parity pair emerge there such as

1√
2

(| ↑↑↓↓ · · · 〉 ± | ↓↓↑↑ · · · 〉)

in the σ x basis, and then the reduced density matrix ρ
sg
R is

obtained as

ρ
sg
R = 1

2 (| ↑↑↓↓ · · · 〉〈↑↑↓↓ · · · |+| ↓↓↑↑ · · · 〉〈↓↓↑↑ · · · 〉),

which gives log 2 for the EE.
The above observation implies the possibility that a pair

of states (| ↑↑↓↓ · · · 〉, | ↓↓↑↑ · · · 〉) form a bulk qubit and
quantum information is encoded in them. This qubit scram-
bles information across the system, but initial information is
preserved in the wave function in the SG-MBL phase. How
robustly this picture of the bulk qubit holds in the unitary time
evolution by the Hamiltonian, HIC, is an interesting problem.
On the other hand, for random circuits of stabilizers, we think
that the bulk qubit is a good picture during time evolution.

Here we emphasize that the Pauli spins at the edges of the
open boundary chain with the length L, σ x

1(L), commute with
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FIG. 1. (a) Half-chain EE for the Ising spin chain model HIC in
Eqs. (1) for g = 0.2. Calculation of EE/L indicates the existence of
two phase transitions such as the PM-MBL → ETH → SG-MBL
as δ increases. As δ is getting large, EE → log 2, corresponding
to the SG order. These results were obtained by averaging over
1000, 750, 500, 300, and 150 disorder realizations using all eigen-
states for the L = 8, 9, 10, 11, 12 systems. (b) Spin correlation, GL/2,
in Eq. (3), as a function of δ. Its increase indicates the SG order for
δ � 1. These results were obtained by averaging over the 20 000
eigenstates using 10–20 eigenstates in the middle of the spectrum at
each disorder realization for the L = 8, 10, and 12 systems. The error
bars are standard error.

the noninteracting part of the SG-MBL Hamiltonian with hi =
0,

∑
i Jiσ

x
i σ x

i+1, and anticommute with P . Then, σ x
1(L) is a zero

mode operator from the viewpoint of topological order [45].
The operation of σ x

1(L) on the above two cat states interchanges
them, respecting Z2 parity symmetry P . Even for finite {hi},
the zero-mode operator can be constructed perturbatively [45],
such as σ x

1 + h1
J1

σ z
1σ x

2 + h1h2
J1J2

σ z
1σ z

2σ x
3 + · · · . (In the Majorana

representation, gapless edge mode γ1 = σ x
1 .) Further, this zero

mode can survive even in the presence of a finite interaction
g, and its explicit form is obtained perturbatively such as [46]
σ x

1 + h1
J1

σ z
1σ x

2 + g
J2

σ
y
1 σ

y
2 σ x

3 + · · · .
To verify the property of the phases furthermore, we ex-

plore the spin-glass order by studying the spin correlation,
Gr=L/2, defined by [47]

Gr = 1

L − r

L−r∑

i=1

∣∣σ x
i σ x

i+r

∣∣. (3)

The result shown in Fig. 1(b) indicates that the spin-glass
order emerges as δ increases from δc, as we expect.

The second spin-chain system, which we call an extended
random cluster spin (CS) chain [11], is described by the

following Hamiltonian:

HCS =
∑

i

[
Jiσ

x
i σ x

i+1 + λiσ
x
i−1σ

z
i σ x

i+1 + h̃iσ
z
i

] + Hg, (4)

where h̃i’s are small random variables drawn from [0, 1],
and λi are uniform random variables drawn from [0,Wλ].
We define WJ = (Wλ)−1 = W and also δ = 2 ln W as before.
As we showed in the above, for sufficiently large WJ , all
states in HCS belong to the SG-MBL. On the other hand,
for sufficiently large Wλ, HCS approaches the random CS
model, which is a symmetry-protected topological (SPT) sys-
tem with Z2 × Z2 symmetry [48]. Also, a similar disordered
model has been studied and its ground state phase diagram
has been clarified in terms of the disorder-strength parame-
ter space [49], where the SPT phase is characterized by the
number of the zero-energy Majorana edge modes. It is also
known that energy eigenstates of the genuine CS model with
only second terms of Eq. (4) are all localized as dictated by
LIOMs, {σ x

i−1σ
z
i σ x

i+1}, and we shall verify in the subsequent
calculation that this localization nature remains for small but
finite values of {Ji}. Here, we again emphasize that the above
LIOMs are nothing but stabilizers in quantum information
theory [28]. Since the single stabilizer takes two eigenvalues
±1, the operator can be regarded as a logical spin operators,
that is, a qubit. In what follows, we call them stabilizer qubits.
In the random Ising spin chain with W � 1, the stabilizer
qubits are {σ x

i σ x
i+1}. The stabilizer qubit is one of the key

concepts for understanding findings in the present paper as
we explain. In contrast to general LIOMs in the conventional
MBL, stabilizer qubit realizes localization with some order,
e.g., SG or topological order.

To obtain the phase diagram of the system HCS in Eq. (4),
we first investigate the half-chain EE and display the nu-
merical calculations in Fig. 2(a). The results show that there
are three phases, i.e., two MBL phases and one thermal
phase. Interestingly enough, for δ  −1, the EE approaches
log 4 instead of log 2, although in the presence of the Ji

terms as well as the g terms, the Hamiltonian HCS has only
Z2 symmetry. To verify the topological properties of the
phase, we calculate a string order, defined as Ost (i, j) ≡
〈σ x

i σ
y
i+1(

∏ j−2
k=i+2 σ z

k )σ y
j−1σ

x
j 〉. The results of the string order

averaged over the randomness, 	st ≡ O2
st, are displayed in

Fig. 2(b), which indicate that the topological order corre-
sponding to the genuine CS model exists for δ  −1. This
is an unexpected result since the finite Ji terms reduce the
symmetry from Z2 × Z2 to Z2. However, a similar result
is observed for the ground state in Ref. [30]. In the clean
system, 	st for the excited state vanishes as expected from
the observation in Ref. [8].

In Fig. 2(b), we also show the calculations of the spin-glass
order parameter, GL/2. We find a similar behavior to that in the
random Ising spin chain in Fig. 1(b). That is, a finite value of
GL/2 for δ > 2 indicates the existence of the spin-glass order,
and this result is obviously in good agreement with the EE in
Fig. 2(a).

We investigated the infinite-temperature phase diagram of
the g = 0 system of HCS in Eq. (4). Similarly to the random
Ising spin chain, the calculation of the EE seems to indicate
the direct transition from the SG-MBL to the CS-MBL. We
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FIG. 2. (a) Half-chain EE for the cluster-spin chain model HCS

in Eq. (4) for g = 0.2. Calculation of EE/L indicates the existence
of two phase transitions such as the CS-MBL → ETH → SG-MBL
as δ increases. As δ is getting large, EE → log 2, corresponding to
the SG order, whereas as δ decreases, EE → log 4, coming from
emergent Z2 × Z2 symmetry. These results were obtained by averag-
ing over 1000, 750, 500, 300, and 150 disorder realizations using all
eigenstates for the L = 8, 9, 10, 11, 12 systems. (b) Spin correlation,
GL/2 in Eq. (3), as a function of δ. Its increase indicates the SG
order for δ � 1. On the other hand, the string order, 	st , acquires
nonvanishing values for δ < −2, indicating topological order with
Z2 × Z2 symmetry. These results were obtained by averaging over
the 20 000 eigenstates using 10–20 eigenstates in the middle of
the spectrum at each disorder realization for the L = 8, 10, and 12
systems.

recently investigated a very close model to HCS in Eq. (4)
by using a Majorana fermion [50]. Similar methods can be
applied to the model HCS with g = 0. (Please see later discus-
sion in Sec. III D.) The model reduces to a random-hopping
and random-potential free Majorana fermion, which is similar
to the TRIM case [41] and is expected to exhibit a phase
transition via varying the strength of the random hopping and
potential.

B. Tripartite mutual information

In the previous section, the half-chain EE, spin-glass and
string orders identified the MBL phases and thermal phase in
the models. Next, we investigate the property of information
spreading in each phase. We observe how the information
spreading takes place in each phase and how strongly the
time-evolution operator works as a scrambler. To quantify the
information spreading ability in the system, we employ the
TMI, which is a very efficient tool to evaluate the scramble
ability of the unitary time evolution operator of the system,
as proposed in Ref. [35]. There are already some observations
of the TMI in an interacting model and conventional MBL
systems [51–55]. In addition, the observation of the TMI can

FIG. 3. Schematic image of the time evolution of the state with
doubled Hilbert space. The spatial partitioning of the system is rep-
resented where four subsystems A–D are introduced.

be an efficient indicator to characterize a phase transition
(phase boundary) in the context of the measurement-induced
phase transition [56].

Let us explain the TMI and the practical methods of the
numerical calculation [55] to be applied for the target models
with L lattice sites. Our numerical resource allows us to cal-
culate the TMI up to the system size L = 12 by the methods.

By using the TMI, we can quantify the information spread-
ing and scrambling embedded in the time evolution operator
Û (t ) ≡ e−itH , where H is either HIC or HCS in this paper. On
calculating the TMI, we use the state-channel map that plays
an essential role. Under this map, the operator Û (t ) ≡ e−itH is
regarded as a pure quantum state in the doubled Hilbert space,
HD ≡ Hin ⊗ Hout [35]. We start from the density matrix at
time t , ρ(t ) = ∑ND

ν=1 pνÛ (t )|ν〉〈ν|(Û (t ))†, where {|ν〉} is a
set of a orthogonal bases states (time independent), ND is the
dimension of the Hilbert space in the system, and an input
ensemble is encoded by parameters {pν}. Then, by applying
the state-channel map to the density matrix ρ(t ), the time-
evolution operator is mapped into a pure state in the doubled
Hilbert space,

ρ(t ) → |U (t )〉 =
∑

μ

√
pν (Î ⊗ Û (t ))|ν〉in ⊗ |ν〉out, (5)

where Î is the identity operator and {|ν〉in} and {|ν〉out} are
the same set of orthogonal bases state. The time evolution
operator Û (t ) acts only on the out orthogonal states |ν〉out. An
arbitrary input ensemble can be employed by tuning {pν} [35].
In this paper, however, we mostly focus on the infinite temper-
ature ensemble, i.e., pν = 1/ND to see universal properties of
the time-evolution unitary. Then, at t = 0, as Û (0) = Î , the in
state and out state are maximally entangled. To calculate the
TMI under the time evolution with the Hamiltonian HIC/HCS,
spatial partitioning of the pure state |U (t )〉 has to be specified.
The spatial partitioning is done for both the t = 0 in state and
the out state at t , respectively. Figure 3 shows that the t = 0
state [given by ρ(t = 0)] is divided into two subsystems A and
B, and the state at time t [given by ρ(t )] is divided into two
subsystems C and D. In later calculations, we mostly focus
on the partition with the equal length of A and B (and also
C and D) subsystems, as well as asymmetric one for specific
purposes. (See later discussion.)

Under this spatial partitioning, the density matrix of
the pure state |U (t )〉 ∈ HD is denoted as ρABCD(t ) =
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|U (t )〉〈U (t )|. From this full density matrix ρABCD(t ), a
reduced density matrix for a subsystem X is obtained by
tracing out the degrees of freedom in the complementary sub-
system of X denoted by X̄ , i.e., ρX (t ) = trX̄ ρABCD. From the
reduced density matrix ρX (t ), the operator entanglement en-
tropy (OEE) for the subsystem X is obtained by conventional
von-Neumann EE, SX = −tr[ρX log ρX ]. From the OEE, we
introduce the bipartite mutual information (BMI) of X and Y
subsystems (where X,Y are some elements of the set of the
subsystems {A, B,C, D}, and X �= Y ):

I (X : Y ) = SX + SY − SXY . (6)

The value of I (X : Y ) quantifies how subsystems X and Y
correlate with each other.

By using the BMI, the TMI for subsystems A, C, and D is
defined as

I3(A : C : D) = I (A : C) + I (A : D) − I (A : CD). (7)

The above TMI quantifies how the initial information embed-
ded in the subsystem A spreads into both subsystems C and
D in the output state. If the spread of the information in A
sufficiently occurs across the entire system at time t , I3(t ) gets
a negative value, while the BMI keeps a non-negative value
even in such a situation. In general, I3 is zero at t = 0, as
|U (0)〉 is the product state of the EPR pair at each lattice site.
When the time-evolution operator acts as a strong scrambler,
I3 acquires a large negative value under the time evolution.
On the other hand, if the time evolution operator does not
act as an efficient scrambler, I3 remains small. Hence, I3 is
a good indicator to quantify the degree of scrambling, i.e., the
information spreading. In this paper, we mostly employ the
TMI to characterize the scrambling for our target models, as
well as quench dynamics of the EE.

In the following numerical calculations, it is convenient to
set a reference frame of the TMI, I3, as in Refs. [51,54]. The
reference flame is the value of the TMI of the Haar random
unitary, IH

3 , which depends on the Hilbert space dimension of
the system size L [57]. The value of IH

3 can be numerically
calculated [58]. Then, we define a normalized TMI, Ĩ3(A : C :
D), as follows:

Ĩ3(A : C : D) ≡ I3(t )

IH
3

. (8)

In the following sections, we numerically obtain the value
of Ĩ3.

Here, some remarks are in order. In the practical calcu-
lation, we do not directly obtain the density matrix in the
doubled Hilbert space, ρABCD(t ). Instead, some specific meth-
ods are utilized to study systems as large as possible by
our numerical resource. Details are explained in our previous
paper [55]. In the following numerical calculations, we also
employ the Quspin solver [59] to efficiently construct the
numerical basis and time evolution operators.

III. NUMERICAL STUDIES

In this section, we shall perform the systematic numerical
study by observing the quench dynamics of the EE and the
information spreading quantified by the TMI. We show typical
dynamical aspects inherent in both systems, HIC and HCS.

The numerical investigation of the models uncovers the initial
state dependence of the quench dynamics of the EE, which is
strongly related with duality in the random Ising spin chain,
and also it clarifies the characteristic behavior of the TMI for
systems with topological order. In particular, the calculation
of the TMI is independent of the choice of initial state and
exploits essential properties of the scrambling embedded in
the unitary time-evolution operator: (i) We capture distinct
phase transitions and their phase boundary. (ii) By varying
the size of the partitioning in the calculation of the TMI, we
can extract the bulk structure of information spreading for
both topological MBLs, corresponding to the degree of the
scrambling. The SG-MBL and CS-MBL phases can be clearly
distinguished from this aspect. In what follows, we set a unit
of time h̄/W in numerical calculations of quench dynamics.

A. Quench dynamics of bipartite EE: Random Ising spin chain

We start to show the numerical results of the quench bi-
parite EE of the system HIC at infinite temperature for g = 0
and g = 0.2. The case of g = 0 is the TRIM, and the IRC
point at δ = 0 separates the paramagnetic and spin glass lo-
calized phases [41]. The ground state for an arbitrary δ is the
Griffiths state in which both the typical length and typical
timescale have very broad distributions [41–43]. This gap-
less Griffiths phase persists at finite temperature, as well as
the spin-glass order for δ � 1. Therefore, it is interesting to
see how entanglement spreads in that specific regime. For the
case of the interacting case with g > 0, on the other hand, the
ergodic state intervenes between the two MBL states, which
are connected by duality. How the EE spreads in the states
connected by duality is an interesting problem and it sheds
light on quantum information spreading, as we see later on.

We study the quench dynamics in this subsection, i.e.,
the time evolution of the half-chain von Neumann entropy,
EE(t ) obtained from a time-evolved state. We first consider
the noninteracting case of the random Ising chain with g = 0,
the TRIM. The quench half-chain EE, EE(t ), is defined as
follows:

EE(t ) = −Tr[ρr (t ) log (ρr (t ))], (9)

where ρr (t ) is the reduced density matrix of the half chain
at time t . Let us investigate the case in which the employed
initial state is | ↑↑↑ · · · 〉Z in the σ z basis. The results in
Fig. 4 show that EE(t ) for δ = −4.0 and −3.0 keeps a very
small value during the time evolution, and EE(t ) for the other
δ’s exhibits rather strong oscillating behavior. The averaged
values of EE(t ) in the central regime of δ are larger than
those of δ = 4.0 and 3.0. This dynamical behavior obviously
reflects the IRC at δ = 0. We observed similar behavior of
EE(t ) for the initial state | ↑↓↑↓ · · · 〉Z (not shown). This
strong oscillation of EE(t ) is an unusual one and is expected to
reflect the Griffiths properties of the states. For the case of δ =
−4.0,−3.0, the random field dominates the bond coupling,
and therefore a phenomenon similar to Anderson localization
takes place there with vanishingly small EE(t ).

Let us turn to the interacting case with g = 0.2. In
Figs. 5(a) and 5(b), we display the calculations of EE(t ) for
the initial states | ↑↑↑ · · · 〉Z in the σ z basis and also | ↑↑↑
· · · 〉X in the σ x basis, respectively. We first note that the state
for g = 0.2 does not have the Griffiths-state nature, as EE(t ) is

104204-5



ORITO, KUNO, AND ICHINOSE PHYSICAL REVIEW B 106, 104204 (2022)

FIG. 4. Quench dynamics of the entanglement entropy, EE(t ):
The random Ising spin chain, HIC|g=0 in Eqs. (1). For δ � 1, EE(t )
oscillates quite rapidly, whereas for δ  −1, it keeps very small
values. The system with δ = 0 corresponds to infinite randomness
critical point. The system size is L = 12.

quite stable compared with the noninteracting case. Figure 5
shows interesting behaviors of EE(t ), that is, for the initial
state | ↑↑↑ · · · 〉Z , EE(t ) for δ = 4.0, 3.0 acquires large values
in the time evolution, whereas for | ↑↑↑ · · · 〉X , EE(t ) for
δ = −4.0,−3.0 increases similarly and saturates to large val-
ues. This result indicates that the bond coupling,

∑
i σ

x
i σ x

i+1,
dominates the field coupling,

∑
i hiσ

z
i , for δ � 1, and the

states | ↑↑↑ · · · 〉Z contains all states of the σ x basis, then, as

FIG. 5. Quench dynamics of the entanglement entropy, EE(t ):
the random Ising spin chain with g = 0.2 for L = 12. (a) Ini-
tial state: |ψ (t = 0)〉 = | ↑↑↑ · · · 〉Z , (b) initial state: |ψ (t = 0)〉 =
| ↑↑↑ · · · 〉X = ∏

i
1√
2
(| ↑〉i + | ↓〉i )Z .

a result, the EE is generated in the time evolution. The same
thing happens for the case with δ  −1 and | ↑↑↑ · · · 〉X , in
which the field coupling dominates the bond coupling. We can
understand the above behavior of EE(t ) from duality. In the
Hamiltonian level, the random parameters {Ji} and {hi} are
interchanged by Eqs. (2). The above numerical study of EE(t )
shows that duality transformation of the initial state is needed
for EE(t ) to exhibit similar behavior in the corresponding
duality counterparts. A careful look at Fig. 5(b) reveals some
important aspects of the time evolution of EE(t ) besides the
above increasing behavior. That is, EE(t ) for δ = 4.0, 3.0 and
the initial state | ↑↑↑ · · · 〉X has small but finite values for the
late time of the time evolution. On the other hand, EE(t ) for
δ = −4.0,−3.0 and the initial state | ↑↑↑ · · · 〉Z in Fig. 5(a)
keeps vanishingly small values in the time evolution. This
result seems to break duality of the Hamiltonian HIC. We
think that this discrepancy comes from the topological order
of the SG-MBL, which is observed through the EE in Sec. II,
i.e., the topological order exhibits long-range correlations [60]
characterized by nonlocal order parameters, such as string
order, and it possibly enhances information spreading across
the almost entire system compatibly with MBL identified by
the return probability, etc. More explicitly in the SG-MBL
phase, such a nonlocal order may be construct. That is, we can
consider a string operator, given by 〈∏ j−1

k=i σ x
k σ x

k+1 + · · · 〉 =
〈σ x

i σ x
j 〉 + · · · , as in the CS chain discussed in Sec. II. Please

note that the leading terms of the LIOMs are given by the
dimer, {σ x

i σ x
i+1}, in the SG-MBL regime. The above observa-

tion clarifies the relationship between the spin-glass order and
the topological order, i.e., the topological order accompanies
the long-range spin-glass correlation described by Gr . The
long-range correlation makes a pair of large qubits by Z2

symmetry, and their mixing emerges in late-time evolution as
seen in Fig. 5(b).

To understand the above observation for the EE of the
SG-MBL state more concretely, let us consider a four-spin
system and divide it into two two-spin subsystems, i.e., A and
B subsystems. Then, the initial state corresponding to Fig. 5(b)
is given by

|ψ0〉 = | ↑↑↑↑〉X

= 1
2 [ψ (A,+) + ψ (A,−)][ψ (B,+) + ψ (B,−)],

(10)

where ψ (A,±) = 1√
2
(| ↑↑〉A ± | ↓↓〉A) (energy eigenstates

of A subsystem expressed in the X basis), and similarly for
ψ (B,±). In the time evolution, other states such as | ↑↓〉A

emerge only as a perturbation (by {hiσ
z
i }) because of the

existence of the stabilizer, whose leading terms are given by
{σ x

i σ x
i+1} (|Ji| � |hi|, g). Then, by ignoring perturbative states,

the system can be regarded as a system of two quantum de-
grees of freedom with two quantum states for each. EE of this
kind of system was studied in Ref. [61]. The interactions be-
tween A and B subsystems are given by J2σ

x
2 σ x

3 and g(σ x
1 σ x

3 +
σ x

2 σ x
4 + σ z

2σ z
3 ). These interactions are invariant under P .

Especially, σ x
2 σ x

3 , σ x
1 σ x

3 and σ x
2 σ x

4 terms generate mixing be-
tween the states ψ (A,+)ψ (B,+) ↔ ψ (A,−)ψ (B,−) and
ψ (A,+)ψ (B,−) ↔ ψ (A,−)ψ (B,+) as they operate such as
| ↑↑〉A| ↓↓〉B → −| ↑↑〉A| ↓↓〉B, etc. (The term σ z

2σ z
3 works

only as a perturbation as {hiσ
z
i }.) This mixing obviously
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generates an extra time dependence in each of the four terms
in Eq. (10) [ψ (A,+)ψ (B,+), · · · , ψ (A,−)ψ (B,−)] and a
nontrivial reduced density matrix and, as a result, the oscil-
lating EE emerges [61]. In the original many-body system,
the wave functions corresponding to ψ (A,±), etc., have a
complicated form under the time evolution, and the reduced
density matrix ρA is of high dimensions. However, we expect
that an oscillating behavior originating from the above mech-
anism persists.

Returning to the SPT order, we note that for i = 1 and
j = L, the string operator essentially measures the correlation
between edge operators, 〈σ x

1 σ x
L 〉, mentioned in Sec. II. This

expression of the string order is obviously a reminiscence
of the Stokes theorem by which a magnetic flux piercing a
surface is expressed by a line integral of vector potential along
the boundary.

In addition, we should remark that duality is explicitly
broken at edges in the open-boundary system and, therefore,
duality does not respect the relation between the bulk and its
edges.

In the following subsection, we shall study the TMI. The
above observations will shed light on the results of the TMI.

B. Tripartite mutual information: Ising spin chain

In the previous subsection, we studied the bipartite EE,
EE(t ), for the noninteracting (g = 0) as well as the interacting
case (g = 0.2), and obtained interesting results, in particular,
from the viewpoint of duality and SPT order. In this sub-
section, we shall study the behavior of the TMI under the
time evolution. In the practical calculation, the system size
is L = 8, 10, and 12, and the spin chain is divided into two
chains with equal length to compute I3(A : B : C). In the nu-
merical calculation, we focus on the disorder average of the
normalized TMI Ĩ3 denoted by 〈Ĩ3〉.

We study the behavior of the TMI for fixed values of g
by varying δ to see how it behaves in the various phases. As
we explained in Sec. II, we consider the infinite-temperature
ensemble. In Fig. 6, we show the time evolution of the TMI,
Ĩ3, for the non-interacting and interacting Ising spin chains
[HIC in Eqs. (1)] with various values of δ. The two cases
exhibit quite different behavior, the strong oscillation in the
noninteracting, and stable behavior in the interacting case,
although the time average of both of them is rather stable and
is an increasing function of time. The strong oscillation of Ĩ3

in the noninteracting case comes from the Griffiths nature of
the broad distribution of the localization length and typical
timescale as the above calculation of EE(t ) shows. However,
Ĩ3 has stable values in the short-period time average, which
depends on the parameter δ (not shown). A careful look at
the calculations in Fig. 6(a) reveals that Ĩ3 increases even after
t = 109, in particular, δ = 2.0 and 2.5. See further late-time
calculations in the Appendix, where we show the late-time
behavior of Ĩ3 for δ = 2.0 and 2.5, and find instability of
Ĩ3, that is, which does not saturate. However, its system-size
dependence is quite stable, and we think that this observation
guarantees reliability of the result shown in Fig. 7(a). On the
other hand, in the interacting case of g = 0.2, Ĩ3 is an increase
function and saturate into stable values depending on δ after
the early-time evolution. In Figs. 7(a) and 7(b), we show the

FIG. 6. TMI dynamics of the random Ising spin chain, HIC.
(a) The noninteracting case with g = 0. The TMI exhibits oscillating
behavior for all δ’s, but its short-period time average is a stable
function of time. (b) The interacting case with g = 0.2. After early
time increases, the TMI saturates to a finite value for each value
of δ. In both cases, the TMI has larger values in the regime δ ∼ 0
compared to other regimes. These results were obtained by averaging
over the ten disorder realization for the L = 12 system. Here, 〈· · · 〉
denotes disorder average.

saturation values of Ĩ3 as a function of δ and also exhibit its
system-size dependence for both noninteracting (g = 0) and
interacting cases (g = 0.2). For both cases, Ĩ3 has a peak at
δ = 0. In the noninteracting case, however, the absolute value
of Ĩ3 is quite small for the entire parameter regime compared
with that in the interacting case. This result obviously corre-
sponds to the phase diagram of the TRIM, in which only the
localized phase exists. The state at the IRC point (δ = 0) is
recognized as a particular localized state [62], and therefore
Ĩ3 has a peak at that value. The calculated system-size depen-
dence shows that the curves of Ĩ3 do not cross with each other,
indicating the nonexistence of phase transitions for the g = 0
system besides δ = 0. (However, we shall give a comment on
this point at the end of this subsection.)

On the other hand, for the interacting case of g = 0.2, Ĩ3

in Fig. 7(b) exhibits clear scaling behavior with respect to the
system size. The curves of Ĩ3 cross with each other at two
values of δ, indicating the existence of two phase transitions
such as the PM-MBL → ETH → SG-MBL phases as δ

increases. This result is obviously in good agreement with
the observation of the half-chain EE in Sec. II. Then, we
conclude that the TMI is a good indicator of phase transitions.
We have examined Ĩ3 for systems of L = 8, 10 in addition to
L = 12 for g = 0.2 (not shown) and found that the system-size
dependence of the saturation time is rather weak. Then, we
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FIG. 7. Saturation values of TMI for various system sizes of
random Ising spin chain. (a) g = 0 case: Ĩ3 exhibits a peak at δ = 0,
which corresponds to the infinite random critical point of the random
transverse Ising chain. Curves of Ĩ3 do not cross with each other, in-
dicating nonexistence of phase transitions besides δ = 0. (b) g = 0.2
case: Ĩ3 for the interacting case. Curves of Ĩ3 cross with each other at
the phase transition points, δc1 � −δc2 � −2.0. Duality symmetry is
obviously broken in the MBL regimes. These results were obtained
by averaging over1000, 500, and 100 disorder realizations for L=8,
10, and 12 systems. We define saturation values of TMI as the
average of I3(t ) at 10 points between t = 109 and t = 1010.

expect that the TMI can be of practical use for large but finite
systems.

Interestingly enough, Ĩ3 is not symmetric under the trans-
formation δ → −δ outside of the ETH regime, indicating
breaking of duality in the localized phases. As discussed in
Sec. III A, we think that this discrepancy of duality stems
from the SPT order and spatial structure of the stabilizer qubit.
Also, we comment that for the SG–MBL limit (for large δ), the
background values of TMI seem to exhibit very clear system-
size dependence. In fact, we observed the values of I3/L (not
Ĩ3/L) for the SG–MBL limit are almost independent of the
system size (not shown). This behavior also holds for the
CS-MBL as we see later, being different from the PM-BML
limit with the LIOMs located at a site. Therefore, we expect
that this result indicates the existence of bulk size qubits in
scrambling process. We will perform a numerical study to
verify this expectation in Sec. III D.

Here it is appropriate to comment on the above calculations
of the TMI and the static quantities observing localization
properties for the g = 0 case mentioned in Sec. II A [32]. In
Ref. [32], a detailed study on the static half-chain EE and
gap ratio for small g indicates that an ergodic phase exists for
− ln 2 < δ < ln 2 for g → 0 in the limit L → ∞. This comes
from the avalanche instability of localization [63] in the ther-
modynamic limit. On the other hand, the TMI in Fig. 7(a) does
not exhibit ergodic properties in that parameter region. The

FIG. 8. Quench dynamics of entanglement entropy, EE(t ), in the
extended cluster-spin model, HCS [Eq. (4)] with g = 0.2 and the ini-
tial state | ↑↑↑ · · · 〉X . EE(t ) increases quite rapidly for δ = −4, −3
(the CS-MBL regime), whereas it does not for δ = 4, 3 (the SG-MBL
regime). The system size is L = 12.

obtained results for the interacting case with g �= 0 obviously
show that the TMI is a good indicator for localization. How-
ever, an apparent discrepancy between the static and dynamic
quantities, the TMI, exists for the g = 0 case. Unfortunately,
we currently do not have a clear understanding of the origin of
this discrepancy. One possible origin of this discrepancy is a
finite-size effect of the observed TMI and, if so, numerical
study of large-scale systems beyond exact diagonalization
may be required. We shall give more comments on it at the
end of Sec. IV.

C. Quench dynamics of bipartite EE: Cluster spin chain

Let us move onto the numerical study of the model HCS

in Eq. (4). We found that there are three phases in the sys-
tem, i.e., as the value of δ increases, CS-MBL → ETH →
SG-MBL. Both the SG-MBL and CS-MBL are the localized
topological phases with distinct topological features, where in
the SG-MBL limit, a paired spectrum appears while a quartet
spectrum appears in the CS-MBL limit [11,12]. Therefore, it
is interesting to see how the TMI behaves in these phases as
both SG-MBL and CS-MBL phases have long-range correla-
tions dictated, e.g., by loop orders. Also the spatial structures
of the stabilizer in the two MBL regimes for δ → ±∞ are
different. Hence, it is expected that the bulk properties of the
information spreading are different in the two phases. In this
subsection, we study the quench dynamics of the half-chain
EE by varying δ. In Fig. 8, the evolution of the EE, EE(t ), is
displayed for the initial state | ↑↑↑ · · · 〉X . In particular, we are
interested in the difference of EE(t ) for the SG-MBL (δ � 1)
and CS-MBL (δ  −1) regimes.

From Fig. 8, it is obvious that the system for δ = −3,−4
exhibits large increases in EE(t ), whereas only a small in-
crease for δ = 4, 3 in the time evolution. This behavior
obviously comes from the difference of the structures of the
stabilizer qubits in these two phases, i.e., the action of the
unitary dynamics of {σ x

i σ x
i+1} in the SG-MBL regime obvi-

ously does not induce a significant change of the initial state,
i.e., quantum information of the initial state does not scramble
significantly. On the other hand, {σ x

i σ z
i+1σ

x
i+2} in the CS-MBL
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FIG. 9. Saturation values of the TMI for the extended cluster-
spin model in Eq. (4) with various system sizes. (a) g = 0 case: The
data show that Ĩ3 is a smooth function of δ, there are no crossings of
the curves, and no increase in Ĩ3 as L gets larger. These behaviors
indicate a direct transition between the SG-MBL and CS-MBL.
(b) g = 0.2 case: The curves cross with each other at two phase
transition points observed by the EE. These results were obtained
by averaging over the 1000, 500, and 100 disorder realizations for
L = 8, 10, and 12 systems.

regime do, as the initial state is strongly scrambled by the
above stabilizer qubits. The behavior of EE(t ) depends on the
interplay of the stabilizer-qubit and initial state.

Here we would like to comment: Which stabilizer,
{σ x

i σ x
i+1} or {σ x

i σ z
i+1σ

x
i+2}, dominates is automatically deter-

mined by parameters of the system under study and the
system’s location properties in the phase diagram. In other
words, study of the phase diagram for the qubit system is
required to have stable stabilizers as desired.

In the following subsection, we shall study the TMI, which
reflects the nature of the time-evolution unitary itself.

D. Tripartite mutual information: Cluster spin chain

In this subsection, we show the calculations of the TMI, Ĩ3,
for the CS chain, HCS in Eq. (4). In the numerical calculation,
we focus on the disorder average of the normalized TMI 〈Ĩ3〉.
We observed that Ĩ3 has a stable time evolution (not shown),
and in Figs. 9(a) and 9(b), we display the saturation values of
Ĩ3 as a function of δ for various system sizes with the A and
B (C and D) L/2-chains. As in the random Ising spin chain,
the data of Ĩ3 for various system sizes indicate the existence
of two kinds of phase transitions for the g = 0.2 case, as
indicated by the calculation of the EE in Sec. II. As in the
Ising spin chain, Ĩ3 ∼ 0.6 in the SG-MBL regime (δ � 1). On
the other hand, in the CS-MBL (δ  −1), Ĩ3 has a larger value
compared with that value, i.e., Ĩ3 ∼ 0.7. From the observation
obtained in the investigation of the random Ising spin chain,
this behavior comes from the difference in the spatial structure

FIG. 10. Saturation values of the TMI for various system sizes
under two-site partitioning. (a) Random Ising spin chain for g = 0.2.
(b) Extended random cluster-spin chain for g = 0.2. These results
were obtained by averaging over the 1000, 500, and 100 disorder
realizations for L = 8, 10, and 12 systems.

of the stabilizers and the resultant SPT orders. On the other
hand, for the g = 0 case, the TMI exhibits smooth curves,
indicating a direct phase transition between SG-MBL and
CS-MBL at least for the small but finite systems.

From the investigation of the TMI given so far, we want to
see if there exist some other quantities concerning the TMI,
which reflects spatial magnitude of logical (stabilizer) qubits
in the MBL states. To this end, we calculate the TMI as
varying the size of the subsystem A and D, that is, changing
the partitioning of the in and out Hilbert spaces. In particular,
we are interested in partitioning with the two-site A and D (we
denote as LA = LD = 2) subsystem in Fig. 3.

In Figs. 10(a) and 10(b), we show the numerical calcu-
lations Ĩ3 for the random Ising spin chain and extended CS
models under the above-mentioned two-site partitioning. In
the SG-MBL phase of the random Ising spin chain and also
the CS-MBL phase in the CS model, Ĩ3 has larger values
compared to those in the equal-length partition. In partic-
ular, in the CS-MBL limit, Ĩ3 is an increasing function of
|δ|, and Ĩ3 � 1.0, indicating apparent chaotic behavior of the
CS-MBL for two-site partitioning. On the other hand, in the
PM-MBL state in Fig. 10(a), Ĩ3 is a decreasing function of
|δ|. To investigate this peculiar behavior of Ĩ3, we calculate Ĩ3

for other partitioning such as LA = LD ≡ r = 3, · · · , L/2 − 1
for the deep PM-MBL, SG-MBL, and CS-MBL phases. The
results are shown in Fig. 11. We readily find that Ĩ3 in the PM-
MBL is an increasing function of r, indicating that quantum
information encoded in subsystem A remains inside of subsys-
tem C until saturation is achieved in the dynamics. Contrary
to the above plausible result of the PM-MBL, in SG-MBL and
also CS-MBL with SPT order, Ĩ3 is a decreasing function of r,
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FIG. 11. Saturation values of the TMI for various partitionings
of the system. In the PM-MBL, Ĩ3 is an increasing function of
r = LA = LD, indicating that quantum information encoded in the
initial A system remains in the C subsystem, as expected. On the
other hand, for the SG-MBL and CS-MBL with topological order, Ĩ3

is a decreasing function of r. This unexpected result comes from a
finite spatial magnitude of stabilizer qubit in the topological state.

and this decreasing tendency is stronger in CS-MBL than in
SG-MBL.

It is obvious that the above peculiar phenomenon is related
to the spatial structure of the stabilizer qubits, i.e., in the
deep MBL regime, {σ x

i σ x
i+1} in SG-MBL and {σ x

i σ z
i+1σ

x
i+2} in

CS-MBL, is equal to or larger than two-site and also these
forms are deformed by the interactions, whereas the stabilizer
qubit in the deep PM-MBL is a nearly single spin {σ z

i }. (For
the stabilizer-qubit in the CS-MBL, please see the following
analytical discussion.) This fact means that quantum informa-
tion encoded in a smaller A subsystem than stabilizer qubits
underflows a stabilizer qubit, as information, which is to be
encoded in the stabilizer qubit, is lost by tracing out quantum
information in the B subsystem. As a result, Ĩ3 exhibits a
chaoticlike behavior even in the MBL state. In other words,
the above calculation can exhibit spatial magnitude of LIOMs
in the MBL regimes. Obviously, the existence of the stable
stabilizer qubits with a finite magnitude also supports MBL
and the SPT order. Therefore, the present phenomenon is
expected to be rather universal.

As one may wonder how the stabilizer qubits (therefore,
LIOMs) are deformed (or dressed) by the existence of other
terms in the Hamiltonian besides the mutually commuting
terms, let us analyze the random CS model in Eq. (4). To this
end, it is convenient to introduce the following operators:

Ki = σ x
i−1σ

z
i σ x

i+1,

K±
i = 1

2

(
σ x

i ± iσ x
i−1σ

y
i σ x

i+1

)
, (11)

and

(K+
i )† = K−

i , (K±
i )2 = 0, K+

i K−
i + K−

i K+
i = 1,

K+
i K−

i = 1
2 + 1

2 Ki, [Ki, K±
i ] = ±2K±

i . (12)

Therefore, K±
i ’s are nothing but hard-core bosons and Ki’s

are their number operators. The leading terms of HCS in
Eq. (4), {λiKi}, describe a random potential and {σ x

i σ x
j =

(K+
i + K−

i )(K+
j + K−

j )} are hopping terms. It is not so dif-
ficult to show that the other terms in Hg, {σ z

i σ z
i+1}, describe

local interactions between the hard-core bosons. A Majorana
representation can be introduced straightforwardly by

χ1
i ≡ (K+

i + K−
i ), χ2

i ≡ 1

i
(K+

i − K−
i ).

By the above observation, the LIOMs are given by {Ki}’s in
the CS-MBL limit, and in the deep MBL regime, the hop-
ping makes {Ki}’s fluctuate around their original location, and
dressed LIOMs are local linear combinations of {Ki}’s as in
Anderson localization. There, weak interactions by the g terms
can be treated perturbatively and induce MBL. Investigations
on similar situation to the above for spin systems in strong
random fields indicates that the LIOMs are well described by
dressed spins with a very narrow tail, very close to physical
qubits (spins) [64–66]. In the present system, the SPT order
exhibits the stability of {Ki}’s, as the string order is nothing
but the expectation value of a product of {Ki}’s. Furthermore,
from the data in Fig. 11, we expect that some fraction of
stabilizer qubits have a large-scale cat-state-like nature, which
come from the Z2 symmetry and SPT order and reflect Ĩ3 for
r ∼ L/2 in Fig. 11.

IV. DISCUSSION AND CONCLUSION

In this paper, we studied two kinds of quantum spin chains,
both of which have a nontrivial phase diagram. By investigat-
ing the EE and the order parameters, we first clarified phase
diagrams of the random Ising spin chain and extended random
CS chain. Then we studied the quench dynamics of the EE
for various initial states to obtain an intuitive picture of the
quantum information spreading in these systems. We noted
the breakdown of duality of the Ising spin chain in the quench
dynamics, which gives us a clue to understand how quantum
information scrambles. Finally, we calculated the TMI and
obtained important perspectives on the information spreading.

The findings which we obtained in this paper are summa-
rized as follows:

(1) To observe the quench dynamics from the view of
duality, initial states have to be prepared carefully, as they are
connected by duality.

(2) In the time evolution, the EE and TMI exhibit oscil-
lating behavior in the TRIM because of its Griffiths phase
character, whereas they become stable by adding interactions
Hg in Eqs. (1).

(3) In quench dynamics of the random Ising spin chain,
the EE exhibits small but finite breaking of duality.

(4) The above breaking of duality also emerges in the TMI
in the MBL regimes.

(5) The TMI exhibits clear system-size dependence and is
a good indicator for phase transitions, especially for interact-
ing systems.

(6) The time evolution of the TMI is stable in almost all
cases except the Griffiths regime and its saturation values
exhibit rather characteristic behavior, in particular, in the par-
titioning of subsystems with unequal length.
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From the above findings obtained by the numerical cal-
culations, we have important insight into how quantum
information in the bulk is encoded in quantum spin chains and
how randomness (disorder) influences quantum information
spreading. Calculation of the TMI in the two-site partitioning
of the chain reveals that quantum information is encoded in
stabilizer qubits in MBL regimes. We also note that as shown
in the numerical result in Fig. 10, the spatial structure of the
stabilizer qubit in the MBL regime is robust for (at least) weak
interactions. The stabilizer qubits are nothing but the local
bits or LIOMs, which were introduced to explain logarithmic
time evolution of the quench EE in the MBL regimes. In the
ordinary spin chains in random magnetic fields, the local bits
are described by dressed Pauli spin operators that substantially
reside on a single site in the localization limit. On the other
hand, in the present paper, the local bits are explicitly given
by the multisite spin composites (stabilizers) such as {σ x

i σ x
i+1}

and {σ x
i σ z

i+1σ
x
i+2} in the MBL limit, and it is expected that they

are spatially expanded by the additional interactions between
spins. Therefore, they behave differently from ordinary local
bits because of their spatial magnitude, as explicitly observed
by the TMI in the two-site partitioning. In quantum informa-
tion science, the viewpoint of the spatial structure of stabilizer
qubits may be important and useful in constructing practical
quantum circuits by using quantum physical devices.

Another interesting observation obtained in this paper con-
cerns the IRC and Griffiths nature of the random Ising spin
chain. In the TRIM, almost all quantities observed in this work
exhibit unstable behavior in the time evolution. The study of
the TRIM has a long history but has not been completed yet.
The present paper reveals its peculiar behavior in a quantum
information aspect. We think that this finding and detailed
study of the TRIM from a quantum information viewpoint
will uncover the nature of the IRC and Griffiths phase. This
is a future problem.

The above observations clearly indicate that the nature of
quantum information scrambling is determined by the phase
diagram of the model describing that quantum system, and the
stability of the stabilizer can be predicted by the knowledge
of the phase diagram. This result may be of great importance
for, e.g., constructing logical qubits by means of stabilizer
code. How to utilize the knowledge of phase diagrams for con-
struction of logical code, etc. is an interesting future problem.
One example in this direction is the random circuit of projec-
tive transverse field Ising model studied in Refs. [67–69]. In
that system, projective measurements (stabilizers), which are
given by {σ z

i } and {σ x
i σ x

i+1} (or {σ x
i } and {σ z

i σ z
i+1}), are applied

in each time step with probability p and 1 − p, respectively.
It is expected that p plays a role of δ in the random Ising
spin chain in this paper, and the random distribution of the
stabilizers corresponds to random variables {Ji} and {hi}. In
fact, it was observed that the EE tends to log 2 (log 1 = 0)
for the limit p → 0 (1) as in the random Ising spin chain.
Furthermore, a phase transition takes place at p = 0.5, and
the mutual information has a finite value for p < 0.5, whereas
it vanishes for p > 0.5. The phase for p < 0.5 is regarded as
a spin-glass phase with finite bond percolation. These results
obviously coincide with the behavior of SG-MBL and PM-
MBL in the random Ising spin chain. A similar projective
random circuit system corresponding to the XZZX spin chain

was also studied very recently [70]. Then, it is interesting
to study a random circuit of projective measurements corre-
sponding to the extended random CS chain investigated in
this paper. This work is in progress. Another direction is to
study the relationship between the TMI and more practical
information spreading [71], and such an application may be
interesting.

We also note that there is a close connection between
the present paper and topological Majorana quantum mem-
ory [72–74]. Knowledge of stable quantum storing in that
system by topologically produced global Bell clusters helps
us get an intuitive picture of the significantly large TMI in
the SG-MBL and CS-MBL regimes. Detailed study on the
relation is a future work.

Finally, we would like to comment on recent studies on
MBL transitions in the thermodynamic limit [75–77]. These
works indicate that putative MBL, which is observed in finite
systems, cannot survive in the thermodynamic limit. An idea
called a finite-size MBL regime was proposed, which is to
be distinguished from the genuine MBL phase. Most studies
focused on XXZ and XXX spin models in a random external
field, and therefore the investigation of the TMI for the XXX
spin model in Ref. [54] is quite useful. There, the behavior
of the TMI was studied by the exact diagonalization in small
systems, and exhibits a phase-transition-like behavior with
a critical magnitude of the random field, which is close to
the ones obtained by the gap ratio and the half-chain EE.
This indicates that the MBL phase transition observed by
the TMI may correspond to the finite-size MBL regime. The
phase transitions observed in this work may be a crossover
to the finite-size MBL regime, in particular, the SPT na-
ture protected by MBL may disappear in the thermodynamic
limit. However, from the quantum information point of view,

FIG. 12. TMI dynamics of random Ising chain (g = 0) with var-
ious system sizes in the long-time limit: (a) δ = 2.0 and (b) δ = 2.5.
We employ the same random coefficients Ji and hi of Fig. 6 and take
the same disorder averages.

104204-11



ORITO, KUNO, AND ICHINOSE PHYSICAL REVIEW B 106, 104204 (2022)

our findings in the present paper are useful, as devices in
quantum-information instruments are of finite size and a pe-
riod using them is also finite. Our paper clarified the parameter
regimes in which relevant states emerge and are stable and
gives guides for constructing quantum networks using many-
body spins such as described by CS models.
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APPENDIX: NUMERICAL VALIDITY OF THE
SATURATION VALUE OF THE TMI

In this paper, we have found that the saturation value of the
Ĩ3 distinguishes the phases. However, in Fig. 6, one can see Ĩ3

with δ = 2.0 and 2.5 do not seem to reach the saturation val-
ues. In this Appendix, we verify that such a weakly increasing
nature of Ĩ3 does not affect the main results. Figure 12 shows
Ĩ3 dynamics in the further long time period up to t = 1013 with
the same numerical conditions as Fig. 6. Ĩ3 may increase with
time evolution; however, as the system size L increases, Ĩ3

decreases, which implies the absence of the crossing for Ĩ3,
i.e., a weak increase in Ĩ3 does not affect the main results.
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