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Hydrogen and its isotopes, absorbed in metals, induce local stress on the atomic structure, which generates
a global expansion in proportion to the concentration of hydrogen. The dipole force tensor and its interaction
with the stress fields give rise to an effective attractive nonlocal potential between hydrogen atoms—the elastic
hydrogen-hydrogen interaction—which is a key quantity governing the phase transitions of hydrogen in metals.
While the dipole tensor and the elastic interaction have been researched in crystalline materials, they remain
experimentally unexplored in metallic glasses and it is unclear how these quantities are affected by the lack of
point group symmetries. Here, we investigate both experimentally and theoretically the volume changes, the
components of the force dipole tensor, and ultimately the elastic hydrogen-hydrogen interaction in the metallic
glass V80Zr20. In situ neutron reflectometry was used to determine the deuterium-induced volume changes as a
function of deuterium concentration. The one-dimensional volume expansion is found to change by more than
14% without any structural degradation, up to concentrations of one deuterium atom per metal atom. From the
expansion, we determine that the out-of-plane component of the elastic dipole tensor is remarkably similar to a
composition weighted sum of the ones found in crystalline vanadium and zirconium. Via ab initio calculations
of both free and biaxially constrained expanded metallic structures, we determine that the trace of the dipole
tensor varies with hydrogen concentration and is essentially invariant of global elastic boundary conditions. As a
consequence, the elastic hydrogen-hydrogen interaction energy is found to be concentration-dependent as well,
illustrating that the disordered nature of a metallic glass does not impede the mediation of the elastic attraction,
but rather allows it to vary with hydrogen content.

DOI: 10.1103/PhysRevB.106.104110

I. INTRODUCTION

Hydrogen and its isotopes can be absorbed in large quanti-
ties in many crystalline and amorphous metals. Such materials
have, for example, been considered for energy storage [1],
hydrogen sensing [2], hydrogen purification [3], and metal
hydride batteries [4].

The volume changes caused by hydrogen are of crucial
importance for understanding the cause of embrittlement
in metals, which leads for instance to degradation in the
performance of metal hydrides for energy storage [5]. The
hydrogen-induced volume changes also carry valuable infor-
mation about the local and global strain fields, which are
responsible for the hydrogen-hydrogen (H-H) interaction and
the condensation of the lattice-liquid and lattice-solid phases
of hydrogen in materials [6–8]. The hydrogen-induced strain
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fields can be captured conceptually via the dipole force tensor
concept [9],

Pi j =
∑

m

f m
i rm

j = �

c
〈σi j〉, (1)

where f m
i is the force vector component exerted by a hydrogen

atom on a metal atom m, located rm
j from the hydrogen. With a

homogeneous distribution of hydrogen atoms, constituting the
atomic ratio c of hydrogen atoms per metal atom [H/M] in a
metal of atomic volume �, it is possible to relate the average
global stress 〈σi j〉 to the dipole tensor directly. Hence the
dipole force tensor can be considered the connecting quantity
between the local microscopic strain and the global elastic
response.

When studying the volume expansion in crystalline metal
hydrides, Peisl [10] found that hydrogen in many metals
appear to occupy, on average, a volume of about 2.9 Å3.
In the same year, Switendick [11,12] predicted a minimum
H-H distance of 2.1 Å when calculating the band structures
of metal hydrides, a distance which later became known as
the Switendick criterion. Westlake [13,14] implemented this
lower bound to construct a geometrical model with which
he could predict the stoichiometry, stability, and hydrogen
occupancy in metal hydrides. It was shown that the model was
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also consistent with Peisl’s observation, as when Westlake ex-
amined hydrogen in intermetallic transition metal compounds,
he found hydrogen volumes in an interval of 2.1 Å3 to 3.2 Å3.

However, considering the distribution of local atomic en-
vironments of metallic glasses, two questions naturally arise:
can hydrogen in metallic glasses also fulfill these empirical
criteria and can the exerted dipole forces in these disor-
dered materials create the conditions for the mediation of the
nonlocal H-H interaction? Hence, to test the validity of the
empirical criteria of hydrogen volumes as well as the theoreti-
cal understanding about the nature of hydrogen in amorphous
metals, the global volume expansion, the dipole force tensor,
and the elastic H-H interaction need to be determined, which
is the main purpose of the present article.

The volume expansion has previously been measured in
metallic glasses, mostly by observing the shift in the first
amorphous peak in the x-ray diffraction pattern [15,16].
The analysis associated with determining the expansion from
diffraction measurements is quite cumbersome and requires
detailed knowledge of the composition and the pair distri-
bution function. In the case of thin films, however, neutron
reflectometry can be used to simultaneously determine the
changes in the thickness and the absolute hydrogen concentra-
tion from fitting the reflectivity pattern to a film/substrate slab
model with the additional benefit of not requiring information
about the microscopic structure.

We have used the vanadium-rich V80Zr20 thin film metallic
glass as a model system for this study, not only due to its
practical use [17–21], but also from a fundamental perspec-
tive, because it contains the minimum number of elements
to render it amorphous and stable in an extended range of
temperatures. Another reason is to be able to compare the
measured volume expansion to those found in crystalline
vanadium and zirconium. For reasons having to do with the
sensitivity of neutron reflectivity to hydrogen and its isotopes,
we have chosen to measure the volume expansion exclusively
with deuterium. However, the volume changes observed in
bulk metals are essentially isotope independent [14]. We will
therefore mention both isotopes interchangeably throughout
the article.

To achieve greater insight into the nature of hydrogen
in metallic glasses, we have also determined the hydrogen-
induced volume changes, the dipole force tensor, and the H-H
interaction energy via first-principles calculations in combina-
tion with the stochastic quenching (SQ) method [22].

II. EXPERIMENTAL AND THEORETICAL DETAILS

The films were grown by dc magnetron sputtering onto a
20 mm × 20 mm amorphous SiO2 substrate in an ultrahigh-
vacuum chamber with a base pressure less than 3 × 10−10

Torr. To minimize the level of contaminants, argon of 6N
purity was sent through a Nupure Omni 40 PF purifying filter
in between the bottle and the sputter chamber. The substrate
was annealed at 573 K for 30 min in ultrahigh vacuum to
reduce the amount of water and other impurities on the sur-
face and was subsequently cooled to room temperature before
vanadium and zirconium were cosputtered. To protect the
sample from oxidation and to facilitate the dissociation of
deuterium, a 6 nm palladium capping layer was deposited on

top of the film. To minimize alloying of the palladium with the
underlying film, temperatures were restricted to below 323 K
during deposition and 448 K during the in situ measurements,
which is well below the approximate 730 K crystallization
temperature of amorphous V80Zr20 [23]. Rutherford backscat-
tering spectrometry was used to verify the composition to
within 1 at. % of the intended composition.

The equilibrium deuterium concentration in palladium is
negligible in the measured temperature and pressure ranges as
the enthalpy and entropy of hydrogen absorption in palladium
only allows for at most 0.03 H/M [24]. This was also verified
during the fitting of the neutron reflectivity.

The neutron data was gathered at the SuperAdam reflec-
tometer [25] at the Insitut Laue Langevin, Grenoble, France.
The wavelength was λ = 5.21 Å and the resolution was deter-
mined to be �Q = 0.007 Å−1 with a beam size of 1.5 mm in
the scattering plane and 30 mm out of the scattering plane. The
measured reflected angle θ was transformed to a scattering
wave vector via Q = 4π sin(θ )/λ. The sample was measured
in a specially designed ultrahigh vacuum neutron scattering
chamber, capable of gas loading a wide range of deuterium
pressures. The chamber was baked out together with the sam-
ple for 36 h at 423 K prior to the experiment. The pressure
was dosed from a pressurized deuterium bottle of 5N purity
(isotopic purity 2N). The deuterium gas was subsequently let
through a Nupure UltraPure 40 purifier to ensure less than 1
ppb of contaminants in the gas. The entire chamber was heated
from the outside using a Hemi heating jacket to minimize
thermal gradients. The temperature was regulated using a
Lakeshore 334 temperature controller to within 0.1 K, using
a type-K thermocouple in mechanical contact to the backside
of the substrate.

The sample was exposed to a series of stepwise increasing
deuterium gas pressures, continuously maintained at a fixed
temperature. At each pressure plateau, a neutron reflectivity
curve was measured. After reaching a pressure of about 500
mbar, the chamber was evacuated and the film was allowed to
spontaneously desorb before another temperature was chosen.
In total three temperatures were chosen to examine whether
the expansion in thin film metallic glasses is temperature
dependent.

The raw neutron reflectivity patterns were corrected for
overillumination, divided by the monitor count rate and the
direct beam intensity, and a background, taken from either
side of the specular ridge, was subtracted using the in-house
software for SUPERADAM [25].

The reflectivity patterns were fitted using a slab model as
implemented in the GENX program [26,27], which includes
resolution, roughness, and multiple scattering effects. From
the fit, the scattering length density ρs was determined, given
by

ρs = ρNA
∑

i cibi∑
i ciMi

, (2)

where ρ is the mass density of the material, NA is Avogadro’s
number, ci is the atomic concentration of species i (V, Zr,
or D), Mi are the corresponding atomic weights, and bi are
the bound coherent scattering lengths of element i (here, the
relevant scattering lengths are bV = −0.3824 fm, bZr = 7.161
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fm, and bD = 6.671 fm [28]). If the composition and density
of the material is known without deuterium, the concentration
can thus be extracted via Eq. (2) using the fitted scattering
length density. The fitting parameters of the slab model were
fixed by the reference reflectivity pattern corresponding to an
unloaded sample and, for all succeeding measurements, only
the thickness and scattering length density of the V80Zr20

layer was allowed to change; all other parameters were kept
constant.

For the first-principles calculations, density functional the-
ory [29,30] as implemented in the Vienna Ab initio Simulation
Package (VASP) [31–33], along with the generalized gradi-
ent approximation (GGA) correlation functional of Perdew,
Burke, and Ernzerhof (PBE) [34] was used to construct
amorphous candidate structures via the stochastic quenching
procedure [22]. This method generates amorphous structures
in the sense that the position of all atoms are initially ran-
dom, with a minimum separation of one atomic radius, but
are subsequently allowed to relax until the Feynman-Hellman
forces acting on the atoms are zero within a threshold of 20
meV/Å. A cubic supercell of size 14 Å × 14 Å × 14 Å with
140 vanadium atoms and 35 zirconium atoms was constructed
in order to fulfill the system size criteria proposed by Holm-
ström and co-workers [22]. We examined the system size
convergence by constructing a reference 12 Å × 12 Å × 12
Å sized system. The associated volume expansion coeffi-
cient for concentrations of c = 0.2, 0.4, 0.6, 0.8 H/M was
found to be the same as the one for the 14 Å × 14 Å × 14
Å system within 0.4%, demonstrating the validity of the ran-
dom valley approximation. For this reason, and to make the
isotropic and clamped expansion as comparable as possible,
we worked exclusively with the 14 Å × 14 Å × 14 Å system.
Each calculation was performed with an energy cutoff of
450 eV, a k-point sampling including only the 	 point, and
the Methfessel-Paxton method [35] using 0.2 eV as smearing
width. The energy convergence criteria was set to 10−6 eV.
Once an amorphous configuration was created, the elastic
constants were determined by applying a series of strains to
each of the principal axes and the components of the stress
tensor were calculated in each case. The stress vs strain curves
were then fitted to a first-order polynomial and the elastic
constants were extracted. We averaged the constants over the
three directions to arrive at values that are representative for
the isotropic solid.

Hydrogen at selected concentrations was added to the
amorphous candidate configuration, using an algorithm that
inserted the hydrogen at random, subject to the constraint that
it would be sufficiently separated to any other atom, which, as
a starting point, was larger than the Switendick criterion. This
distance criterion was systematically varied, starting with a
separation of 2.3 Å for the lowest concentrations, but got grad-
ually smaller as the hydrogen concentration grew (down to 1.9
Å for the largest considered concentration), due to the steadily
increasing volume requirement per hydrogen atom; see results
in Sec. III. The volume of the supercell was thereafter varied
in a series of steps and, for each case, the coordinates were
allowed to relax while the supercell lattice vectors were kept
fixed and cubic. The pressure was then calculated from the
final equilibrium structure and, by fitting the resulting volume
vs pressure curve, the volume corresponding to zero external

pressure could be determined. This procedure was performed
for multiple concentrations of hydrogen and, from the result-
ing configurations, the volume expansion could be calculated.
This process was also repeated with the added constraint
that the two in-plane supercell lattice vectors were kept fixed
throughout the concentration interval to mimic the clamping
behavior expected to be present in the measured film, but, in
this case, the volumes that corresponded to a zero out-of-plane
stress were the ones extracted. The in-plane stress of each
clamped system was also extracted and used to determine the
components of the dipole force tensor.

Without loss of generality, the diagonal components of the
dipole tensor can be considered to be of the form diag(P	 ) =
{B	, B	, A	}, with B corresponding to the in-plane compo-
nents, while A corresponds to the out-of-plane component and
the superscript signifies whether the system is clamped or not
(	 = {clamped, isotropic} ≡ {cl, iso}). Under this assump-
tion, the symmetries associated with both the isotropic and
clamped boundary conditions are taken into account. Follow-
ing the approach outlined in Ref. [36], the isotropic expansion
is of the form(

�V

V0

)iso

= c

�
(S11 + 2S12)Tr(Piso), (3)

in which Si j corresponds to the compliance constants, related
to the elastic constants Ci j via its inverse S = C−1. For the
clamped case,(

�V

V0

)cl

= c

�

(S11 − S12)(S11 + 2S12)

S11 + S12
Acl, (4)

the volume expansion is directly proportional to the out-of-
plane component A. To obtain B, and thus the complete dipole
tensor, one also needs to consider the in-plane stress (σxx =
σyy ≡ σ ), which can be expressed as

σ = − c

�

(
Bcl + S12

S11 + S12
Acl

)
. (5)

Via the elastic response associated with an isotropic free
and clamped expansion, the relative thickness expansions can
be related to one another according to(

�d

d0

)cl

=
(

1 − 2S12

S11 + S12

)(
�d

d0

)iso

, (6)

which makes it possible to determine the isotropic volume
expansion as long as the elastic compliance constants and the
clamped thickness expansion are known.

The elastic H-H interaction energy u can be expressed in
terms of the trace of the dipole tensor, as derived by Alefeld
in Ref. [37]. Rewriting it in terms of the compliance constants
one obtains

u	 = −4

9

(S11 + 2S12)2

S11 + S12

Tr(P	 )2

�
. (7)

III. RESULTS

Prior to the neutron measurements, the sample was mea-
sured with x-ray diffraction, using both symmetric and
grazing incidence configurations, neither of which revealed
any evidence of crystallinity, as shown in the Supplemental
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Material [38], Fig. S1. The room temperature resistivity was
measured to be 152.3 μ� cm, and exhibited a negative tem-
perature coefficient α = −1.6 × 10−4 K−1, both of which are
typical for metallic glasses [39]. We conclude therefore that
the sample is amorphous.

Neutron reflectivity patterns of the film taken at selected
deuterium pressures are shown in Fig. 1(a). As can be seen in
the figure, the deuterium causes systematic changes in the am-
plitude of the fringes, indicating that the difference between
the scattering length density of the substrate, vanadium-
zirconium, and palladium layers is decreasing. Also clearly
visible in the pattern is a shift towards lower wave vector
values, indicative of a thickness expansion.

The patterns were fitted with a slab model as described
in Sec. II and the fitted scattering length density profiles
are shown in Fig. 1(b). Three features can immediately be
highlighted: first, the scattering length density profiles system-
atically shift towards higher values as the external deuterium
pressure goes up. This is a clear sign that the deuterium
concentration is increasing. Second, the deuterium-induced
thickness expansion can be directly seen by the shift of the
right side of the profiles, which marks the surface of the film.
Finally, two regions, one close to the substrate and the other
at the interface between the glass and the palladium capping
layer, marked (II) and (IV) in the figure, were found to contain
less deuterium than the interior layer. These partially depleted
regions have also been found in superlattices of Fe/V and
Mo/V [40] and are due to charge transfer and/or interdiffu-
sion between the metallic glass and the substrate or the cap
layer. The width of these two layers were kept constant in the
slab model; only the changes in thickness of region (III) were
used for determining the volume expansion coefficient.

After the first loading cycle at 423 K, the sample was
allowed to partially desorb in ultrahigh vacuum for 6 h before
the entire procedure was repeated for the two temperatures
that are shown in Fig. 2. But, given the temperature and time
constraints of the measurements, it was not possible to entirely
empty the sample before starting a new cycle, on account of
the strong negative enthalpy of solution for hydrogen in the
metal. The structure was found to be completely intact after
each isotherm, as evidenced by nearly identical reflectivity
patterns taken at c ≈ 0.4 H/M, as shown in the Supplemental
Material [38], Fig. S2. The fact that the interference oscilla-
tions are still present and are virtually identical after several
partial loading cycles strongly suggests that no in-plane ex-
pansion is taking place. If such an expansion had occurred,
one would expect cracking and/or peeling of the film as it
extrudes and retracts past the substrate during absorption and
desorption, which consequently would alter the reflectivity
patterns greatly.

Furthermore, the expansion curves at different tempera-
tures following the same trend irrespective of the temperature
is further evidence of the reversible nature of the ex-
pansion. After the neutron measurements, the sample was
measured once again with x-ray diffraction and still no
evidence was found of crystallinity and/or shattering; see
Fig. S1 in the Supplemental Material [38]. The absence of
in-plane expansion is also found for hydrogen in epitaxial
films of Nb(001)/Al2O3 (Refs. [41,42]) and superlattices of
Fe/V(001) grown on MgO(001) (Ref. [43]), where it was

FIG. 1. (a) Neutron reflectivity patterns of a thin film of V80Zr20,
measured at stepwise increasing D2 pressures. The reflectivity pat-
terns are on an absolute scale, scaled by the number indicated for
clarity. The black solid line is a fit to a slab model using GENX

and the dashed line illustrates the gradual contraction of the fringes.
(b) Scattering length density profiles determined from the reflectivity
patterns. The color coding represents the same selection of pressures
as in Fig. 1(a). The substrate is indicated by (I), while (II) and (IV)
are denoting the partial depletion regions, (III) is the sample layer,
and (V) is the palladium surface layer

thought that the epitaxial nature of the growth improved the
adhesion to the substrate. Our results suggest that epitaxy does
not appear to be a necessary requirement for the clamping of
thin films, which has also been seen in other clamped thin
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FIG. 2. Relative changes in thickness of the film as a function
of deuterium concentration. A linear relationship is found with a
slope of 0.143(3) that is independent of temperature. Also shown
in the figure is the isotropic and clamped thickness expansion (black
circles and squares, respectively) obtained from ab initio stochastic
quenching (SQ) calculations. The orange dash-dotted line represents
the expansion if the zero-point energy (ZPE) of deuterium is taken
into account.

amorphous films [44–46]. Given that the x-ray and neutron
data are consistent with no plastic deformation (including
cracking, peeling, void formation, inclusions, etc.) along with
the film adhesion to the substrate, we conjecture that our
film is clamped. This could be verified via in-plane stress
measurements during hydrogen loading to see whether the
stress scales as theoretically predicted in Fig. 4.

The deuterium-induced thickness expansion of the metal-
lic glass is plotted in Fig. 2 as a function of the deuterium
concentration in the middle layer. A linear relationship be-
tween the thickness changes and the concentration is found
with a slope value of kcl

exp = 0.143(3), which is remarkable
considering the fact that this expansion occurs in only one
direction. Furthermore, since presumably no, or negligibly
small, in-plane expansion occurred, the total relative change in
volume also corresponds to the relative thickness expansion,
i.e., (�V/V0)cl = (�d/d0)cl. Comparing this to the volume
expansion coefficient of bulk zirconium and vanadium with
hydrogen occupying tetrahedral sites, we find the volume
expansion of clamped amorphous V80Zr20 to be larger than
that of zirconium, with an expansion coefficient of 0.115
(Ref. [47]), yet lower than that of vanadium, with a value
of 0.187 (average of the values in Table 1 of Ref. [36]).
Another notable feature is that the linear relationship does
not change with respect to temperature, which indicates that
the deuterium has not phase separated during the measured
temperature and pressure intervals.

To gain deeper insight into the nature of the expansion, we
carried out computational simulations in which hydrogen was
introduced to the stochastically quenched V80Zr20 structure
following the procedure outlined in Sec. II and let to either
expand freely in all three dimensions (isotropic case) or under
the constraint of no in-plane expansion (clamped case). The
results are shown in Fig. 2 as black circles (isotropic expan-
sion) and black squares (clamped expansion). Both exhibit, to
a first order approximation, a linear coefficient of thickness
expansion, each with a slope value of 0.045(1) and 0.105(2).
Comparing instead the total volume expansions, each with a
respective slope of kiso

SQ = 0.139(4) and kcl
SQ = 0.105(2), we

notice that the total expanded volume is not conserved, but
rather dependent on the elastic boundary conditions. The coef-
ficient of the isotropic volume expansion is surprisingly close
to the one found for the clamped experimental slope. How-
ever, this is most likely only a coincidence, since, if this would
be the case, the Poisson ratio of amorphous V80Zr20 has to be
equal to 0.5 in order to be consistent with the elastic theory of
solids, a value which in itself is very unlikely. What is more
probable is for the discrepancy between the experimental and
clamped theoretical slopes to originate from inadequacies in
the PBE GGA functionals, as has also been noticed in other
first-principles studies [48–51], or that other phenomena could
be at play, such as complex vacancy defect formations [52].

Additionally, one consequence of the Born-Oppenheimer
approximation in DFT is that the zero-point motion of the
atoms are not naturally taken into account. For metallic sys-
tems, this effect is small, but for hydrogen and deuterium with
their low mass, the zero-point energy (ZPE) could be signif-
icant enough to cause additional local strain and thus further
expand the metal. We have estimated the significance of the
ZPE of deuterium on the volume expansion and the procedure
is summarized in the Appendix. In Fig. 2 we illustrate the
magnitude of this correction as applied on the clamped expan-
sion, and we obtain about a 14% improvement, which is still
not enough to describe the discrepancy between theory and
experiments. However, we show here that this effect cannot
be neglected and should be kept in mind when studying the
effects of hydrogen in metals.

Another way to visualize the volume expansion is to ex-
amine the volume change per hydrogen atom, �ν, which we
determine from the experimental slope to have an average
value of 2.31(6) Å3/D atom, which is within the interval of
hydrogen volumes that Westlake determined for crystalline
vanadium, zirconium, and the intermetallic V2Zr (Ref. [14]).
On the other hand, �ν in our theoretical calculations can be
directly determined by assessing the total change in volume
of the considered hydrogen-loaded supercells. The results
are shown in Fig. 3. Interestingly, the volume that hydro-
gen displaces in the amorphous metal varies significantly
with concentration and, moreover, depending on whether
the structure is clamped or not, that volume requirement is
also distinctly different. The �ν of the isotropic case ap-
proaches, coincidentally, the experimental value at higher
concentrations, while �ν from the clamped expansion essen-
tially saturates at around hydrogen concentrations of about 0.4
H/M. Furthermore, the occupied hydrogen volume in both
cases drops as low as 1.2 Å3/D atom in concentrations of
around 0.05 H/M. This shows that the volume that hydrogen
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FIG. 3. Volume one deuterium atom requires (�ν ) as a function
of deuterium concentration. The black solid line corresponds to the
estimated average volume change from the experimental slope, cal-
culated via the procedure outlined in Ref. [10], and the gray area
represents the width of its standard deviation. The dashed black
line is determined via the slope of the theoretical isotropic volume
expansion curve following the same approach. The black squares and
circles are explicit theoretical calculations of �ν from the change in
volume of the supercells.

requires in metallic glass varies with concentration and is
highly dependent on the elastic boundary conditions of the
system.

Due to the constraint of no in-plane expansion for the
clamped theoretical system, a buildup of in-plane stress had
to occur to expand the system in the out-of-plane direction.
The calculated average in-plane stress is shown in Fig. 4. The
nonlinear increase of the stress, as illustrated by a second-
order polynomial fit, reflects that it is not sufficient to only
consider linear responses for arbitrarily large concentrations
of hydrogen.

IV. DISCUSSION

As a caveat, due to the additional expansion in terms of the
zero-point energy correction, the theoretical volume change
per hydrogen, as well as the in-plane stress, the dipole tensor
components, and the H-H interaction should also be larger in
magnitude than shown here, but, for the sake of consistency,
we opted to only display the results from DFT here as lower
bounds on all resulting quantities.

The volume change per hydrogen atom, �ν, represents
the average volume that hydrogen displaces in order to
occupy a site location. Interestingly, but coincidental as men-
tioned before, both experiment and theory, in particular the
isotropic case, predict similar deuterium volumes to be present
at higher concentrations, but for lower concentrations our

FIG. 4. Black squares correspond to the calculated in-plane
stress of the clamped metal-hydrogen system, whereas the dashed
line is a second-order polynomial fit. The gradual nonlinear increase
suggests that higher order terms are relevant when dealing with
hydrogen-induced stress in metallic glasses.

calculations instead show that the volume requirement de-
creases. This trend has also been observed in other metallic
glasses [15,16,53], which further demonstrates that the con-
cept of constant site volumes and H-H distances in crystalline
hydrides, proposed by Westlake, might not be directly trans-
ferable to metallic glasses. Instead, as a consequence of the
distribution of local atomic environments, a broad range of
available sites and site volumes, which are successively filled
until a mean site volume occupancy has been reached, allows
for a greater variety of possible hydrogen volumes. The low
concentration regime where these effects are the most promi-
nent was inaccessible in our experiment, in part due to the
exceedingly low pressure requirements for those concentra-
tions.

As mentioned in the Introduction, the hydrogen-induced
volume changes carry significant information about the elastic
distortions and the strain fields in the material, the central
quantity of which is the dipole force tensor. The out-of-plane
component Acl can be extracted via the slope of the relative
change in thickness, as long as the elastic (or compliance)
constants of the metallic glass are known. To our knowledge,
the elastic constants have not been determined for amorphous
VxZr1−x; therefore, we have calculated them from first prin-
ciples. The material was assumed to be isotropic and the
elastic constants were determined as described in Sec. II and
are summarized in Table I. With these constants in hand,
we can test the validity of the elastic theory of solids for
amorphous systems by transforming the isotropic thickness
expansion to a clamped one via Eq. (6), in which we find that
the converted and explicit slopes only differ by about 0.8%.
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TABLE I. The left side of the table shows the elastic and compliance constants calculated from the stochastically quenched structure in
units of GPa and TPa−1, respectively. The right side of the table shows the engineering constants (in the units of GPa, except for μ, which is
dimensionless), bulk modulus (B), Young’s modulus (Y ), shear modulus (G), and Poisson’s ratio (μ), assuming the solid is isotropic. The error
bars arise from the standard deviation of the isotropic averaging.

C11 C12 C44 S11 S12 S44 B Y G μ

178(3) 122(1) 28(2) 12.9(4) −5.3(4) 36(2) 141(1) 78(5) 28(1) 0.408(5)

This demonstrates that elasticity theory, in combination with
the incorporation of hydrogen into stochastically quenched
structures, is internally consistent in evaluating the hydrogen-
induced changes in metallic glasses.

Therefore, using these constants, we calculate from the ex-
perimental slope via Eq. (4) the clamped out-of-plane dipole
component and find Acl = 2.55(5) eV. This value is very
similar to a composition-weighted sum of the out-of-plane
components found in vanadium [36] and zirconium [49], sug-
gesting the dipole tensor in a metallic glass can to a large
extent be estimated by a superposition of its constituents’
dipole tensors. However, to validate this hypothesis, measure-
ments of the dipole tensors of other compositions need to be
conducted in order to determine whether the dipole tensor of
metallic glasses truly exhibit such a close connection to their
elemental composition.

To determine the in-plane component Bcl one has to mea-
sure the clamped in-plane stress, which was not possible with
the in situ neutron chamber. The in-plane stress however is
accessible in the ab initio calculations for the clamped sys-
tem. As can be observed in Fig. 4, second-order terms of the
stress become increasingly relevant already at concentrations
of around 0.2 H/M. We will therefore separate the analysis
into two categories: one that considers only the concentration
regions where the linear term is still applicable, i.e., below
0.2 H/M, while the other assumes that the dipole components
are implicit functions of hydrogen concentrations, A	 (c) and
B	 (c), as also suggested by Berry and Pritchet [54] to be
possible in disordered solids. In the first case, we use the slope
(up to 0.2 H/M) of the relative thickness expansion and the
linear term from the fit of the in-plane stress from Fig. 4 and
calculate Acl and Bcl via a combination of Eq. (4) and Eq. (5)
for the clamped system, while the trace of the dipole tensor is
determined via Eq. (3) for the isotropic case. All results are
summarized in Table II.

Implementing the same equations for the variable dipole
case, in which the whole concentration range is taken into
account, one obtains the results shown in Fig. 5. The striking
similarity of these results to the �ν in Fig. 3 highlights how
closely related the dipole forces and the hydrogen-induced
strain are. Furthermore, converting the trace of the concen-
tration dependent dipole tensor derived from the clamped
thickness expansion and in-plane stress to �ν [via �ν =
(S11 + 2S12)Tr(P), Ref. [10]] reveals that this quantity is iden-
tical within 1.5% with the explicitly calculated �ν, which
validates the assumption of the dipole tensor being concen-
tration dependent. Another notable feature is the striking
similarity between the clamped and isotropic dipole traces,
both in the tabulated values (Table II) and in its variable form
(Fig. 5), which suggests that the average of the dipole forces

conform to approximately the same value, irrespective of the
symmetries of the system.

With the transformation in Eq. (6) now verified, we pro-
pose that it is possible to determine both the clamped and
isotropic volume expansions from only performing studies
on a clamped system or a freely expanded one, if the elastic
constants are known. We can therefore convert the clamped
experimental expansion to an isotropic one by using the calcu-
lated elastic constants and Eq. (6), in which we find a relative
volume expansion slope of kiso

exp = 0.188(4), which is exceed-
ingly close to the expansion rate of crystalline bulk vanadium
[36]. From this, we estimate the trace of the isotropic dipole
tensor to be at a value of around 2.67(6) eV, which also is
remarkably close to the values of vanadium [36].

The physical quantity that governs the elastic attraction
between hydrogen atoms, and which is in part responsible
for hydrogen phase separation in metals, is the elastic H-H
interaction. By using the values of the dipole tensor, as well
as the compliance constants, we estimate the H-H interaction
energy via Eq. (7) for both the theoretical systems and the
estimated experimental isotropic expansion. The theoretical
values corresponding to the constant dipole terms, i.e., below
0.2 H/M, and the experimentally estimated value are dis-
played in Table II. As for the theoretical results, we observe
here a striking similarity between the two values, which sug-
gests that the elastic distortions in the metallic system mediate
the interaction independent of the elastic boundary conditions
of the material. For the case when the dipole tensor com-
ponents vary with hydrogen concentration, shown in Fig. 5,
the attractive strength of the H-H interaction gets stronger
with increasing concentration. Again we observe, due to the
similar trace of the clamped and isotropic tensor, that the H-H

TABLE II. Expansion coefficients extracted from the slopes of
the thickness change vs concentration curves. From the experimental
and theoretical slopes, the components and trace of the dipole tensor
and the H-H interaction energy are all in units of eV except k,
which is dimensionless. Values denoted with † are estimated using
the transformation according to Eq. (6) and values displayed with �

are only evaluated up to 0.2 H/M.

Experiment Theory

Clamped Isotropic Clamped Isotropic

k 0.143(3) 0.188†(4) 0.105(1) 0.139(4)
A 2.55(5) 1.64�(3)
B 1.42�(2)
Tr(P)/3 2.67†(6) 1.50�(2) 1.48�(4)
u −0.209†(9) −0.067�(2) −0.066�(3)
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FIG. 5. (a) Calculated dipole tensor components as a function of
hydrogen concentration, as determined via Eq. (4) and Eq. (5) for the
clamped system and Eq. (3) for the isotropic one. (b) Calculated elas-
tic H-H interaction energy as a function of hydrogen concentration,
determined via Eq. (7). For both graphs, the dashed lines are guides
for the eye.

interaction also practically overlaps, irregardless of the global
boundaries of the system, which further demonstrates that a
long-range order and other symmetries present in crystals are
not necessary requirements for the existence of the nonlocal
elastic H-H interaction. Furthermore, as a consequence of the
concentration-dependent strength of the interaction, the con-
ditions regarding a possible hydrogen phase decomposition in
amorphous materials, introduced by Griessen [8], could also
change and evolve with the amount of hydrogen in the metal.

V. CONCLUSIONS

Neutron reflectometry is found to be exceedingly useful
in determining the deuterium-induced thickness expansion for
thin metallic glasses. The metal, subject to several absorption
and partial desorption cycles, is free of any apparent structural
degradation, even though the volume expanded by more than
14% in one direction. Under the assumption that the exper-
imentally measured sample was fully clamped and that the
theoretical elastic constants are reasonable, we estimate an
out-of-plane dipole tensor component remarkably similar to
a composition-weighted sum of the ones found in crystalline
vanadium and zirconium, suggesting that the dipole tensors
related to metallic glass can to a large extent be described by
a superposition of its constituents’ dipole tensors.

Density functional theory calculations reveal that the elas-
tic theory of solids is applicable for disordered amorphous
systems and is able to self-consistently predict the free and
biaxially constrained expansions of the system. The discrep-

FIG. 6. Shift in energy minimum if the zero-point energy (ZPE)
of deuterium is taken into account. The functions are normalized to
zero for illustrational purposes.

ancy between the clamped theoretical volume expansion and
the observed experimental change in volume stem most likely
from inadequacies of the GGA functionals in evaluating the
hydrogen-induced forces, and from the fact that the zero-point
motion of hydrogen is not taken into account. By calculating
the phononic vibrational modes of hydrogen, we show that
the zero-point energy will have a non-negligible effect on the
expansion and should be considered in studies of hydrogen in
metals.

The volume dilations per hydrogen atom are greatly af-
fected by the elastic boundary conditions, while the average
dipole tensor component is found to be largely invariant. As-
suming that the dipole tensor components vary with hydrogen
content, all observed quantities (volume expansions, hydro-
gen occupation volumes, and average stress) are internally
consistent following the formalism of the elastic theory of
point defects, suggesting that the distribution of local atomic
environments can allow for a systematically varying, but non-
trivial, dipole tensor. With a functional form of the dipole
force tensor, the magnitude of the attractive H-H interactions
increases with hydrogen concentration and is shown to be
independent of the global elastic boundary conditions, sug-
gesting that a long-range order and other symmetries present
in crystals are not necessary requirements for the mediation of
the nonlocal H-H interaction in metallic glasses.

Hence, manifested in the dipole tensor, a conceptual frame-
work emerges for the study of local and global volume
changes in metallic glasses.
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APPENDIX

The zero-point energy of deuterium is determined via
phonon calculations, performed using the PHONOPY package

[55], in which a series of expanded supercells containing 0.5
H/M were used to determine the vibrational energies of the
material. The isotope mass was corrected for by a factor of
2−1/2, corresponding to the inverse square root proportion-
ality between mass and phonon energies. By integrating the
phonon density of states in a frequency region corresponding
to the hydrogen vibrational modes, the zero-point energy as
a function of strain could be determined and added to the
ground state energy of DFT as a function of strain. The re-
sulting combined energy curve, shown in Fig. 6, exhibits a
minimum about 0.33% above the determined optimal relaxed
thickness, which results in an isotropic thickness expansion of
kiso

SQ = 0.060 and, via the transformation of Eq. (6), a clamped
thickness expansion of kcl

SQ = 0.119. The thus corrected slope
is shown in Fig. 2.
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