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Quantum information theoretical measures are useful tools for characterizing quantum dynamical phases.
However, employing them to study excited states of random spin systems is a challenging problem. Here, we
report results for the entanglement entropy (EE) scaling of excited eigenstates of random XX antiferromagnetic
spin chains with long-range (LR) interactions decaying as a power law with distance with exponent α. To this
end, we extend the real-space renormalization group technique for excited states (RSRG-X) to solve this problem
with LR interactions. For comparison, we perform numerical exact diagonalization (ED) calculations. From
the distribution of energy-level spacings, as obtained by ED for up to N ∼ 18 spins, we find indications of a
delocalization transition at αc ≈ 1 in the middle of the energy spectrum. With RSRG-X and ED, we show that
for α > α∗ the EE of excited eigenstates retains a logarithmic divergence similar to the one observed for the
ground state of the same model, while for α < α∗ EE displays an algebraic growth with the subsystem size l ,
Sl ∼ lβ , with 0 < β < 1. We find that α∗ ≈ 1 coincides with the delocalization transition αc in the middle of
the many-body spectrum. An interpretation of these results based on the structure of the RG rules is proposed,
which is due to rainbow proliferation for very long-range interactions α � 1. We also investigate the effective
temperature dependence of the EE, allowing us to study the half-chain EE of eigenstates at different energy
densities, where we find that the crossover in EE occurs at α∗ < 1.
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I. INTRODUCTION

The magnetic properties of doped semiconductors as ob-
served in magnetic resonance experiments [1] motivated
P.W. Anderson to address the localization in interacting dis-
ordered systems, in particular disordered interacting spin
systems [2]. Fleishman and Anderson [3] showed that short-
range interactions in an electron system with localized
single-particle states might not destroy localization for some
range of finite temperature T . In Refs. [4,5], it was argued
that many-body localization at finite temperature may result
in a lack of thermalization. Since then, many-body localiza-
tion (MBL) has become a flourishing research direction; for
reviews see Refs. [6,7].

In a MBL phase, disorder, as modeled by randomness, can
lead to localized states despite the presence of interactions.
These states violate the eigenstate thermalization hypothesis
(ETH) [8], which states that the statistical properties of physi-
cal observables of generic quantum Hamiltonians are the same
as those predicted by the microcanonical ensemble. Thereby,
given a subregion A of n spins in a chain, ETH requires that
entanglement entropy SA scales with the volume of A, SA ∼ n
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[6], whereas in a MBL phase, excited eigenstates display an
area law entanglement scaling SA ∼ 1.

More recently, systems displaying a logarithmic diver-
gence at finite energy density SA ∼ ln(n), and power law
average correlations were discovered [9,10]—they were
dubbed quantum critical glasses. While, MBL is essentially
established for some short-range models [11], random bond
spin chains with long-range (LR) interactions have to our
knowledge not been investigated, although studies on LR in-
teracting spin chains with random magnetic field have been
done [12–14].

As finite temperature MBL is a property associated with
excited many-body eigenstates, inspecting their entanglement
properties is highly insightful.

To this end, we employ one of the most potent tools for
studying one dimensional random Hamiltonians, the strong
disorder renormalization group (SDRG) [15,16]. SDRG has
been widely used to study properties of ground states of dis-
ordered spin chains with nearest-neighbor interactions [17,18]
and beyond [19–22] and more recently it was used to describe
random spin chains with power-law decaying interactions
[23–26]. This method has recently been extended to study the
whole set of eigenstates via the so-called RSRG-X (real space
renormalization group for excited states) procedure [27]. This
technique is a powerful method to characterize the excited
states of random interacting many-body systems, and can
therefore be used to capture different dynamical phases of a
given model at strong disorder. In particular, this procedure
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was previously used to study the entanglement properties of
excited eigenstates of a random XX spin chain with nearest-
neighbor interaction [28,29], where it was found that the flow
equations for the magnitude of the couplings are identical
to the ground-state ones, therefore leading to a logarithmic
divergence in the entanglement entropy (EE). RSRG-X was
also used to study the high-energy states of the random bond
XXZ spin chain [10].

Here, we consider a random bond-XX spin chain with
couplings decaying with a power-law exponent α. Disorder
is introduced in the model through a random choice of the
positions of the spins on the chain leading to randomness in
the spin-spin couplings. We study the excited eigenstate prop-
erties of this model via both RSRG-X and numerical exact
diagonalization (ED). The groun- state entanglement proper-
ties of such a system were previously studied in Ref. [26],
where it was found that EE at zero temperature displays a
logarithmic enhancement irrespective of the values of α. This
was obtained via an analytical formulation of SDRG, its nu-
merical implementation, and using ED.

In the next section, we are using numerical ED to study the
level spacing statistics as an indicator for MBL. In Sec. III,
RSRG-X is introduced; in Sec. IV, it is applied to derive the
EE of this model and its dependence on subsystem size l . In
Sec. V, the results for the EE are presented as obtained with
ED performed for up to N ∼ 14 spins. With both methods,
we find that in the middle of the many-body spectrum, for
any α > 1 the EE diverges logarithmically as for conformally
invariant systems [30–32] and as observed similarly in the
ground state of random spin chains described by a random sin-
glet phase [17,26]. However, for α < 1 a subvolume law for
entanglement scaling is found S(l ) ∼ lβ with 0 < β < 1, and
l being the subsystem size. Thus, we find that the crossover
in EE scaling at α∗ ≈ 1 coincides with delocalization tran-
sition α ≈ 1 in the middle of the many body spectrum. In
Sec. VI, results for the entanglement contour are presented
and analyzed. In Sec. VII, we present an interpretation of the
power-law scaling of the EE with subsystem size in terms
of rainbow bond proliferation. In Sec. VIII, we present re-
sults obtained at finite effective temperature, corresponding
to an energy density away from the middle of the spectrum.
In Sec. IX, we conclude. Finally, in Appendix A we show
ED results for the average correlation functions, while in
Appendix B the energy spectrums as obtained via ED and
RSRG-X are compared for different values of α.

We focus on the bond disordered XX-spin chain with LR
couplings, defined by the Hamiltonian

H =
∑
i< j

Ji j
(
Sx

i Sx
j + Sy

i Sy
j

)
, (1)

describing N interacting S = 1/2 spins that are placed ran-
domly at positions ri on a lattice of length L and lattice
spacing a, with density n = N/L = 1/l0, where l0 is thus
the average distance between them. The couplings between
all pairs of sites i, j, are taken to be antiferromagnetic and
long-ranged, decaying with a power law α:

Ji j = J0|(ri − r j )/a|−α. (2)

FIG. 1. Left: Adjacent gap ratio for various values of α and
filling factors n. Right: Probability distribution P(s) of level spacings
s = En+1 − En between consecutive unfolded eigenvalues [37]. Note,
particularly, that for the probability distribution, we diagonalize the
Hamiltonian Eq. (1) in the Stot = 0 − subspaces, as the projection
of the total spin along the z axis, Stot = ∑

i Sz
i , is conserved. The

results are averaged over 1000 disorder realizations. For the adjacent
gap ratio, Ns = 50 states are taken in the middle of the many-body
spectrum.

We note that for α = 0, the above Hamiltonian Eq. (1) cor-
responds to the isotropic antiferromagnetic Lipkin-Meshkov-
Glick model in absence of magnetic field [33]. It is a clean
infinite-range model and its ground-state entanglement prop-
erties have been investigated in Ref. [34], where it was shown
that the EE scales logarithmically with subsystem size.

We fix J0 = 1 and a = 1 in the following.

II. LEVEL-SPACING STATISTICS

Level-spacing statistics is known to be a convenient indi-
cator to identify whether a system is in a delocalized phase, a
localized phase, or another regime. Disordered Hamiltonians
with time-reversal and spin symmetry are known to be de-
scribed by the Gaussian orthogonal ensemble (GOE), without
time-reversal symmetry by the Gaussian unitary ensemble
level-spacing statistics, when they are in the ergodic regime as
characterised by energy level repulsion. In a localized phase,
rather, the level-spacing statistics obeys the Poisson distribu-
tion, indicating the absence of level repulsion [35,36]. Via
ED, we compute the distribution P(En+1 − En) of the energy
level spacings of the model Eq. (1) for different filling fac-
tors n = N/L and various values of the exponent α. Further,
we calculate the ratio of consecutive gaps of distinct energy
levels, also known as the adjacent gap ratio,

r = 1

Ns

∑
n

min(En+1 − En, En − En−1)

max(En+1 − En, En − En−1)
, (3)

where Ns is the number of states which are taken from the
spectrum to calculate r. The value of r, averaged over several
disorder realizations, is known to be 0.5307 [35] for the GOE
and around 0.386 for the Poisson distribution. Results are
shown in Fig. 1, together with both limiting values. Here states
are taken from the middle of the many-body spectrum. We
see a crossover between a regime where the level spacing
approaches the GOE for sufficiently small values of α and
a Poissonian regime for α > 1. In a large interval of α < 1,
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it is in an intermediate regime. These results suggest the pos-
sibility of a delocalization-localization transition occurring at
αc ≈ 1 in the middle of the many-body spectrum. Note that
no qualitative difference is observed for varying densities of
spins n = N/L. We will therefore fix n = 0.1 in the following.

III. RSRG-X METHOD IN THE PRESENCE
OF POWER LAW COUPLINGS

Next, we intend to evaluate the EE scaling with subsystem
sizes as a function of the exponent α. EE provides a quan-
titative tool to characterize how information is spread from
one part of the system to another. To this end, we use both
a renormalization group scheme and numerical ED. We first
describe how to apply the RSRG-X to this model with anti-
ferromagnetic LR interactions. For the ground state, at each
step of SDRG [16,26,38], we identify the largest coupling
Ji j = � and put the two spins that are coupled by � in the
lowest energy state, a singlet state. Assuming strong disorder,
the coupling of these two spins is much larger than the re-
maining couplings. We therefore treat them as perturbations
and derive an effective Hamiltonian for the remaining spins.
This procedure is continued until we form N/2 singlet pairs.
Thereby, the ground state of the system is approximated as the
tensor product of these singlet states within SDRG.

Excited eigenstates can be obtained by a modified version
of SDRG, known as RSRG-X. In this method, the two spins
with the largest (in magnitude) coupling constant are cho-
sen to be in one of their four eigenstates (one singlet, three
triplet states) with energy E by the Boltzmann distribution,
depending on an effective temperature T , so for each of the
singlet and triplet states, there is a corresponding probability
associated with the parameter T . The effective couplings for
the other spins then depend on the choice of the state for
the two spins. To determine the RG rules for excited states,
we make use of degenerate perturbation theory, namely, a
Schrieffer-Wolf transformation (SWT) [39] is applied. SWT
is a perturbative unitary rotation that eliminates off-diagonal
elements of the Hamiltonian H with respect to a strong piece
H0. Specifically, one writes H = H0 + V , where V is paramet-
rically smaller than H0, as denoted by V ∈ O(λ). Then, one
searches for a unitary operator eiS such that [eiSHe−iS, H0] =
0 to the desired order in V . This results in a self-consistent
equation for S at each order, which can then be solved. Fur-
ther, one projects onto an eigenstate subspace of H0, and
finds an effective Hamiltonian for the remaining degrees of
freedom. Projecting onto the lowest-energy eigenstate at each
step of RSRG-X gives the ground state of the model reproduc-
ing the usual SDRG scheme, whereas projecting onto other
subspaces allows access to generic excited eigenstates.

Here, we give an overview of SWT and derive the RSRG-X
rules for the Hamiltonian Eq. (1). We seek for an operator S
such that [eiSHeiS, H0] = 0. Expansion of the unitary rotation
of H in S gives

eiSHe−iS = H0 + V + [iS, (H0 + V )]

− 1
2 {S2, H0 + V } + S(H0 + V )S + ..., (4)

where {., .} stands for the anticommutator. We now expand S
in powers of λ, S = ∑

n S(n) with S(n) ∈ O(λn). The condition

 l             i            j         m     i            j    

FIG. 2. Decimation of the strongest-coupled pair i, j (high-
lighted in blue) generates effective couplings between other spins
l, m (brown dotted line).

[eiSHe−iS, H0] = 0 then fixes the form of Sn. At first order in
V , we find

S(1) = i
∑
α �=β

|α〉〈α|V |β〉〈β|
Eα − Eβ

, (5)

where α, β are eigenstates of H0, the singlet or one of the
triplet states, formed by the spins with the largest coupling,
and Eα , Eβ are their corresponding eigenvalues. The effective
Hamiltonian is then given by the first order expansion in V of
Eq. (4), namely,

Heff = eiS1 He−iS1 − H0 =
∑

α

|α〉〈α|(V + [iS1,V ])|α〉〈α|.
(6)

Having described the framework for performing our degener-
ate perturbation theory, we now apply this procedure to the
Hamiltonian in Eq. (1). In the case of the LR spin chain,
one obtains the first-order effective Hamiltonian and therefore
deduces the RG rules for the different choices of projections
for H0. Crucially, we note that the effective Hamiltonian keeps
the XX form of the original one, as the effective spins created
along RSRG-X flow completely decouple from the rest of the
chain. This allows the procedure to be readily iterated. The
results are summarized below. Here, (i, j) denotes the pair
with the strongest coupling, as shown in Fig. 2. If the pair
(i, j) is projected onto | ↑ ↑〉 or | ↓ ↓〉, we obtain

(Jlm)′ = Jlm − Jil Jjm + JimJjl

Ji j
. (7)

If (i, j) is in (| ↑ ↓〉 + | ↓↑〉)/
√

2:

(Jlm)′ = Jlm + (Jli + Jl j )(Jim + Jjm)

Ji j
. (8)

If (i, j) is in (| ↑ ↓〉 − | ↓↑〉)/
√

2, we recover the result of
Refs. [24,26]:

(Jlm)′ = Jlm − (Jli − Jl j )(Jim − Jjm)

Ji j
. (9)

The RSRG-X procedure consists of reiterating this scheme
and updating the value of all couplings at each RG step.
Thereby, a generic RSRG-X eigenstate is obtained by taking
the tensor product of all singlet and triplet pairs obtained
along the RSRG-X flow. We note that, due to the RG rule in
Eq. (7), the generation of ferromagnetic couplings along the
RG flow is possible. This is also the case for the RSRG-X
applied to the nearest-neighbor XX spin chain [28]. In the
case of a ferromagnetic coupling, the high-energy projection
becomes the singlet state.
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IV. ENTANGLEMENT ENTROPY

The EE of a pure state ρAB is defined as

S(ρA) = Tr(ρA ln(ρA)), (10)

where ρA = TrB(|ψ〉〈ψ |) is the reduced density matrix after
tracing out a part B of the system and |ψ〉 is the considered
eigenstate. It is an important diagnostic to identify phase tran-
sitions in disordered quantum systems [9,12].

We aim to evaluate the thermally averaged entanglement
entropy of a part A of length l of a spin chain, 〈ST (l )〉 with
eigenstates |ψi〉 sampled from the Boltzmann distribution at
effective temperature T [28],

〈ST (l )〉 =
〈 ∑

i

exp
( − 1

T 〈ψi|H |ψi〉
)
S(l )(|ψi〉)

Z (T )

〉
, (11)

where 〈.〉 stands for the disorder average and S(l )(|ψi〉) is
the EE Eq. (10) with subsystem length l , when the system is
divided into two subsystems of sizes l and L − l , respectively,
in state |ψi〉 with density matrix ρi = |ψi〉〈ψi|.

To obtain this EE, we use the fact that if the spins i and j are
projected onto a singlet state or to the entangled triplet state
(| ↑ ↓〉 + | ↓↑〉)/

√
2, a unit ln 2 of entanglement is generated,

whereas the two other triplet states | ↑ ↑〉 and | ↓ ↓〉 are not
entangled and thus do not contribute to the EE.

At a given parameter T , we then sample the states from
the Boltzmann distribution for every disorder realization by
choosing at each step of the RSRG-X procedure to project
the most strongly coupled pair of spins to a singlet or one of
the triplet states, chosen according to the respective largest
probability determined by their energy E and parameter T .
For each disorder realization, we then take the average of the
thus generated EE for all eigenstates |ψi〉 at fixed T . Note
that 〈Sl (T )〉 is not the EE of the thermally mixed states but
rather the EE of pure eigenstates sampled around a certain
energy region as determined by the effective temperature
parameter T .

In Fig. 3, we show the results in the limit of infinite effec-
tive temperature T → ∞, where all eigenstates are sampled
equiprobably in the middle of the energy spectrum [9]. The
average EE of eigenstates as a function of the partition length
l (physical distance) is displayed for different values of α for
N = 200 spins, here we have considered the average over
Ns = 100 states in the middle of the many-body spectrum.
We have checked that the results are similar for different
values of Ns.

A clear increase of EE is observed as α is lowered for
α < 1, while the results for α = 1.8 and α = 2.8 are almost
identical.

For α < 1, the EE grows with l slower than volume law,
which would be linear in l . We observe in Fig. 4 (top) that
on a log-log scale, the EE for each α < 1 can be fitted with
a straight line, ln(Sl ) = β ln(l ) + a. Thus, the EE obeys a
power-law dependence on partition length, Sl = alβ , with
fitted power smaller than one, β < 1, for all α < 1. Such a
power-law behavior is due to the presence of sufficiently LR
interactions in this model, and was previously observed for
the ground states of the power-law random banded model
[40] as reported in Ref. [41], but also for the ground states

FIG. 3. Average entanglement entropy of excited eigenstates at
infinite effective temperature as a function of the partition length l
(physical distance), obtained from numerical RSRG-X for the long-
ranged XX-chain with open boundary conditions for N = 200 spins
for various values of α. The filling factor was fixed to N/L = 0.1. The
average was evaluated over 10 000 disorder realizations, and Ns =
100 sampled states for each disorder realization.

FIG. 4. Top: Fig. 3 on log-log scale for α < 1, the inset plot
shows β the exponent in S ∼ lβ as a function of α. Bottom: EE as
a function of the logarithm of the chord distance xl for α = 1.1 and
α = 1.6. Here, c stands for the effective central charges. Results are
obtained from numerical RSRG-X for N = 200 spins at filling factor
was fixed to N/L = 0.1, averaged over 10 000 disorder realizations,
for Ns = 100 sampled states for each disorder realization.
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FIG. 5. ED average entanglement entropy in the middle of the
energy spectrum for N = 14 spins and a filling factor N/L = 0.1 for
various values of α. The results are obtained for 250 realizations,
averaging over Ns = 20 states for each disorder point.

of free fermions with LR hoppings and XX spin chains with
LR couplings of random sign and amplitude [42,43].

For α > 1, the EE displays a logarithmic enhancement.
A similar behavior was observed in the nearest-neighbor XX
random spin chain [28], where it was found that the average
EE of a subsystem of size n scales as S(n) = (ceff/6) ln(n)
with ceff = a ln 2 and where 1/2 � a � 1 is an undetermined
prefactor due to degeneracy.

To confirm this, we plot the average EE for α = 1.1 and
α = 1.6 in Fig. 4 (bottom) as a function of the logarithm of the
chord distance, xl = ln ( L

π
sin( π l

L )). Indeed, the EE turns out to
be linear on this scale with a slope a = ceff

6 corresponding to a
logarithmic law for open boundary conditions [30,31], with an
effective central charge ceff = ln 2 for α = 1.1 and ceff = 0.4
for α = 1.6, as plotted as dashed lines.

The exponent of the power-law EE divergence, β, is found
to decrease with increasing α for 0 < α < 1 as can be seen
in the inset plot of Fig. 4. For α > 1, the EE scaling turns
into a logarithmic dependence on l for any α > 1, as shown
exemplary in Fig. 4 (bottom) for α = 1.1 and α = 1.6. We
mention that the results are presented here for the EE as
a function of the real distance l = ri − r j , where ri is the
position of spin i, to be contrasted with the index distances
n = |i − j| between the spins. Similar scaling is observed as
a function of the index distances.

V. ED STUDY OF ENTANGLEMENT ENTROPY SCALING

Although limited to small system sizes, numerical ED has
been extensively used to study the properties of excited states
of random and disordered spin chains [12,35,36,44,45]. We
perform numerical ED on the Hamiltonian in Eq. (1). Average
EE is then evaluated for L = 140 sites, a filling factor N

L =
0.1, and open boundary conditions for various values of α in
the middle of the energy spectrum. Figure 5 shows the average
EE in the center of the energy spectrum or (equivalently for
T → ∞) for α ranging between 0.2 and 3. The average EE
in the middle of the energy spectrum displays a power-law
divergence for α < 1, S(l ) ∼ lβ with 0 < β < 1, as can be

FIG. 6. EE on log-log scale for α < 1 as obtained by numerical
ED for N = 10, 12, 14, a filling factor n = 0.1, and different values
of α. Results are shown for Ns = 50 states in the middle of the many-
body spectrum and for 500 disorder realizations. The red curves are
functions of the form alβ with fitted β as indicated.

observed in Fig. 6, in agreement with the results obtained by
RSRG-X, reported in the previous section. For α > 1, the EE
scaling shows a logarithmic enhancement similar to what was
found for the ground state, in agreement with RSRG-X. The
entanglement scaling exponents β obtained by fitting the ED
data are in good agreement with what was found through the
RSRG-X procedure as can be seen in Fig. 7, where the values
of the exponent β are shown for different system sizes. As N
is increased for fixed α, the exponent β converges to a value
close to the one obtained via ED. Clearly, the convergence
is slower for larger α. This can be explained by the smaller
perturbative corrections in this case, which imply a larger
RG-time to reach the fixed point.

VI. ENTANGLEMENT CONTOUR

A related interesting quantity is the contour for the EE
[46,47]. In a lattice, where a spatial cut separating the chain

FIG. 7. The exponent β as function of α < 1, as obtained by
fitting the ED and RSRG-X results to the function S(l ) ∼ lβ .
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FIG. 8. Entanglement contour as obtained via RSRG-X at infi-
nite effective temperature for the LR random XX chain for different
values of α. Data points were obtained for N = 500 spins randomly
placed among L = 5000 sites. The figure shows the entanglement
contour sA(n) as a function of position n inside block A of the chain.
Here block A was chosen to be the left half of the chain containing
N/2 spins. Each data point was obtained by averaging over 2000 dis-
order realizations and 50 sampled states at each disorder realization.

in two subsystems A and B has been introduced, it is given by
a function sA(i) which provides information about the contri-
bution of the ith site in A to the entanglement between A and
B. By construction, the minimal properties that the contour
function must satisfy are

SA =
∑
i∈A

sA(i), sA(i) > 0, (12)

where the first condition in Eq. (12) is a normalization, while
the second ensures that the contribution of each site to the EE
is positive.

Within the RSRG-X framework for excited states of ran-
dom spin chains, a natural definition of the entanglement
contour arises, namely, the value of sA(i) on a given site i in A
is given by ln 2 if there is a bond starting at site i and ending
in B and if this link is a singlet or an entangled triplet, while
sA(i) is zero otherwise.

Results for the contour function sA(n) in the LR random
XX chain as a function of the position index n in A, as obtained
via RSRG-X at infinite effective temperature, T → ∞ are
displayed in Fig. 8 for different values of α. Here, we have
taken block A to be the left half of the chain that contains
N/2 spins. n is the index distance measured from the center
of the chain. The figure shows 〈sN/2(n)〉, that is the average
contribution of the nth spin to the EE between the left half
and right half of the chain.

From Fig. 8, we see that a strong α dependence appears.
Indeed, for α < 1, sN/2 ∼ n−γ with 0 < γ < 1. While for
α > 1 we obtain that sN/2 ∼ n−1. Since the EE of a subsystem
of n spins is given by Sn = ∑n

i=1 sA(i), we find, in the limit
of N � 1, that for α > 1 the EE diverges logarithmically
Sn ∼ ln(n), as it was obtained above via ED and RSRG-X.
Whereas for α < 1, this yields a power-law growth of EE
as a leading term, Sn ∼ n1−γ . This result is consistent with
Sn ∼ nβ previously found using RSRG-X and ED for α < 1,

since β ∼ 1 − γ . Strikingly, we note that for α � 1, the en-
tanglement contour exponent γ approaches the bare coupling
exponent α. Although we do not have an analytic understand-
ing of this behavior, we conjecture that γ ∼ α for α � 1.

VII. TOWARD A SCALING THEORY OF THE POWER
LAW ENTANGLEMENT ENTROPY

In the previous sections, we found a strong violation of
the area law, an anomalous scaling law for the average EE
given by Sl ∼ lβ , with β(α) < 1 a decreasing function of α for
α < 1 both with the ED and with the RSRG-X method. Both
methods yield good quantitative agreement for β(α) as shown
in Fig. 7. Still, it is desirable to get an intuitive understanding
why the scaling has this anomalous behavior for α < 1. To
this end, we aim to formulate an entanglement scaling theory
in this section.

In Ref. [48], a SDRG procedure was used to study the
ground-state entanglement properties of XX spin chains with
particular local inhomogeneities. There, the couplings were
defined such that RG produces for the ground state a product
of concentric singlets, resembling rainbows, resulting in a
volume law scaling of the EE. This is now known as the
rainbow chain [49,50]. More recently, disorder was introduced
in such a model, resulting in a coexistence of rainbows and
dimer bonds of neighbored spins for the ground state and
giving rise to a weaker area law violation [51] in form of a
power-law Sl ∼ l0.5. This motivates us to use ideas developed
in these papers, and adapt them to the RSRG-X scheme to
understand the peculiar algebraic scaling and its dependence
on α of EE in presence of LR interactions.

Let us start from the set of RSRG-X rules Eqs. (8)–(9),
which we derived for the Hamiltonian Eq. (1) to qualitatively
derive the EE scaling with subsystem size l . First, note that
the perturbative corrections for the triplet states Eqs. (8) and
(7) are typically larger than the ones for singlet states, Eq. (9).
This is especially true for small values of α � 1, resulting in
larger renormalized values of the couplings Ji j . For α � 1, the
perturbative corrections are significantly smaller, thereby the
couplings distribution flows to a strong disorder fixed point
as was previously observed for the ground state of the same
model [26].

We show now that the RG rule for the entangled triplet
state Eq. (8) favors the formation of rainbows. Here, a rainbow
is defined to be any pair of spins with a bond which is not
connecting neighboring sites and is thus not a dimer (bond
connecting neighboring sites). To illustrate this, assume that
a pair (n, n + 1) is projected onto the entangled triplet state
(| ↑ ↓〉 + | ↓↑〉)/

√
2. Then, based on the observation that the

perturbative corrections are typically smaller for sites farther
from the decimated bond, the coupling Jn−1,n+2 is likely to
take the largest correction. This leads to the fact that the next
decimated bond would be between the sites (n − 1, n + 2).

The RG rule for the nonentangled triplet states Eq. (7)
also tends to create rainbows. Indeed, when a pair (n, n + 1)
is projected onto the states | ↑ ↑〉 or | ↓ ↓〉, the coupling
Jn−1,n+2 is likely to take the largest (in magnitude) correc-
tion. The perturbative corrections due to projections onto
the nonentangled triplets often induce a change of signs in
all the active couplings, therefore leading to the decimation
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FIG. 9. Illustration of a realization at N = 20. The orange bonds
represent pairs projected onto | �〉) or | �〉), while black links stand
for (| ↑ ↓〉 + | ↓ ↑〉)/

√
2 and the grey ones are singlets.

of the pair (n − 1, n + 2) in the next RG step, regardless
of the sign of the couplings. Thereby, the nonentangled
triplet RG rule produces rainbows similar to the entangled
triplet described above, while, as for the ground state, the
singlet state projection tends to create more dimers. Thus,
the RG rules lead to a state of consecutive dimers which are
spanned over by rainbows (bonds connecting farther sites).
This picture is expected to become more accurate with smaller
α, since the renormalization corrections increase with smaller
α, thereby favoring more frequent rainbow formation.

To evaluate the entanglement scaling with subsystem sizes,
we define md as the number of consecutive dimers regard-
less of the state they are projected onto. A configuration for
N = 20 is shown in Fig. 9. In this configuration, there are
two dimer regions. The first one is made of one bond md = 1
(the bond connecting the sites n = 1 and n = 2), while the
other dimer region is composed of five bonds (from spin at
site n = 7 to n = 16), so md = 5. While there is one rainbow
region with mr = 4. Different colors indicate to which state
the pair is projected to.

The EE is due to rainbow links which are ranging across
the boundary of the subsystem and which are projected either
onto the singlet state or the entangled triplet state (in the large
system limit we may disregard the entanglement from a single
dimer which may cross the boundary). We assume that the
rainbows are connecting sites symmetric around the middle of
the chain, and are therefore links connecting sites i, N − i, as
can be qualitatively observed in Fig. 10 (top), for sufficiently
small α.

Let the spins in a subsystem be numbered from 1 to n with
n < N/2 and consider site i and its bond. As dimers do not
contribute to the EE, one can write

〈Sn〉 ∼ 1

2
ln 2

n∑
i=1

P(ith bond is a rainbow), (13)

where the factor 1/2 is due to the fact that only two states out
of the four possible contribute to EE, and ln 2 is the amount
of entanglement generated by a singlet or an entangled triplet.
Note that here we use n as the index distance. Assuming that
the distribution of rainbows along the chain is homogeneous:

〈Sn〉 ∼ 1
2 (ln 2)nP(ith bond is a rainbow). (14)

Thereby, as a link belongs either to a rainbow region or to a
dimer region, P(a link is a rainbow) ∼ nr

nr+nd
, where nr is the

number of rainbow bonds and nr + nd is the total number of
bonds within a subsystem of n spins. If we further assume that
the rainbow (and the dimer) regions are homogeneously dis-
tributed, nr = 〈mr〉Nr rainbow bonds and nd = 〈md〉Nr , where

FIG. 10. Top: Typical eigenstate produced by RSRG-X for α =
0.1 obtained for N = 400 spins and a filling factor N

L = 0.1. The
bonds in black are pairs projected onto 1√

2
(|↑↓〉 + |↓↑〉) while the

orange links are in the states | �〉) or | �〉), and the grey ones are
singlets. Bottom: Same but for α = 1.6.

Nr is the number of rainbow (dimer) regions. We thus obtain
that the EE of a subsystem of n spins can be approximated as

〈Sn〉 ∼ 1

2
(ln 2)n

〈mr〉
〈mr〉 + 〈md〉 . (15)

In the case of the rainbow chain [48], one has 〈mr〉 = n and
〈md〉 = 1, yielding a volume-law entanglement Sn ∼ n. Thus,
it remains to evaluate 〈md〉 and 〈mr〉.

Let us first derive Pr(mr = k), the probability mass func-
tion (PMF) of the rainbow region length. We assume that
rainbow regions are formed successively along the RSRG-X
flow. Since a newly formed bond can only be a rainbow or a
dimer, and the three possible triplet projections favor rainbow
region expansion, the probability that a region is formed of k
rainbows is equal to the probability of forming successively
k rainbows with probability 3/4 for each, then forming a
dimer with probability 1/4. The PMF Pr(mr = k) can thus
be approximated by a geometric distribution, with p = 1/4,
yielding Pr(mr = k) = (3/4)k (1/4).

Figure 11 (top) shows the decay of P(mr ) for α = 0.1 and
α = 0.2 as obtained via RSRG-X at infinite effective tem-
perature. Here, a logarithmic scale was used for the ity axis.
Clearly, the geometric distribution with p = 1/4 provides a
good approximation for P(mr ) for both α = 0.1 and α = 0.2.
Thus, as P(mr ) decays very quickly (exponential decay in the
continuum limit) 〈mr〉 = ∑n/2

k=0 kP(mr = k) is a constant not
dependent on n for sufficiently large n.

Moreover, 〈md〉 can be directly related to the entangle-
ment contour sN/2(n). Indeed, as the dimer bonds do not
contribute to EE, sN/2(n) is the probability that the link start-
ing at the nth spin is a rainbow, which was obtained above
under the homogeneity assumption sN/2(n) ∼ 〈mr 〉

〈mr 〉+〈md 〉 . As
〈mr〉 ∼ 1, and since for α � 1, sN/2(n) ∼ n−α , we obtain that
for α = 0.1, 〈md〉 ∼ 1

sN/2(n) ∼ n0.1, while for α = 0.2, this im-

plies 〈md〉 ∼ n0.2. Note that for the rainbow chain this yields
sN/2(n) ∼ 〈mr〉

〈mr〉+〈md 〉 ∼ 1 which is consistent since all the sites
equally contribute to EE.
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FIG. 11. Top: Probability distribution of the lengths of the rain-
bow regions P(mr ) for α = 0.2 and α = 0.1. The red dashed line
is a geometric distribution with p = 1/4. Bottom: Probability dis-
tribution of the length of the dimer regions P(md ). The histograms
were obtained for 30 000 realizations, N = 300 and a filling factor
N
L = 0.1.

To confirm this result, we implement the RSRG-X proce-
dure at infinite effective temperature and numerically compute
the histograms of the lengths of dimer regions for sufficiently
small values of α. Results are shown in Fig. 11 for α = 0.1
and α = 0.2. From Fig. 11 (bottom), we obtain that P(md ) ∼
m−1.9

d for α = 0.1, leading to 〈md〉 = ∑n
k=1 kP(md = k)

∼ n0.1, as obtained using the entanglement contour, therefore

〈Sn〉 ∼ n

〈md〉 ∼ n0.9. (16)

Similarly Fig. 11 indicates that for α = 0.2, P(md ) ∼ m−1.85
d ,

which thereby leads to 〈Sn〉 ∼ n0.85. The power exponents β

obtained through this description therefore turn out to be in
good agreement with those we have obtained for α � 1, as
can be seen in Fig. 7.

We emphasize that this picture is expected to break down
for higher values of α, 0.4 < α < 1 as the corrections to the
couplings are less significant, leading to a less probable rain-
bow formation, and therefore lower entanglement, whereas
for α > 1 the perturbative corrections are small enough to
flow to a strong disorder fixed point of random bonds (similar

FIG. 12. Half-chain entanglement entropy Sl/2 for different val-
ues of α and at different energy scales ε. The results are obtained
for N = 18, a filling factor N

L = 0.1, and M = 1000 disorder
realizations.

to the ground state, which is a random singlet state). Since
each bond may be with probability 1/2 an entangled state, this
explains the logarithmic enhancement of EE. Figure 10 shows
two typical eigenstate structures as obtained by RSRG-X for
N = 400 spins, for a small value α = 0.1 and a higher value
α = 1.6. For α = 0.1, we clearly observe a proliferation of
rainbow bonds, inducing links connecting farther sites in the
chain, and therefore generating stronger entanglement Sn ∼
n0.9, while for α = 1.6 dimer bonds are dominant, and spins
which are paired with far away spins are very rare, similar
to the T = 0 random singlet phase, yielding a logarithmic
enhancement of EE.

VIII. ENERGY AND EFFECTIVE TEMPERATURE
DEPENDENCE OF ENTANGLEMENT ENTROPY

As we have so far only considered the model in the middle
of the many-body spectrum, we now explore the half-chain EE
Sε (L/2) of the eigenstates at different energy densities, aiming
to evaluate how the entanglement depends on the energy scale.

A. Energy dependence

First, we employ exact numerical diagonalization: We
sample 50 states close to a target energy ε for every disorder
realization and then calculate the average EE in the middle of
the chain l = L/2. The energies ε are normalized to be in the
interval [0,1] as ε = (E − Emin)/(Emax − Emin), where Emin

is the ground-state energy. Results for ε ∈ [0.1, 0.9], N = 18
spins and L = 180 are shown in Fig. 12. First, we note that
around the middle of the energy spectrum ε ∈ [0.3, 0.6], a
crossover between a regime with higher entanglement and a
less entangled phase occurs at α∗ ≈ 1, confirming the previ-
ously obtained results via both ED and RSRG-X. However,
for smaller energies, we observe that there is a shift toward
smaller values of α∗, namely, for ε ∈ [0.1, 0.3] we see that
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FIG. 13. Average entanglement entropy of excited eigenstates at
finite effective temperature T = 0.5 as a function of the partition
length l (physical distance) and the logarithmic chord distance xl as
obtained via RSRG-X for N = 200 spins. The filling factor N

L = 0.1
was considered for various values of α. The average was evaluated
over 5000 disorder realizations, and 100 sampled states for each
disorder realization.

α∗ ranges between 0.6 and 0.8, while the crossover is not
observed in the half-chain EE at very high energies.

B. Effective temperature dependence

Next, let us implement RSRG-X to explore the effec-
tive temperature dependence of EE. To this end, we employ
RSRG-X as described in Sec. III, but this time at finite ef-
fective temperature parameter T . We fix T = 0.5 and sample
100 eigenstates for each disorder realization via the RSRG-X
procedure, then calculate the resulting EE as a function of
subsystem sizes l for different values of α. Results are shown
in Fig. 13. For α < 0.6, we observe a power-law growth of EE
Sl ∼ lβ as a function of the partition length. The exponents β

are, however, lowered as compared to the T ∼ ∞ case, as can
be seen in Fig. 13 (left) where average EE is plotted against
subsystem sizes, and turns out to be linear on the log-log scale,
while, for α � 0.6, EE displays a logarithmic enhancement as
can be seen in Fig. 13 (right) where EE is plotted as function
of the logarithm of the chord distance xl = ln ( L

π
sin( π l

L )) for
α = 0.6 and α = 0.8 resulting in a logarithmic enhancement
with central charges ceff = ln 2 and ceff = 0.6, respectively.

These results indicate that at lower effective temperature,
the highly entangled phase survives only up to α∗ ≈ 0.6.
This can be explained by the rarefaction of projections onto
(| ↑ ↓〉 + | ↓↑〉)/

√
2 for smaller effective temperatures,

therefore inducing a less prevalent rainbow formation and thus
a smaller EE for a given α.

IX. CONCLUSION

We introduced a real-space renormalization group scheme
for excited eigenstates, a modified RSRG-X, for XX spin
chains with random interactions decaying as a power law with
distance. The EE is calculated using RSRG-X and ED for
different values of the power exponent α in the middle of the
many-body spectrum. The results obtained via RSRG-X and
ED are in good agreement and show that the average excited
eigenstate EE grows as a power law with the subsystem size l ,
S(l ) ∼ lβ , with power 0 < β < 1 a decreasing function of α

for α < α∗, while a logarithmic enhancement of EE entropy

FIG. 14. Average correlation functions of excited eigenstates in
the middle of the many-body spectrum as a function of the distance
l as obtained via exact diagonalization for N = 16 spins. The filling
factor N

L = 0.1 was considered for various values of α. The average
was evaluated over 500 disorder realizations and Ns = 50 sampled
states for each disorder realization.

is observed for α > α∗. We find that in the middle of the
many-body spectrum, α∗ ≈ 1 coincides with the delocaliza-
tion transition αc, which we derived from the level-spacing
statistics obtained with ED for system sizes up to N ∼ 18
spins to be at αc ≈ 1 in the middle of the spectrum.

Using RSRG-X, we also investigate the entanglement con-
tour for different values of α and find it to decay as a power
of subsystem size l with power γ . We find good agreement
for the conjecture that γ ≈ α. In an effort to derive this con-
jecture, we suggest a scaling theory based on the RG-rules
structure for α � 1. To illustrate and support this approach,
we show typical eigenstate configurations as obtained with
RSRG-X for α = 0.1 and α = 1.6.

In addition, we compute the half-chain EE at energy den-
sities, which corresponds to a position away from the middle
of the many body spectrum, and implement RSRG-X at lower
effective temperature T = 0.5, corresponding to smaller en-
ergy density. The results indicate a crossover between a phase
with strongly enhanced entanglement for α < α∗ ≈ 0.6 and
a regime with logarithmic scaling of EE for α > α∗ ≈ 0.6.
Thus, we find indications that α∗ � αc. This observation is
consistent with the fact that in Ref. [26] we found in the
ground state of the LR AFM coupled disordered spin chain
that the area-law violation of EE is logarithmic for all α, so
α∗ → 0, while we had found previously that the delocaliza-
tion transition in its ground state occurs at αc ≈ 1 [24,25].
In summary, these results indicate that for α > αc, the model
behaves similarly as the nearest-neighbor random bond model
[28], which was found to be in a quantum critical glass
phase [9], a regime where arbitrarily high energy excited
states exhibit power-law decaying correlation functions and
logarithmic divergence in EE.

As excited eigenstates are states that participate in the dy-
namics of the system, understanding their properties is crucial
to characterize quantum phase transitions. Therefore, building
on these results for the higher energy eigenstates, we can
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FIG. 15. Energy spectrums as obtained via RSRG-X (black) and
ED (magenta) of the LR random spin chain. Results are obtained
for N = 10, L = 100 with averaging over M = 500 disorder real-
izations, and for α = 0.4 (top left), α = 0.8 (top right) and α = 2
(bottom).

aim in future research to study quantum quench dynamics in
random spin chains with power-law LR couplings.
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APPENDIX A: CORRELATION FUNCTIONS

Using numerical ED, we compute the mean correlation
function between two spins at distance l . We sample Ns eigen-

states |ψi〉 in the middle of the many-body spectrum and
compute the correlation function of spin i with another spin
at distance l , Ci(l ):

Ci(l ) = 1

Ns

Ns∑
i=1

∣∣〈ψi|σ y
i σ

y
i+l |ψi

〉∣∣. (A1)

Given a disorder realization, we then take the average of the
correlation functions on different pairs of spins at the same
distance l , yielding C(l ).

For a random singlet phase, it can be shown that the mean
correlation function is proportional to the probability distri-
bution of singlet lengths and thus decays as C(l ) ∼ l−η with
η = 2 [38]. A similar result has been obtained via SDRG for
the ground state of the LR random spin chain [26], while ED
applied to the same model yielded η ∼ 1.4 for small system
sizes, independent of the value of the exponent α. For the
rainbow chain, since all (odd) bond lengths are equiprobable
one has that η = 0.

For excited eigenstates of the LR random spin chain, re-
sults for the average spin-spin correlation function are shown
in Fig. 14. We see that the correlation functions decay with
distance l as a power with an exponent η, C(l ) ∼ l−η.

We find that the exponent η decays significantly for de-
creasing values of α. For α = 2, η is close to what was
found for the ground state of the same model [26], while
decreasing α leads to smaller values for the exponent η,
we find that η ∼ 0.3 for α = 0.2, approaching the result for
the rainbow chain. These results support the rainbow-dimer
coexistence picture for α � 1, as η tends to 0 when α is
decreased.

APPENDIX B: ENERGY SPECTRUM

To compare ED and RSRG-X, we have also considered
the energy spectrums as obtained by the two methods for
different values of α. Results are shown in Fig. 15. For the
nearest-neighbor XX model with off-diagonal disorder, the
chiral symmetry enforces a symmetric energy spectrum, while
here it remains highly asymmetric. For α � 1, the energy
spectrum tends to become symmetric around E = 0, as for
the nearest-neighbor chain. The two methods are in good
qualitative agreement for the considered values of α, as can
be observed in Fig. 15. We see that the energy bandwidths are
comparable and of the same order for the considered consid-
ered values of α, eigenstate energy gaps are also comparable,
and the same asymmetry with respect to E = 0 is observed for
the two methods for the considered system size N = 10.
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