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Spin coherence times of point defects in two-dimensional materials from first principles
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The spin coherence times of 69 triplet defect centers in 45 different 2D host materials are calculated using the
cluster-correlation expansion method with parameters of the spin Hamiltonian obtained from density-functional
theory. Several of the triplets are found to exhibit extraordinarily large spin coherence times making them
interesting for quantum information processing. The dependence of the spin coherence time on various factors,
including the hyperfine coupling strength, the dipole-dipole coupling, and the nuclear g factors, are systemati-
cally investigated. The analysis shows that the spin coherence time is insensitive to the atomistic details of the
defect center and rather is dictated by the nuclear-spin properties of the host material. Symbolic regression is
then used to derive a simple expression for the spin coherence time, which is validated on a test set of 55 doublet
defects unseen by the regression model. The simple expression permits order-of-magnitude estimates of the spin
coherence time without expensive first-principles calculations.
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I. INTRODUCTION

Point defects in wide band-gap semiconductors repre-
sent a promising platform for the implementation of various
quantum technologies such as quantum computing and quan-
tum sensing [1–4]. In particular, defects in atomically thin
two-dimensional (2D) materials have recently attracted much
attention because they are easier to create, characterize, and
manipulate as compared to defects buried inside bulk crystals
[5,6]. Moreover, deep-level defects in 2D insulators with para-
magnetic spin states could offer qubit systems with distinct
advantages over more conventional solid-state qubit systems
like quantum dots and nitrogen-vacancy (NV) centers in dia-
mond [7]. In particular, spin qubits based on 2D crystal point
defects could be easier to scale up and have better compat-
ibility with modern semiconductor devices [8–10]. The spin
coherence time T2, usually measured in Hahn-echo experi-
ments [11], is one of the most critical properties for qubits,
and long spin coherence times are required for various appli-
cations [1,12–14].

There can be many sources of spin decoherence, e.g.,
instantaneous diffusion, relaxation due to lattice vibrations
(characterized by relaxation time T1), direct flip-flop, indirect
flip-flop [15], etc.; however, in solid-state systems, in the ab-
sence of other nearby paramagnetic spins and dangling bonds,
the magnetic fluctuations of the surrounding nuclear spins are
the dominant source of decoherence of a defect’s electron
spin (often referred to as central spin). Hence, for solid-state
systems, T2 represents an upper bound on the coherence time.
Defect spins in materials with a lower concentration of nuclear
spins are generally expected to have longer coherence times.
For this reason, 2D materials should be ideally suited as hosts
of spin qubits, as compared to conventional 3D bulk mate-
rials, because of their intrinsically lower density of nuclei.
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However, because of the extreme thinness of 2D materials,
the T2 is expected to be more sensitive to the host material’s
environment, e.g., the substrate [16]. Such effects are not
considered in the present work and all results apply to defects
in the freestanding 2D materials. Studies of spin dynamics
in 2D materials have so far been limited to a few systems,
e.g., hexagonal boron nitride (hBN) and MoS2 [17–19]. Given
the interest in discovering novel, useful defects for quantum
applications, and the importance of T2 in this regard, there is a
critical need for broader and more systematic studies of spin
dynamics in 2D spin systems.

In the present work, we calculate the spin coherence time
of the 69 point defects with a triplet ground state currently
contained in the quantum point defect database (QPOD) [20].
We find several candidate qubit systems with very long spin
coherence times. The convergence with respect to model pa-
rameters such as the size of the spin bath, the distance between
two bath spins, and the level of the cluster-correlation ex-
pansion are carefully studied. Our simulations show that spin
coherence times are largely independent of the chemical and
structural details of the point defect but are dictated by the
host material’s nuclear spins; specifically, their spin angular
momentum, gyromagnetic ratios (g-factors), and spin-spin
distances. Based on this observation, we propose a simple
descriptor for T2 in terms of a few features characterizing the
host nuclear spins. This descriptor is validated for a set of
55 doublet systems and used to estimate the spin coherence
time for all spinful defects in QPOD. All parameters entering
the spin Hamiltonian and the calculated spin coherence times
are available in the QPOD [20] online database.

While we were finalizing the paper, a similar paper by
Kanai et al. [21] appeared where the authors proposed an an-
alytic expression for T2 of defects in 3D host compounds with
dilute nuclear-spin baths. Although there is a considerable
similarity in the conclusions of the two studies, the important
differences are that we present ab initio results for the T2 of a
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range of proposed high-spin defects in 2D host crystals, and
the simple expression we obtain for T2 applies to atomically
thin materials rather than bulk materials.

II. METHODS

The Hamiltonian describing the dynamics of a triplet de-
fect center interacting with a bath of nuclear spins in the
presence of an external magnetic field takes the form

Htotal = HS + HB + HS−B. (1)

Here, the terms describing the central spin and its interac-
tion with the bath read

HS = −γe

⇀

B · ⇀

S + ⇀

S · ⇀

D · ⇀

S, (2)

HS−B = ⇀

S ·
∑

i

⇀

Ai · ⇀

I i. (3)

The bath Hamiltonian is given by

HB = −⇀

B ·
∑

i

γi

⇀

I i + Hn−n, (4)

where

Hn−n = μB

4π

∑

i> j

γ n
i γ n

j

⇀

I i · ⇀

I j − 3(
⇀

I i · r̂i j )(
⇀

I j · r̂i j )

r3
i j

. (5)

In these expressions, γe and γ n
i are the gyromagnetic ratios

(g factors) of the electron and the ith nucleus, respectively.
⇀

B,
⇀

A,
⇀

D, and
⇀

I represent the applied magnetic field, the
hyperfine coupling tensor, zero-field splitting tensor (ZFS),
and the nuclear-spin operator, respectively. The first term
in HS is the Zeeman term for electrons, while the second
term is the ZFS term that separates the spin sublevels of the
triplet. The first term in HB is the Zeeman term for the nuclei,
while the second term is the nuclear-spin dipole-dipole inter-
action. HS−B describes the hyperfine (HF) interaction between
the nuclear-spin bath and the defect electrons. In the present
work, we ignore the Sx and Sy components of the electron-spin
operator in HS−B so that flipping of the electron spin cannot
take place. This approximation is motivated by the large dif-
ference between the electron and nuclear gyromagnetic ratios,
which implies that under large magnetic fields spin flipping of
the electron spin cannot occur because the associated energy
cost greatly exceeds the hyperfine interaction energy [17].
Within this approximation the total Hamiltonian commutes
with the Sz operator and the Hamiltonian can be written as

Htotal = HS + HB + ms

∑

i

(
⇀

Ai · ⇀

I i )z, (6)

where ms is the magnetic quantum number of the central spin.
We note that the quadrupole interaction term is ignored here.
Previous studies have shown that its inclusion may increase T2

for some materials. Reference [21] found an increase in T2 by
about 30% for WS2 while Ref. [16] observed a change in T2

from 2.2 to 4.1 ms (an increase of about 50%) for a particular
spin defect in MoS2 upon inclusion of the quadrupole term.

Hence, our results represent a lower bound on the T2. The
decoherence of the central-spin triplet is studied by consid-
ering the central spin and the nuclear spins (environmental
bath) as a closed quantum system. In practice, the nuclear bath
is represented by all nuclear spins located within a radius of
50 Å from the central spin. This value of bath radius ensures
converged T2, as discussed later in the text. The nuclear spin

(
⇀

I i) and g factor (γi) of a given atom are chosen according to
the natural abundance of the isotopes of the atomic species.
The combined qubit and bath system is initially prepared in a
product state of the form

|ψ (0)〉 = 1√
2

(|1〉 + |0〉) ⊗ |B(0)〉, (7)

where |1〉 and |0〉 represent the ms = +1 and ms = −1 states
of the triplet, respectively, and |B(0)〉 is the state of the spin
bath at t = 0. At any later time t the bath state entangles with
the qubit states and the combined state is given by

|ψ (t )〉 = 1√
2

(|1〉 ⊗ |B(1)(t )〉 + |0〉 ⊗ |B(0)(t )〉), (8)

where |B(0)(t )〉 and |B(1)(t )〉 are the bath states at time t
conditioned on the state of the qubit. The phase information
of the central spin at an arbitrary time t is encoded in the
off-diagonal elements of the reduced density matrix,

⇀

ρs, which
in turn equals the overlap of the two bath states. The coherence
function L(t ) describes the loss of the relative phase of |0 〉
and |1〉, and is defined by

L(t ) = 〈1|ρs(t )|0〉
〈1|ρs(0)|0〉 = 2〈B(1)(t )|B(0)(t )〉. (9)

For a bath size of a few hundred spins or more, the
coherence function can be efficiently calculated within a
cluster-correlation expansion (CCE) scheme [22–24]. The key
idea of the CCE method is that the nuclear-spin bath-induced
decoherence of electron spin can be factorized into set of irre-
ducible contributions from spin-bath clusters, e.g. (for clusters
with up to two spins),

L(t ) =
∏

i

Li(t )
∏

i j

Li j (t ), (10)

where Li(t ) is the contribution of the single bath spin i and
Li j (t ) is the irreducible contribution of the spin pairs i j.The
maximum size of the cluster included in the expansion de-
termines the order of the CCE approximation. At the CCE-1
level each nuclear spin is treated independently and it interacts
with the electron spin through the hyperfine coupling. At
CCE-2 and CCE-3 levels, there are two and three spins within
a correlation cluster, respectively. For any nuclear-spin bath,
CCE expansion provides the exact solution when the expan-
sion includes the largest possible nuclear-spin clusters (i.e.,
the entire nuclear-spin bath), i.e., for a bath containing three
distinct nuclear spins, CCE-3 provides an exact solution for
the electron-spin coherence. In conventional CCE approach,
the total Hamiltonian of the system is conditioned onto the
qubit levels, while in generalized CCE (gCCE) approach, the
central spin degrees of freedom are directly included in each
nuclear-spin cluster.
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In the present work, we use the PyCCE [25] implementa-
tion of the conventional CCE method to calculate L(t ). We
limited ourselves to CCE order 2 (CCE-2) as our convergence
studies show there is essentially no change in L(t ) when going
from CCE-2 to CCE-3.

The atomic structures of the defect systems, the HF cou-
plings, and the ZFS tensors were obtained from the QPOD
database [we note that in the present work, the ZFS does not
affect the calculated L(t )] [20]. All the data in the QPOD
database were generated by density-functional (DFT) calcula-
tions performed using the GPAW electronic structure code [26],
which is based on the projector-augmented wave method.
All DFT calculations employed a plane-wave basis set with
800-eV cutoff, a k-point density of 6 Å (12 Å) for structural
relaxations (property evaluations), and the Perdew-Burke-
Ernzerhof (PBE) exchange correlation (xc) functional [27].
The supercell was kept fixed during relaxation and atoms were
fully relaxed until forces were below 0.01 eV Å−1. The size of
the supercell was chosen to ensure that all point defects were
separated by at least 15 Å.

Within the CCE approach the size of the spin bath was
limited to a sphere of radius Rbath = 50 Å from the central
spin while the maximum distance between two nuclear spins
forming an irreducible pair was kept at rdipole = 15 Å. The
convergence of L(t ) with respect to these parameters is dis-
cussed later. A magnetic field of 5 T oriented along the z
direction was applied in all the calculations, although it has
been shown that the heteronuclear-spin baths are decoupled
in most of the compounds under standard experimentally
easy achievable magnetic field as low as a few millitesla
[21]. We note that there could be some dependence of T2 on
the direction of the magnetic field for defects with strongly
anisotropic zero-field splitting tensors [28]. In order to capture
such effects, one would have to include the zero-field splitting
in the spin Hamiltonian and employ the gCCE approach for
the computation of T2. This is, however, beyond the scope
of current work. We averaged the calculated L(t ) over 100
different randomly generated spatial realizations of nuclear
spins and all the results presented herein represent such an
ensemble average.

The symbolic regression [29,30] was performed using the
FEYN [31] package. The space of mathematical functions used
to build the model ranges from addition, multiplication, and
squaring, to more complex functions such as the natural log-
arithm. The mean-square error was used as loss function and
a penalty term was added to regulate the number of features
in the model according to the Bayesian Information Criterion
(BIC) [32].

III. RESULTS AND DISCUSSION

We first explore the convergence of the coherence function
L(t ) with respect to the important model parameters, namely
the bath size Rbath, the maximum distance between two bath
spins rdipole, and the order of the cluster-correlation expansion.
To that end, we systematically varied these parameters and
studied the dependence of the coherence function for the three
representative triplet defects WAu2O4−W0

Au, Pd2S4−v0
Pd, and

MoAu2O4−Mo+1
Au (throughout this paper we use the naming

convention X -Y , where X is the chemical formula of the host

material and Y denotes the defect. We use the notation v
q
A for

an A-vacancy defect in charge state q).
In Fig. 1 we show the convergence of the coherence func-

tion L(t ) with respect to Rbath, rdipole and the order of the CCE
for each of the three test systems. It is evident from Fig. 1 that
the coherence function is well converged for Rbath = 50 Å,

rdipole = 15 Å, and a CCE at order 2. Consequently, these
parameter values were used for all the simulations.

We note that the fast modulations in L(t ) are due to
nonzero probability of the nuclear-spin resonance (or mI =
±1) transitions called electron spin-echo envelope modu-
lations (ESEEM) [33,34]. One can note that ESEEMs are
captured already by calculations at order CCE-1 at short
timescales, in agreement with a previous study [25]. The
overall decay of L(t ) is well converged at level CCE-2,
and we therefore limit ourselves to CCE-2 in the present
work. This choice saves substantial computer time and en-
sures a reasonable accuracy for the calculation of coherence
function.

Using the parameters determined from the convergence
test, we calculated the coherence function of 69 triplet defects
from the QPOD database. From the coherence functions, the
spin coherence time, or Hahn echo time T2, was obtained by
fitting the coherence function to the stretched exponential,
exp(−t/T2)n, with coherence time T2 and stretching exponent
n. An example is shown in Fig. 2 for the example of a sulfur
vacancy in MoS2 in charge state −2 (i.e., MoS2–v−2

S ).
The calculated spin coherence times T2 for all the triplet

defect systems studied in the present work are shown in
Fig 3. The colored sections indicate defects in the same host
material. One can immediately conclude that T2 is mainly a
property of the host material as different defects embedded
within the same host exhibit very similar coherence times.
This is because T2 is determined by the magnetic fluctuations
of thousands of nuclear spins and hence is independent of the
details of the defect structure, as long as the spin density of
the defect is well localized. The results also show that the
hyperfine coupling strength (which is a property of the central
spin that varies significantly for different defects in the same
host material) plays a minor role for the spin dynamics, in
general. The calculated T2 for all the defect species are listed
in the QPOD database [20].

Another thing to note is the exceptionally long spin co-
herence times of 29 (30), 37, 46, and 18 ms obtained for the
defects in the 2D materials WS2 (WSe2), WAu2O4, NiO2,
and MoAu2O4, respectively. The high values of the spin
coherence time within these compounds can be attributed
to the low concentration of spinful isotopes of the in-
volved elements and/or their low g factors (see Supplemental
Material, Table S1 [37]). The coherence times can be further
increased through the process of isotopic purification [18,35].
Point-defect species embedded within host materials with
such long spin coherence times are very attractive for qubit
applications. Furthermore, these hosts have relatively high
band gaps [Heyd-Scuseria-Ernzerhof (HSE06)], i.e., 2.06 eV
(1.73), 4.44, 3.31, and 4.11 eV, for WS2 (WSe2), WAu2O4,
NiO2, and MoAu2O4, respectively [36]. The other relevant
thermodynamic and magneto-optical properties, e.g., defect
formation energies, charge transition levels, Fermi-level posi-
tions, equilibrium defect and carrier concentrations, transition
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FIG. 1. Calculated coherence function, L(t ), vs time for different values of the parameters Rbath, rdipole, and order of the CCE approxima-
tion for the WAu2O4−W0

Au, Pd2S4−v0
Pd, and MoAu2O4−Mo+1

Au defects (top, middle, and bottom panel, respectively).

dipole moments, hyperfine coupling, and zero-field splitting
of the particular triplet, vacancy, and/or substitutional defects,
studied in the present work for these hosts are presented in the
QPOD database [20].

We also note that our calculated spin coherence times for
known defect species in hexagonal boron-nitride (hBN) and
MoS2 (in particular the boron vacancy in the −1 charge state
in hBN and the sulfur vacancy in the −2 charge state in
MoS2) are in very good agreement with previous studies [17].
Moreover, the calculated coherence time of 29 ms for WS2

matches reasonably well with another recent theoretical study
[16]. It is interesting to note that the T2 for bulk WS2 is 13.6 ms
[16] and is three times lower than the value for 2D WS2,
consistent with the higher nuclear-spin density in 3D. This
effect of dimensionality on T2 (2D vs 3D) is consistent with
previous study for other materials [17].

We now move on to discuss the dominant factors that gov-
ern T2 for a defect in a given host material. Crystal geometry,

in particular the interatomic distances, is expected to play
a significant role as the decoherence of the central spin is
caused by flip-flop transitions of the nuclear-spin bath, and the
dipole-dipole interaction driving these transitions depends on
distance as 1/r3

i j . Another factor influencing T2 is the nuclear
spin of the atoms of the host material, as the dipole-dipole
interaction is directly proportional to the product of nuclear
spins, IiI j . The concentration, or natural abundance, of the nu-
clear isotopes with nonzero spin should be another important
factor. Indeed, host systems like BN, SiCH2, and ZnH2O2,
which all have large concentrations of nuclear spins (e.g.,
natural abundance of the B11 isotope with spin I = 3/2 is 80%
while it is 99.99% for the H1 isotope with I = 1/2), have very
short spin coherence times, as can be seen in Fig. 3. Finally,
as the dipolar interaction between nuclear spins i and j is pro-
portional to γ n

i γ n
j , the nuclear g factors are also expected to be

important. Another point to note is the similarity between the
T2 values of WS2 and WSe2 (and MoS2 and MoSe2). Although
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FIG. 2. Calculated coherence function for a sulfur vacancy in
MoS2 in charge state −2. The spin coherence time is extracted by
fitting the coherence function by the stretched exponential function
exp(−t/T2)n. The extracted values of T2 and n are 2.51 ms and 2.03,
respectively.

Se has a higher concentration of nuclear-spin isotopes and a
larger g factor than S (see Table S1), this is counterbalanced
by the smaller magnitude of the nuclear spin of Se compared
to S (0.5 versus 1.5).

While all of these factors are expected to be important
for T2, it will not be possible in practice to optimize them
all separately. Consequently, for the purpose of selecting or
designing good host material for qubit applications, it is im-
portant to establish how the different parameters play together
to determine T2. To this end, we show in Fig. 4 the correlation
between the calculated T2 and each of the four key parameters:
average of the nonzero nuclear spins (〈I〉), average concen-
tration of nonzero nuclear spins (〈ρ〉), average g factor of
nuclei with nonzero spin (〈γ n〉), and average nearest-neighbor
distance between nuclear spins (〈dnn〉). It is clear that none of
the parameters alone can explain the trend in T2. The form of
the dipole-dipole interaction in Eq. (5) suggests the following
simple descriptor for the spin coherence time:

Dct = 1

N

1

d̄nn

N∑

i=1

γ n
i ρiIi, (11)

where the summation i run over the spinful isotopes of the ele-
ments of the host material, d̄nn is the average nearest-neighbor
distance of nuclear spins, and ρi is the natural concentration of
the spinful isotopes. We plot the T2 for all the defects against
the descriptor Dct in Fig. 5.

With the aim of obtaining an even better T2 descriptor,
we applied symbolic regression on the data (training) set
of 69 triplets. Our primitive feature set consists of the host
material features: 〈I〉, 〈ρ〉, 〈γ n〉, 〈dnn〉, and Dct . We generate a
total of 11 159 features by performing various mathematical
operations on the set of primitive features. We then perform

FIG. 3. Calculated spin coherence times T2 for 69 triplet defect
systems within 48 distinct 2D hosts. The defect systems are listed
along the y-axis (host material-defect type), while T2 are plotted on
a log scale. Different defects within the same hosts are collected and
highlighted by different colors.
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FIG. 4. Spin coherence time, T2, vs average natural abun-
dance/concentration of spinful isotopes (〈ρ〉 = 1

N

∑N
i=1 ρi ), av-

erage nuclear spin (〈I〉 = 1
N

∑N
i=1 Ii ), average nuclear g factors

(〈γ n〉 = 1
N

∑N
i=1 γ n

i ), and average nearest-neighbor nuclear-spin dis-
tance in the host material (〈dnn〉). It can be observed that there
is no clear correlation between T2 and any of the four descriptors
individually.

regression of logT2 in the large feature space using the BIC
[32] to penalize models with many features. The best-fit
model depending on up to two features is given by

log T2 = −0.92 log 〈dnn〉
+ 0.78 log 〈ρ〉 − 1.67 log Dct + 0.52. (12)

Figure 6 shows the true versus predicted T2 for both the
training set (69 triplets) and test set (55 doublets). One can
note from Eq. (12) that a significant weight is assigned by
the regression method to the descriptor Dct . The detailed
training metrics are listed in the Supplemental Material, Table
S3 [37]. The mean relative error is 35.7% for the training set
and 41.3% for the test set. These errors are in fact quite low
considering that the T2 values of the dataset varies over three
orders of magnitude.

The fitting model details, plots, and metrics for the spin
coherence times, for a dataset which does not include Dct as a

FIG. 5. Calculated T2 vs the descriptor 1/Dct in the units of
(radian−T−1 s−1 m−3)−1 [Eq. (11)]. A clear correlation can be seen
between T2 and Dct .

FIG. 6. True vs predicted coherence times [log T2 (ms)] for the
training set (blue) and test set (green). The line of equality is drawn
to give an idea of accuracy of prediction.

feature, are shown in the Supplemental Material, Eq. (S1), Fig
S4, and Table S3 [37], respectively. One can clearly see that
the machine-learning predictions of spin coherence time only
get worse by not including Dct as a feature. We further tried
to fill up our feature space with many different combinations
of the four features described above and found that symbolic
regression does not include those complex features during the
training process.

IV. CONCLUSION

We have calculated the spin coherence times (T2) of a
large set of point defects in different 2D host materials and
found systems with exceptionally large spin coherence times.
In particular, defects in WS2, WSe2, WAu2O4, NiO2, and
MoAu2O4 all have T2 above 15 ms. Based on our results we
conclude that the spin coherence times are a property of the
host materials and are insensitive to the atomistic details of
the defect center. We have performed detailed investigations
of how various elementary host-specific properties influence
the spin coherence time of defect spin centers. On that basis
we propose a simple descriptor that correlates very well with
the coherence time and can be used to identify crystals that
could host defects with long spin coherence time without
resorting to expensive first-principles calculations. Our work
provides insight into the coherence of defect spin qubits in 2D
materials.
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