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Microscopic mechanism of nanoscale shear bands in an energetic molecular crystal (α-RDX):
A first-order structural phase transition
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Nanoscale shear bands formed in many energetic molecular crystals upon shock compression [including 1,3,5-
trinitro-s-triazine (RDX)] are considered as a defect-free mechanism for formation and growth of hot spots
which control detonation initiation. Using classical molecular dynamics, we predict the formation of similar
nanoscale shear bands in the α-RDX crystal subjected to quasistatic isothermal uniaxial compression indicating
a common mechanism of shear strain localization under both shock and quasistatic conditions. In the framework
of the Ginzburg-Landau phenomenology coupled with the coarse-grained (CG) Helmholtz free energy of the
crystal from first principles, we explore the thermodynamics of stress-induced lattice transformations under
quasistatic uniaxial load. We show that the shear banding exhibits a critical behavior associated with a first-order
structural phase transition with bands of localized twinning strain as transient microstructure. Analysis of the CG
Helmholtz free energy suggests that the stress-induced core softening of the effective intermolecular interaction
is a fundamental mechanism for a structural phase transition leading to the nanoscale shear bands.
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I. INTRODUCTION

Shear bands, noncrystallographic bandlike regions of lo-
calized plastic strain, are one of the most frequently observed
yet least understood microstructural defects in many mate-
rials [1]. Shear localization is an important and sometimes
dominant deformation underlying the constitutive plastic re-
sponse in materials under high strain rate deformations
[2] such as those achieved under shock-wave compression
[3]. Understanding this type of plastic response is espe-
cially important for energetic molecular crystals subjected
to shock loading, where shear localization is a possible
“homogeneous—or defect-free” mechanism [4] for hot spot
formation leading to explosive initiation. This possibility
was explored in grain-scale crystal plasticity simulations of
the pentaerythritol tetranitrate (PETN) energetic molecular
crystal, which predicted adiabatic lamellar shear bands that
form dynamically following shock compression [4]. More
complex structural patterns of adiabatic shear bands were
formed in nonequilibrium molecular dynamics (NEMD) sim-
ulations of shock-compressed 1,3,5-trinitro-s-triazine (alpha
polymorph, α-RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-
tetrazocine (beta polymorph, β-HMX) [5,6]. These nanoscale
shear bands (or nanobands [5,7]) had a crisscross pattern
similar to a type of mesoscopic pattern of twins known as
“tweed” [8,9] or dislocation “labyrinth” [10] structures. Using
scale-bridged classical and quantum-based NEMD [11,12]
and mesoscale [13] simulations, the formation and growth of
hot planar nanoscale shear bands similar to those of RDX
and HMX were recently observed in shocked 1,3,5-triamino-
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2,4,6-trinitrobenzene (TATB) [11,12], another high-explosive
molecular crystal. Atomic force microscopy of RDX shock
compressed to 12.9 GPa revealed shear bands of a geometric
pattern similar to that observed in the simulations [14].

The fundamental mechanism leading to the nanoscale
shear banding in shocked energetic molecular crystals is un-
clear, even as these systems appear to share several hallmark
traits of plastic strain localization. One mechanism commonly
put forward to explain the plastic response in shocked solids
is adiabatic shear banding due to energy dissipation within
the disordered bands coupled with thermoplastic effects [15].
However, for a defect-free molecular crystal, nonequilibrium
adiabatic effects do not appear to be dominant at the onset of
the shear-banding transition. Instead, stress-induced structural
instabilities which are governed by equilibrium thermody-
namics may universally contribute to the initial shear strain
localization [13,16]. There have been efforts to develop a
general thermodynamic picture of shear strain localization in
simpler crystalline solids with highly ordered atomistic-scale
structures (e.g., metals) as well as in disordered noncrys-
talline systems (e.g., metallic glasses), considering the plastic
deformation response as a kind of displacive (diffusive-
less martensitic-type), reconstructive (diffusive) solid-solid,
or coupled displacive-diffusive phase transition [7,17–24].
Descriptions of twinning as a phase transformation can be
credited to the work by Ericksen [25]. Many of these efforts
are relevant for the development of theories applicable to
molecular crystals as well: Like metals, molecular crystals
have long-range order on the unit cell scale, yet they rarely
exhibit short- to intermediate-range order at the atomic scale,
making them locally analogous to noncrystalline solids [26].
Molecular crystals have been shown to exhibit a range of
reconstructive, martensitic, or combined stress criticality [27].
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Important questions which a theory of shear strain localization
in molecular crystals must address are (1) whether or not
there exist basic microstructural defects/carriers similar to
dislocations or deformation twinning in metals [28] or local
shear transformation zones in amorphous solids [24,29] which
nucleate into shear bands, and (2) whether the appearance and
growth of these defects constitute a phase transition [27]. In
many ordered materials, the tweed pattern is clearly a precur-
sor of a first-order martensitic phase transition [8,30].

Here we explore the equilibrium aspects of nanoscale
shear banding by considering the plastic response of α-RDX
compressed quasistatically and isothermally. Using equilib-
rium all-atom MD simulations, we demonstrate significant
similarities in the shear banding under quasistatic and shock-
compression conditions. This suggests a universal mechanism
of plastic instabilities in α-RDX. With very few exceptions,
the instabilities associated with plastic deformation in struc-
turally complex solids bear many of the hallmarks of a
first-order (discontinuous) phase transition [23]. Hence the
standard harmonic treatment applicable to second-order dis-
placive transitions, such as in soft-phonon mode theory, is
expected to fail [31]. The Ginzburg-Landau (GL) theory [32],
which utilizes the concept of spatially dependent order param-
eters ψ (x) to describe spontaneous low-symmetry distortive
modes (basic microstructural defects) beyond the harmonic
approximation [31], emerges as a natural theoretical frame-
work to study first-order stress-induced criticality. Most of
the applications of the GL theory to date are phenomenolog-
ical, employing continuum free energy (FE) local functionals
F ([∇ψ,ψ]) of the phase field type [18–21,33–38] (generic
mathematical forms of F such as phase field crystal models
arise as the coarse-grained and continuum approximations
of particle models [39]). The phenomenological approaches
based on rank-one convexification of the F have been put
forward in the variational reformulations [10] of an effective
constitutive framework [40] which allow for certain phase
decomposition (microstructures) and have been applied to
study the displacive martensitic and twinning microstructures
in metals [41]. One path forward to extend the GL theory
toward molecular crystals while preserving a particle-based
description and avoiding phenomenological assumptions is
to use order parameter projected FE potentials [42] for en-
sembles sampled by accurate molecular simulations [43].
For a molecular crystal, the thermodynamics of lattice struc-
ture transformations is governed by the coarse-grained (CG)
Helmholtz FE A(RN ,V, T ), the RN -projected Helmholtz FE
describing the canonical (RN ,V, T ) ensemble constrained to
molecular center of mass (c.m.) coordinates RN (CG coordi-
nates) [44]. In many cases, cooperative structural transitions
are dominated by some collective distortions in the active
lattice domains which are characterized macroscopically by
a change in lattice symmetry such as for certain martensitic or
deformation twinning transformations. These transitions can
be embodied by a reduced set of bijective collective variables
(order parameters) ψ (RN ) allowing a GL treatment based on
the generally nonlocal behavior of A([ψ],V, T ) in the order
parameter space [ψ (RN ),V, T ] [45,46]. The first-principles
treatment of the stress criticality can then be formulated by
combining the GL phenomenology with existing bottom-up
methods [44] for particle-based coarse graining suitable to

obtain accurate approximations to A(RN ,V, T ) from micro-
scopic simulations [47].

We formulate a general GL theory of first-order stress-
induced nanoscale shear banding by coupling the GL phe-
nomenology with the A(RN ,V, T ) derived from first principles
(all-atom MD simulations) using the force-matching based
multiscale coarse-graining (MSCG/FM) approach [44,48–52]
and extending the formalism to the Gibbs ensemble (Sec. II).
We then apply the formalism to investigate the fundamental
structural instability leading to nanoscale shear banding in
α-RDX (Sec. III). Based on our analysis of MD isothermal
simulations of α-RDX under [100] uniaxial compression,
we suggest that the genesis of the nanoscale shear banding
is the shear localization through activation of the deforma-
tion twinning modes [12,13,53]. Using GL calculations in
which ψ (RN ) describes the progress of deformation twin-
ning, we show that the shear banding in uniaxially stressed
α-RDX clearly displays the signature of a first-order (dis-
continuous) phase transition. The discontinuous nature of
the shear localization complicates the observation of tran-
sient microstructure of localized twinning shear preceding
the disordered, reconstructed shear-band microstructure. One
prominent change observed at the onset of the plastic regime
is a sudden core softening (core collapse) of the effective
intermolecular interaction (as described by the CG Helmholtz
FE functional) which we link to stress-induced molecular
deformations. Core-softened interactions [54–56] are known
to lead to novel criticality and complex phase behavior in both
model [57,58] and real condensed matter systems [59]. We
hypothesize that the nanoscale shear banding is one of these
types of criticality in molecular solids composed of flexible
molecules.

II. THEORY

A. CG Helmholtz free energy potential

We consider a N-molecule supercell of a classical
monomolecular crystal formed from n atoms with masses
{mi}n

i=1. The dynamics of the crystal is governed by the Hamil-
tonian H (rn, pn) = T atm(pn) + uatm(rn) where rn ≡ {ri}n

i=1
are atomic position coordinates, pn ≡ {pi}n

i=1 are conju-
gate momenta, T atm(pn) = 0.5

∑
i m−1

i p2
i is the total kinetic

energy, and uatm(rn) is the interaction potential. The CG co-
ordinates (order parameters) suitable to describe a range of
lattice structure phases are molecular c.m. positions, RN ≡
{RI}N

I=1,

RI (rn) = M−1
∑
i∈I

miri, (1)

where M is the molecular mass. The conjugate momenta
PN ≡ {PI}N

I=1 and generalized forces F N ≡ {FI}N
I=1 = {ṖI}N

I=1
are, respectively,

PI (pn) =
∑
i∈I

pi, FI (rn) =
∑
i∈I

fi, (2)

where { fi}n
i=1 ≡ f n are the atomistic forces. The coordinates

(RN , PN ) are a subset of the canonical Jacobi coordinates
[60] (RN , PN , ξN , pN

ξ ) with ξN , pN
ξ describing the intramolec-

ular positional and momentum degrees of freedom (d.f.). The
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phase space (RN , PN ) can be viewed as that of the equivalent
CG ensemble [49]. We consider an extended set of thermody-
namic state variables (RN ,V, T ). The canonical distribution
function of the ensemble at fixed (RN ,V, T ) is the following
conditional probability density [43],

fRN (rn, pn) = Z−1
RN δ[RN (rn) − RN ]e−βH (rn,pn )

with ZRN = h−3ng(n)−1
∫

drnd pnδ[RN (rn)

− RN ]e−βH (rn,pn ), (3)

where g(n) is an atomic configuration degeneracy. The statisti-
cal thermodynamics of the (RN ,V, T ) ensemble is determined
by the conditional CG Helmholtz FE, A = −β−1 ln ZRN ,
which takes the form

A(RN ,V, T ) = ACG
id (V, T ) + Aintra

id (V, T ) + Ac(RN ,V, T ).
(4)

Here,

ACG
id (V, T ) = −β−1 ln h−3N N!−1V N

∫
dPN e−βT CG (PN ),

Aintra
id (V, T ) = −β−1 ln h−3(n−N )g−1

ξ V n−N
∫

d pN
ξ e−βT intra (pN

ξ ),

(5)

are, respectively, the CG and intramolecular ideal gas contri-
butions and

Ac(RN ,V, T ) = −β−1 ln V −n
∫

drnδ[RN (rn) − RN ]

× e−βuatm (rn )

= −β−1 ln V −n+N
∫

dξN e−βuatm (RN ,ξN ) (6)

is the configurational FE. In Eq. (5), T CG(PN ) =
(2M )−1 ∑

I P2
I and T intra (pN

ξ ) are, respectively, the total
translational (CG) and internal kinetic energies of the
molecules [T atm(pn) = T CG(PN ) + T intra (pN

ξ )], and gξ is
a configurational degeneracy of the intramolecular d.f. In
Eq. (6), we redefine uatm(rn) in the new coordinates as
uatm(RN , ξN ) ≡ uatm[rn(RN , ξN )]. The expectation of the
observable O(rn, pn) in the (RN ,V, T ) ensemble is the
following conditional expectation: 〈O〉RN = ∫

drnd pn fRN O.
For a bijective function ψ (RN ), we obviously have
〈ψ〉RN = ψ , and therefore coarse-grained lattice order
parameters of lower resolution can be constructed as bijective
mappings of the RN .

B. MSCG/FM method and dependency on the particle density

The MSCG/FM method [44,47,49,50,52,61] provides
least-squares approximations to the following thermodynamic
forces:

〈FI〉RN = −∇RI A(RN ,V, T ), Pc = − ∂

∂V

(
Ac + Aintra

id

)
. (7)

Here,

〈FI〉RN =
∫

drne−βuatm (rn )δ[RN (rn) − RN ]FI (rn)∫
drne−βuatm (rn )δ[RN (rn) − RN ]

(8)

is a conditional thermodynamic expectation of FI (rn) given
RN , and Pc is the thermodynamic pressure from the con-
figurational and intramolecular momentum d.f. Within the
MSCG/FM approach, the force 〈FI〉RN , which is a mean force
experienced by the CG coordinates [62–64], is approximated
by a central and pairwise additive force:

〈FI〉RN ≈ F 2b
I (RN ) =

∑
J �=I

f 2b(RIJ , α)nIJ , (9)

where f 2b(R, α) = ak (R) f 2b
k + bk (R) f 2b

k+1 + ck (R) f 2b
k

′′ +
dk (R) f 2b

k+1
′′
, Rk < R � Rk+1, is a cubic spline defined on a

distance grid {Rk}Kbin
k=1 (the coefficients ak , bk , ck , dk are known

rational functions of R, Rk, Rk+1). The set α = { f 2b
k , f 2b

k
′′}Kbin

k=1
is selected as the adjustable parameter set. The optimal set
α = αmin is determined by minimizing the objective function,

χ2(α) =
〈

N−1
N∑

I=1

∣∣∣∣∣FI (rn) −
∑
J �=I

f 2b(RIJ , α)nIJ

∣∣∣∣∣
2〉

+
〈∣∣∣∣∣Pc(rn, pN

ξ ) − (3V )−1
∑
I<J

f 2b(RIJ , α)RIJ

∣∣∣∣∣
2〉

,

(10)

where Pc is the instantaneous virial pressure: Pc =
〈Pc〉. The second term in Eq. (10) is equal to
〈|Patm(rn, pn) − PCG(RN , PN )|2〉 where Patm and PCG =
(3V )−1[2T CG(PN ) + ∑

I<J f 2b(RIJ , α)RIJ ] are instantaneous
atomistic and CG virial pressures, respectively. This term
implements a pressure constraint [50,65,66] which allows one
to correctly predict the atomistic thermodynamic pressure
Patm = 〈Patm〉 in the CG simulations. The force f 2b at αmin

becomes a function of V, T: f 2b(RIJ ,V, T ). We can write the
following pairwise additive approximation,

A(RN ,V, T ) ≈ A2b(RN ,V, T )

=
∑
I<J

u2b(RIJ ,V, T ) + A0(V, T ) + ACG
id (V, T ),

(11)

where u2b(RIJ ,V, T ) = ∫ Rcut

RIJ
dR f 2b(R,V, T ) and A0(V, T ) is

the potential which includes Aintra
id (V, T ).

The approximation equation (11) may not be transferrable
to nonuniform systems [50,67], but this deficiency can be
alleviated by considering the A as a functional of local particle
density ρ: A(RN , [ρ], T ). For MSCG/FM models, the local ρ

dependency is first introduced into the force f 2b(RIJ , [ρ]) =
f 2b(RIJ , {ρI}N

I=1), where

ρI =
∑
J �=I

ωρ (RIJ ) (12)

is the local density of CG particles located at RI [68]. The
pair-additive characteristic of ∇RI A and A is maintained with
the two-point approximation:

f 2b
(
RIJ , {ρI}N

I=1, T
) ≈ f 2b(RIJ , ρI , ρJ , T )

= 0.5[ f 2b(RIJ , ρI , T ) + f 2b(RIJ , ρJ , T )].
(13)
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Following Refs. [66,67], the forces f 2b are individually
parametrized on a preselected grid of reference densities {ρi}:

f 2b(RIJ , ρ, T ) = (1 − aρ ) f 2b(RIJ , ρi, T )

+ aρ f 2b(RIJ , ρi+1, T ),

where aρ = (ρ − ρi )(ρi+1 − ρi )
−1,

ρi � ρ < ρi+1. (14)

Equation (11) cannot be applied directly to calculate the
A2b as the potential A0 is not available. The following relation,

A(RN ,V, T ) ≈ A2b
(
RN , {ρI}N

I=1, T
)

=
∑
I<J

∫ Rcut

RIJ

dR′
IJ

× f 2b
[
R′

IJ , ρI R
3
IJR

′−3
IJ , ρJR3

IJR
′−3
IJ , T

]
+ ACG

id (V, T ), (15)

can be used to evaluate A2b numerically [51,52,66], assuming
that the work by F 2b

I is path independent.

C. Formulation in terms of CG Helmholtz
and Gibbs free energies

The CG internal energy E (RN ) and the CG entropy S(RN )
can be introduced via a standard thermodynamic relation:
A(RN ) = E (RN ) − T S(RN ). The CG thermodynamics then
becomes

dA(RN ,V, T ) = −
∑

I

〈FI〉RN dRI − PCG
id dV − S(RN )dT,

(16)
where PCG

id = −(∂ACG
id /∂V )RN ,T is the ideal gas contribu-

tion to PCG. The MSCG/FM procedure with the pressure
constraints leads to the pressure Pc [Eq. (7)] being ef-
fectively included into {〈FI〉RN }N

I=1. Assuming Cauchy-Born
kinematics (locally uniform deformation of RN ), we trans-
form

∑
I 〈FI〉RN dRI = V�

∑
I σ̂I (RN ) : d ε̂I where σ̂I is the

local Cauchy stress; ε̂I = 0.5(F̂−T
I F̂−1

I − Î ) is the conjugate
Almansi strain from the discrete deformation gradient F̂I =
∇RI R

′
I of the deformed lattice R′N . Formulations by Hardy

[69], σ̂I = σ̂ H (RI ), or by Lutsko [70], σ̂I = σ̂ L
I with averaging

volume V�, can be used; in our work, we used the Lutsko
formulation. We have Patm = (3V )−1V�Tr(

∑
I σ̂I ) + PCG

id .
The Gibbs FE formulation is obtained from Eq. (16) which

can be written as dA = −V�

∑
I σ̂I : d ε̂I − PCG

id dV −SdT us-
ing the Legendre transformation with respect to {σ̂I}N

I=1 and
PCG

id . The resulting CG Gibbs FE is

G
({σ̂I}N

I=1, PCG
id , T

) = A + V�

∑
I

σ̂I : ε̂I + PCG
id V. (17)

A discontinuity in any of the variables {σ̂I}N
I=1, PCG

id may in-
dicate a stress-induced phase transition. For convenience, we
reduce the dimensionality of the stress field variable space by
assuming that the mechanical energy of the system uniaxially
deformed along 	n can be written as V�

∑
I σ̂I : ε̂I + PCG

id V =
V σ̂ : ε̂ where σ̂ = σ 	n ⊗ 	n is the external Cauchy stress im-
posed by the NsT barostat (acting in the 	n direction only)

and ε̂ is the effective Almansi strain. This yields the follow-
ing representation of the Gibbs FE: G(σ̂ , T ) = A + V σ̂ : ε̂.
For the uniaxial compression studied in this work, we have
	n = [100] and σ = σxx. To observe a structural transition at
critical σ̂ in the compression simulations, thermal fluctuations
must be introduced into the dynamics of RN . This is achieved
by coupling the atomistic (and hence RN ) dynamics using the
anisotropic Melchionna-Nosé-Hoover barostat [71,72] which
controls the σ̂ .

D. Ginzburg-Landau treatment of shear strain localization

We will develop a single order parameter theory of the
shear strain localization based on the following assumptions:
(1) The deformed lattice RN can be assigned the plastic
order parameter ψ (RN ) which describes the degree of lo-
calized shear deformation with ψ = 0 corresponding to the
unsheared RN ; (2) the shear banding is described by co-
operative modes that are bijective and linear functions of
ψ : δRN (ψ ) ≡ {δRI (ψ )}N

I=1. For example, our observations
(discussed below) indicate that in α-RDX, the shear bands
are initiated as bands of localized twinning strain with sim-
ple shear deformation modes δRI = [F̂ p(γ ) − Î]RI , where
F̂ p(γ ) = Î + γ 	s ⊗ 	n, in the shear-band regions (S phase), and
complementary deformation modes δRI = [F̂ p(−γP ) − Î]RI ,
γPγ −1 = const, in the parent crystal (P phase). In this picture
the structural instability can be described by an order param-
eter ψ = γ .

Following the nonlinear GL phenomenology, the FE
change above the structural phase transition is an analytic
function of the order parameter:

�A(ψ ) = ψ2�Aψ2 + ψ3�Aψ3 + ψ4�Aψ4 + o(ψ4), (18)

�Aψn = 1

n!

∑
I1,...,In

∂n�A

∂RI1 · · · ∂RIn

∂ψδRI1 · · · ∂ψδRIn ,

∂n�A

∂RI1 · · · ∂RIn

= −∂n−1〈FI1 (rn)〉RN

∂RI2 · · · ∂RIn

. (19)

For simple shear deformation modes, we have ∂ψδRI∈S =
	s ⊗ 	n, ∂ψδRI∈P = −const × 	s ⊗ 	n. The structural equilibrium
condition is �Aψ = 0 or {∂�A/∂RI}N

I=1 = 0. At σ̂ > σ̂ c,
where σ̂ c is the critical (plastic yield) stress, the equilibrium
structure is a solution of ∂�A/∂ψ = 0, �Aψ4 > 0. If an in-
variant �Aψ3 �= 0 then there are two solutions ψ �= 0 which
are first-order (discontinuous) localizations of twinning strain
at σ̂ c. For a first-order instability, the solutions ψ �= 0 are
not infinitesimally small. Thus, in crystals such as α-RDX in
which the deformation twinning modes are hard to activate,
these bands of localized twinning shear may exist as transient
defects which appear at the onset of the phase transition.
Subsequently, they become reconstructed or disordered, even-
tually transforming into shear bands. The type of the structural
phase transition is determined by the invariance of �A(ψ )
under inversion ψ → −ψ and hence by the symmetry of
the parent crystal and the crystallographic orientations of the
twinning shear bands.
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FIG. 1. (a) α-RDX molecule (Caae conformation) and its coarse graining with the green ball denoting the location of the molecular c.m.,
along with other state-dependent conformers. (b) α-RDX crystal at standard ambient conditions. The box outlines the unit cell with eight
molecules; the green balls in each are the molecular c.m. The skeletons and c.m. spheres of the four molecules in the front are enlarged. Three
views of the RN lattice are shown on the right.

III. RESULTS

We first describe atomistic simulations followed by pre-
senting relevant results, some of which are discussed in [52],
on the plastic deformation in the atomistic simulations. The
remaining sections formulate the GL theory of shear banding.

A. Atomistic simulations

The RDX molecule has numerous conformations that are
thermodynamic state and phase dependent. The ring of the
RDX molecule may adopt a chair (C), twist (T), or boat (B)
conformation. The angles which the NO2 groups form with
the normal of the ring range from 10◦ to 170◦. The NO2

group conformations with the angles closer to 90◦ are called
pseudoequatorial (e), those with the angles smaller than 45◦
are referred to as axial (a) conformations, and the confor-
mations with the angles within the intermediate range are
sometimes labeled as (i) [52,73,74]. Previous experimental
and computational studies have indicated the conformational
isomerism of RDX molecules with the existence of aaa, aae,
aee, and eee conformers [75–79] as depicted in Fig. 1(a).
Infrared spectroscopy studies [75] have shown the existence of
the aaa and eee conformers in every phase except the α-RDX
polymorph while more recent studies [73,80] have identified
the aae and aaa as ground states for the molecules in α-RDX
and β-RDX, respectively. In α-RDX, defects or deformation
may lead to a population of an additional conformation state
(aee) [81]. The aii conformers were observed in isostatic
[100] compression simulations [52,74]. Under standard am-

bient conditions, RDX crystallizes in the orthorhombic space
group Pbca and eight molecules per unit cell (α-RDX poly-
morph). Figure 1(b) shows the α-RDX unit cell in atomistic
and molecular c.m. coordinates as well as the lattice RN . Three
slip systems in α-RDX monocrystals were identified from
quasistatic loading and nanoindentation experiments [82,83],
and confirmed by atomistic [84,85] and CG simulations [86]:
(021)[100], (02̄1)[100], (011)[100], (01̄1)[100], (010)[100],
(010)[001] with critical resolved stress within 0.6–1 GPa.

The atomistic classical force field published by Smith and
Bharadwaj [87,88] has shown outstanding predictive capabil-
ity for modeling a variety of nonreactive properties in RDX
[84,89–91], and has been used in isothermal compression
simulations [52,91]. In [52], the compression simulations em-
ployed oblong cells of two sizes: the “Large” cell (L cell)
measuring 120a × 6b × 21c, containing 120 960 molecules,
the “Small” cell (S cell) measuring 20a × 6b × 6c, contain-
ing 5760 molecules, and a smaller cell (s cell) measuring
2a × 3b × 3c. A stress σxx was applied in the [100] direction,
while the dimensions in the [010] and [001] directions were
kept constant to produce the engineering strain-stress curve.
The supercells were compressed isothermally at 300 K using
the following protocol: The target σxx was increased with an
increment of 1 GPa, the NsT run for the new target σxx was
initiated from the final configuration of the previous σxx run,
and the system was simulated for 500 ps to achieve a compres-
sion corresponding to the target σxx. This protocol led to strain
rates on the order of 108 s–1 which are comparable to those
achieved in the experiments, although considered as high [92].
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FIG. 2. [100] uniaxial engineering strain-stress and hydrostatic strain-pressure curves for the different cell sizes of α-RDX [52]. The
gray-scale image at the upper portion of the figure is from Ref. [93] and shows the labyrinthlike shear-band structure of the RN projected
α-RDX cell (dimensions 141a × 3b × 141c) following the propagation of a planar shock wave along [100] with a pressure of 7.9 GPa. The
remaining images show the [010] view of the RN projections of the cells [100] compressed to 5 GPa (elastic regime) and 10 GPa (plastic
regime).

Nevertheless, these strain rates are lower than those observed
under shock compression. For example, in [90] the maximum
strain rate in shocked RDX with a particle velocity of 1 km/s
is 3−5 × 1011 s–1 . Work by Munday et al. demonstrated that
applied strain rates higher than those used in the current study
are quasistatic for α-RDX [84,91].

B. Plastic deformation

Figure 2 shows the engineering strain-stress curves under
[100] loading [52]. The strain-stress curve is markedly insen-
sitive to the cell size, and exhibits a yield point σ c

xx [90,93]
within 9–10 GPa [52]. The plastic deformation in both the S
and the L cells is characterized by a shear localization within
the bands, which are clearly visible in the RN projection of
the atomistic cells [Figs. 2, 3, 4, and 5(a)]. The shear bands
have nearly uniform thickness, and are not aligned with any
preferable crystallographic direction. The bands propagate at
α = 45◦ to [100] and lie in the [010] zone. In the S cell, the
striped pattern of alternating S and P bands forms [Figs. 2,
3, and 5(a)]: The S slabs of inelastically sheared crystal
are confined between two plane parallel surfaces (denoted
as “twinning” planes). The time resolved initiation of shear
banding [Fig. 5(a)] points to the onset of deformation twin-
ning through localization of simple shear deformation as the
fundamental structural instability. The elastically deformed
P regions undergo simple shear deformation in the opposite
direction which resembles a [010] rotation due to an insignif-

icant pure shear component in the polar decomposition (see
Sec. III C). Due to variations in molecular conformations [52],
the effective intermolecular interaction within the S and P
domains of RN may differ [the difference is captured by the ρ-
dependent f 2b(R, ρ, T )] and therefore the twinning strain [53]
at which the sheared and parent phases of RN are structurally
equivalent (rotation or reflection twins) may not be reached.
As we discussed in [52], the shear bands are not formed in
the s cell (10 GPa snapshot in Fig. 2); however, at σ c

xx, abrupt
molecular conformational changes occur through the whole
of the cell (similar to that seen within the atomistic shear
band in Fig. 3). This suggests that a distinct plastic response
may be due to the modification of the effective intermolecular
interaction u2b(R) [Eq. (11)] caused by stress-induced changes
in the statistics of molecular conformers. In the S cell, the
geometrical pattern of the shear bands does not change upon
use of tenfold higher strain rates. Conversely, as evident from
Fig. 4, the pattern of shear bands in the L cell compressed
at higher strain rates evolves toward more abundant crossings
and becomes similar to the tweed or labyrinth patterns ob-
served in shock-compression simulations [5,52,74,90,93,94]
(see Fig. 2).

C. Plastic order parameter

The structural phase transition in the [100]-compressed S
cell, in which shear bands propagate through the periodic
boundaries adopting a lamellar S−P arrangement (Figs. 2 and
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[001] 

[100] 

FIG. 3. Left: [010] view of superimposed atomistic and RN structures of the shear-banded S cell at σxx = 10 GPa. The RN are shown as
large spheres, colored green in the parent region and yellow in the shear-band region. Right: Magnification of part of the S cell shown to the
left.

3), can be studied using the single order parameter formula-
tion of the GL theory. From examining Fig. 5(a), we conclude
that the twinning planes lie in the [010] zone, are deformation
invariants, and upon deformation translate homogeneously in
the opposite directions ±	s⊥[010] ({101}〈101̄〉 and {101}〈101〉
twin variants). This is possible only if the deformation modes
of the S and P domains are simple shears (respectively):
F p(γ ) = (Î + γ 	s ⊗ 	n), F p(−γP ) = (Î − γP	s ⊗ 	n). The polar
decomposition F p = RT U holds for both S and P domains
with pure [010] rotations R(ϕ) by φ = tan−1 γ /2, φP =
− tan−1 γP/2, respectively. In the P band, the stretch U is
insignificant due to large LP and the deformation is close to
R(ϕP ) (Fig. 5). The compatibility requirement that the twin-
ning interface be coherent necessitates that Hadamard jump
condition applies [95],

γ = γP
LP

LS
, (20)

where LS and LP (LS < LP) are (respectively) the thickness
of the shear band and parent phase regions [Fig. 5(b)]. If the
LS , LP are the same across all bands (as observed), then the

deformed RN and hence A(RN ,V, T ) become unique func-
tions of γ , which we choose as the plastic order parameter
ψ ≡ γ (RN ). For bigger cells, the lamellar arrangement of
shear bands may evolve toward the tweed- or labyrinthlike
patterns [9,10] of a lower translational symmetry which are
composed of coexisting plastically deformed S1−P1, S2−P2

domains with two different competing orientations s1⊥s2 of
S bands [93] (Figs. 2 and 4). This would require the two
order parameter theory [33] with ψi(RNi ∈ Si − Pi ), i = 1, 2 in
which the pattern and phase diagram are determined by behav-
ior of A(RN ,V, T ) in the (ψ1, ψ2,V, T ) space. In the S cell,
the requirement equation (20) leads to the following additive
representation: �Aγ n = �Aγ n |S + �Aγ n |PLn

SL−n
P . Under uni-

axial compression, the crystal loses stability toward twinning
strain localization at the earliest occurrence of the condi-
tions �Aγ |S + �Aγ |PLSL−1

P = 0, �Aγ 2 |S + �Aγ 2 |PL2
SL−2

P <

0, which prescribe a relative size LSL−1
P of the S and P

phase domains. Since the inversion 	s = −	s is not associated
with any symmetry element of the Pbca space group, the
Aγ 3 �= 0 is not prohibited by the crystal symmetry and thus

[001]

[100]

FIG. 4. RN structure of the L cell at σxx = 9 GPa under quasistatic (upper) and high strain rate (bottom) compressions.
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FIG. 5. The nonsymmorphic deformation twinning mechanism of shear banding in the RN representation. (a) Snapshots correspond to
two sequential configurations (t2 > t1 > 0) from a MD simulation of the S cell [100] compressed to σxx = 10 GPa at quasistatic strain rates
showing the early stage of shear banding. Blue arrows outline the major deformation modes: directions of simple shears in the shear (S) and
parent crystal (P) bands and pure [010] rotation component R(ϕP ) of the deformation in the P bands (see Sec. III C). (b) Order parameter
ψ ≡ γ (RN ) describing the progress toward deformation twinning under uniaxial σxx . Deformations in the S and P bands are simple shears δRI

with (respectively) γ , γP related by Eq. (20) and in opposite directions ±	s as shown by the arrows.

the shear banding in α-RDX may constitute a first-order phase
transition. For molecular crystals having lattices of higher
symmetry, the shear banding may become a second-order
phase transition [35].

D. Calculation of A(RN,V, T )

The thermodynamic force −∇RI A(RN ,V, T ) and its
(Helmholtz FE) potential A(RN ,V, T ) were obtained using
the MSCG/FM method as described in Sec III. The reference
data for the MSCG/FM procedure were sampled from a series
of MD simulations of the s cell subjected to [100] uniax-

ial compression to stresses {σk} = {0, 5, 8, 9, 10, 15, 20 GPa}.
The cell was first compressed quasistatically and isothermally
[84,91], T = 300 K, to the target σk . Subsequently, for each
σk , the trajectories rn(t ), f n(t ) were recorded at 0.2 ps inter-
vals during the 30 ps of NVT simulations initiated from the
final configuration of the compression run. The rn, f n were
then transformed into RN , F N [Eqs. (1) and (2)] and tagged
with the corresponding instantaneous T CG, Patm. The splines
f 2b are defined on a grid with Rcut = 16 Å. The objective func-
tion χ2 in Eq. (10) was minimized over the sampled RN (t ) as
described in Refs. [51,66]. For nonhomogeneously deformed
RN , we used the ρ dependency implemented in accordance
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FIG. 6. (a) MSCG/FM terms f 2b(RIJ ) in −∇RI A(RN ,V, T )
[Eq. (9)] at different σxx . (b) Corresponding terms u2b(RIJ ) in
A(RN ,V, T ) [Eq. (11)]. Vertical arrows indicate stiffening of
−∇RI A(RN ,V, T ) with increasing σxx from 0 to 9 GPa (dashed blue
arrow) followed by the −∇RI A(RN ,V, T ) softening above σ c

xx (solid
red arrow). The inset in (b) illustrates the core softening of the
effective intermolecular interaction u2b(RIJ ) due to stress-induced
molecular conformations at σ c

xx (see Sec. III E). The images are for
the same pair of representative molecules, each having stress state-
dependent conformations. Molecular structures are superimposed
on colored shapes to highlight and quantify conformer anisotropy
λ2

x : λ2
z (I ) as explained in the caption of Fig. 7.

with Eq. (13) with the instantaneous ρI computed accordingly
to Eq. (12), in which ωρ is the Lucy function with the cutoff
Rcut.

The forces f 2b(R,V, T ) and the potentials u2b(R,V, T )
[Eq. (11)] are displayed in Fig. 6. During the elastic phase, the
f 2b, u2b profiles clearly show an increase in structure indicat-
ing the stiffening of the effective intermolecular interaction.
This is followed by the softening of the A(RN ,V, T ) above
σ c

xx which is manifested in the nearly structureless f 2b(R).
Furthermore, as illustrated in the inset to Fig. 6(b), the u2b(R)
[and therefore f 2b(R)] clearly exhibits a core softening [55]
at σ c

xx. A similar core softening is observed in the u2b(R)
resulting from MSCG force matching to liquid, amorphous,
and crystalline RDX systems hydrostatically compressed
to pressures up 20 GPa [52]. Systems with core-softened

interactions often show a rich spectrum of structural insta-
bilities and phase transitions [56–59]. Moreover, the general
result is that if the interaction potential has a certain degree
of core softening, then it is likely that a novel phase transition
may occur due to structural instabilities associated with the
core collapse [96].

E. Shear banding as structural phase transition

We start the section with an analysis of the stress-induced
changes in the population statistics of the molecular con-
formers observed in [100]-compressed s and S cells using
the f 2b(R) obtained in Sec. III D, an analysis similar to one
performed in [52]. The analysis suggests that the core soft-
ening of the f 2b(R), u2b(R) is caused by the abrupt increase
in the number of molecular conformers with low and high
sphericities, properties that are quantified using the set of
molecular radius of gyration tensors {ŜI}N

I=1 [97,98]. The
ŜI is a 3 × 3 positive-definite matrix with principal values
λ2

I;x � λ2
I;y � λ2

I;z. We are particularly interested in the change
of the molecular shape anisotropy which can be defined
in terms of molecular (inverse) aspect ratio: λ2

x : λ2
z (I ) ≡

λ2
I;xλ

−2
I;z . A smaller λ2

x : λ2
z (I ) indicates that the geometry of

the Ith molecule is close to planar (eee conformer). More
spherical molecular conformations in which one or more NO2

groups are bent toward the axial position (the aaa, aee, aae
arrangements) have larger λ2

x : λ2
z (I ). The behavior of λ2

x :
λ2

z ≡ E [λ2
x : λ2

z (I )] vs σxx was analyzed in [52]. That analysis
indicates that qualitatively, the λ2

x : λ2
z vs σxx dependencies for

the s and S cells are very similar. In both cases, the λ2
x : λ2

z
monotonically increases in the elastic regime, indicating a
conformation change of the molecules from aae toward more
spherical aii conformers. The max λ2

x : λ2
z is reached at a σxx

somewhat below σ c
xx when the intramolecular structures un-

dergo abrupt changes in the whole s cell and in the S regions
of the S cell, with approximately half of the conformers in the
aaa state, and the other half in the eee state. Here, we perform
a similar analysis using the f 2b(R) obtained in Sec. III D. De-
formation maps of molecules colored by the molecular aspect
ratio of the s and S cells at selected σxx are presented in Fig. 7.
At about σxx = 5 GPa in the S cell, the clusters of the aaa and
eee conformers start to appear and localize within regions that
eventually transform into shear bands. These clusters can be
viewed as the nuclei of a unique structural S phase. The abrupt
significant increase of the aaa and eee conformers leads to the
core softening of the u2b(R) and hence of the A(RN ,V, T ) as
illustrated in the inset to Fig. 6(b). This behavior underlies a
structural phase transition associated with the shear banding,
as indicated by the analysis of the A(RN ,V, T ) presented next.

Next, we calculated the isotherm A(RN ,V, T ) for the S cell
[100]-compressed to σxx by integration of Eq. (15) using the
final RN in the NsT simulations. The corresponding Gibbs
FE G(σ̂ , T ) = A + V σ̂ : ε̂ as a function of σxx is plotted in
Fig. 8. The cusp at σ c

xx indicates a first-order structural phase
transition. The G(σ̂ , T ) is concave (∂2G/∂σ 2

xx � 0) below
and above σ c

xx as expected for the structurally stable RN .
At σ c

xx, the shear bands with the finite order parameter γ =
0.48 spontaneously appear. The γ monotonically increases
as σxx > σ c

xx increases, indicating the shear localization in
both P and S bands. Some interesting aspects of the effective
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FIG. 7. Color map visualization of the molecular conformations in the s and S cells which are [100] compressed to different σxx (values
shown on the right). The spheres are locations of molecular c.m. (RN lattice). The Ith sphere is colored in accordance to the value of the
molecular inverse aspect ratio λ2

x : λ2
z (I ) as indicated in the color-scale legend.

intermolecular interaction u2b(RIJ ,V, T ) in the elastic
region is illustrated by the potential G(σ̂ , T ) − A0 =∑

I<J u2b(RIJ ,V, T ) + V σ̂ : ε̂ in Fig. 8 [the potential A0 is
defined in Eq. (11)]. The potential G(σ̂ , T ) − A0 describes
the integral value of the effective intermolecular forces and
complements the data in Fig. 6. The energy G(σ̂ , T ) −
A0 monotonically decreases in the elastic region 0–6 GPa,
apparently due to the rapid increase in the effective attrac-
tion between molecules from the second coordination shell,
RIJ > 8 Å.

The first-order transition with incipient deformation twin-
ning bands as transient microstructure is confirmed by
analyzing the FE �A(γ ) of an idealized S cell RN at σxx =
10 GPa which has lamellar microstructure with homogeneous
shear bands of various geometries. To prepare the S cell of

a target geometry, we first generated the lattice RN = F̂ aRN
0

from the stress-free lattice RN
0 using the affine deformation

F̂ a = aσ a−1
0 	n[100] ⊗ 	n[100] where aσ is the [100] dimension

of the cell in equilibrium at σxx. Next, we introduced lo-
calized simple shear deformation bands of the geometry
(LS, LP, α, γ ) into the uniform RN . The RN was then subjected
to a simple shear F̂ p(γ ) = Î + γ 	s ⊗ 	n where 	s · 	n[100] = cos α

in the S regions (of width LS) and to a complementary sim-
ple shear F̂ ′p(γ ) = Î − LSL−1

P γ 	s ⊗ 	n within the P regions
(of width LP). The S bands are uniformly spaced by the P
bands. Examples of the deformed cell with the S bands colored
in pink are displayed in Fig. 9. The set of �A(γ ) shown
in Fig. 9(a) is for the geometry LS = 15 Å, LSL−1

P = 0.48,
α = 45◦ which resembles the geometry of the S bands in
the atomistically simulated S cell [Fig. 9(a)]. The �A(γ )
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FIG. 8. (Left axis) Gibbs FE isotherm G(σ̂ , T ) = A + V σ̂ : ε̂

with the Helmholtz FE A calculated using Eq. (15) (solid red,
filled circles) and isotherm

∑
I<J u2b(RIJ ,V, T ) + V σ̂ : ε̂ (dashed,

open circles) for the S cell [100] compressed to σxx . (Right axis)
Corresponding isotherm for the order parameter γ (RN ) (solid blue,
squares).

curves vs σxx exhibit a generic behavior of the first-order
GL model [31] as follows: (1) For each σxx, the �A(γ ) is
nonsymmetrical, pointing to the presence of the cubic term
�Aγ 3 and hence the existence of the first-order phase transi-
tion; (2) for 0 � σxx < 5 GPa, the �A(γ ) has one minimum
which is the P phase and one inflection (in the generic GL
model the inflection exists for �a ≡ �Aγ 2�Aγ 4�A−2

γ 3 � 9
32 );

(3) at σxx = 5 GPa, the �A(γ ) deviates from the generic GL
model since an additional inflection appears, pointing to the
influence of the o(γ 4) terms in Eq. (18); (4) for 6 � σxx < 8
GPa, the first inflection becomes a metastable minimum which
is a sheared (martensitic twinnedlike) phase (the correspond-
ing generic GL condition is 1

4 < �a < 9
32 ); (5) at σxx = 8

GPa, the metastable minimum at γ = 0.55 corresponding to
the twinnedlike phase (which is close to the atomistic value
of 0.48 in Fig. 8) becomes slightly more stable relative to
the parent phase. The parent and twinnedlike phase minima
are separated by an activation barrier. This is the condition
for a first-order (discontinuous) phase transition (the generic
GL condition is �a = 1

4 ). The lattice remains in the par-
ent geometry as the necessary fluctuations to overcome the
barrier are not available; (6) with a further increase in σxx,
the stability of the sheared phase monotonically increases
while the barrier separating the parent and sheared phases
decreases (0 < �a < 1

4 ). The barrier eventually disappears at
the yield stress σ c

xx (10 GPa) with the γ = 0.55 state becom-
ing the global minimum. This minimum corresponds to the
spontaneously sheared (twinnedlike) lattice of the idealized
laminate microstructures in Fig. 9. In the atomistic simula-
tions, the amorphous band microstructure in RN at σ c

xx appears
at smaller γ (∼0.48) (Fig. 8). This is due to amorphization
of the shear bands as the system jumps to a state with large
γ for which the deformation twins cannot be accommodated
or even may not exist as the u2b(R) is a function of γ . This
points to the transient nature of the twinning microstructure in

α-RDX and characterizes the shear banding as a first-order
transition.

Next, we calculated �A(γ ) for geometries that signifi-
cantly differ from the geometry used in Fig. 9(a), which are
illustrated in Fig. 9(b). In the first family of curves, we used
the same LS , LP (labeled as L0

S , L0
P) as in Fig. 9(a), but the

angle α was varied (between 30° and 60°). In the second set
of calculations, we doubled the bandwidth (labeled as L1

S)
with the corresponding L1

P selected to preserve the number
of the bands (equal to three) while α = 45◦. The results are
shown in Fig. 9(b). For the (L0

S , L0
P) geometry, stable first-

order twinning phase minima exist for both α = 30◦, 60◦ but
these states are less stable compared to the twinning state
for α = 45◦. With an increase in the bandwidth [(L1

S , L1
P)

geometry], the twinning minimum quickly degenerates into
an inflection point. α = 45◦ and 135◦ are crystallographically
equivalent directions and hence the crisscross pattern that is
observed in the atomistic simulations can arise (Figs. 2 and
4). The �Aγ n constants can be easily obtained by numerical
differentiation of the �A(γ ) and their comparison to the GL
generic conditions [31] would indicate the importance of the
o(γ 4) terms. However, at this point we see that the generic
GL model gives an excellent qualitative description of the
stress-induced criticality in α-RDX.

The analysis presented here indicates that the nanoscale
shear banding in α-RDX represents a first-order phase transi-
tion with the twinning phase being bypassed. This mechanism
may be important in low-symmetry molecular crystals in
which the deformation slip and twinning modes are character-
ized by a high activation energy [99]. The intrinsic structural
instability leading to the phase transformation in the RN lattice
clearly correlates with the abrupt core softening of the u2b

[Fig. 6(b)]. The core softening transforms the A(RN ,V, T )
surface toward multiple characteristic scales, a feature which
is known to cause structural phase transitions as well as ther-
modynamic anomalies [56]. Moreover, the core collapse of
the intermolecular effective interaction is clearly caused by
stress-induced molecular conformational changes prompting
the conclusion that there is a hierarchy of structural instabili-
ties involved with shear banding in α-RDX.

IV. CONCLUSIONS

We presented a formalism which couples the GL
phenomenology with the CG (molecular c.m. projected)
Helmholtz FE from bottom-up principles using the
MSCG/FM method to study the plastic response of an
energetic molecular crystal under quasistatic loading.
Our microscopic theory indicates that transient bands of
localized twinning strain triggered by the core softening
(core collapse) of the effective intermolecular interaction
u2b(R) could be a fundamental instability underlying
a first-order phase transition associated with the plastic
response in solids composed of structurally complex flexible
molecules. Although we considered a specific energetic
crystal polymorph (α-RDX), the proposed mechanism
of nanoscale shear banding (which involves the transient
localization of the twinning shear and criticality due to the
stress-induced modification of the effective intermolecular
interaction) might be applicable to a wider range of molecular
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FIG. 9. Helmholtz FE �A(γ ) as a function of the order parameter γ for localization of twinning strain in idealized laminate microstructures
of various geometries (LS, LP, α, γ ) in the S cell lattice RN which is [100] compressed to selected σxx . (a) The �A(γ ) for the geometry
LS = 15 Å, LSL−1

P = 0.48 and α = 45◦ which resembles the geometry of the shear bands from the atomistic simulation. The values of σxx

label the A(γ ) curves. The parent (γ = 0) and sheared (γ �= 0) phase minima are indicated in the σxx = 8 and 10 GPa curves by arrows.
(b) The A(γ ) at σxx = 10 GPa and the geometries (L0,1

S , L0,1
P , α, γ ) (as indicated in the legends). In both panels, insets visualize representative

RN configurations at σxx = 10 GPa used in the calculations, with the arrows indicating directions of shear.

crystals with a type of structural transformation underlying
the plastic response determined by the crystal symmetry
and FE landscape. In α-RDX, the clusters of the conformers
(aaa, eee) that populate the shear bands emerge before
the transition to plastic response. The clusters tend to
localize within the regions which eventually transform into
the incipient deformation twinning bands followed by the
shear bands. These can be viewed as the nuclei of the
unique structural phase, another indicator of the first-order
phase transformation at the elastic-plastic transition. The
core softening of the u2b(R) is linked to the growth of
stress-induced conformational changes. In crystals with hard
to activate deformation twinning modes such as α-RDX, the
deformation twinninglike bands are expected to amorphize
along a discontinuous structural transition. This constitutes
an equilibrium mechanism for spontaneous nanoscale shear
banding. In shock-compressed α-RDX, the instabilities may

contribute to the onset of plastic strain localization followed
by shock energy dissipation and thermal softening effects
within the spontaneously formed amorphous shear bands. On
the methodological side, the proposed formalism may have
far-reaching applications due to its ability to study structural
phase transitions in real molecular crystals, a challenge for
conventional methods based on model FE functionals of a
few order parameters [100].
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