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Elastic topological interface states and voltage feeder by breaking inversion symmetry on thin plates
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The rapid progress in the engineering of topological edge/interface states has attracted considerable interest
in both photonic and phononic systems originating from their electronic equivalent systems. However, most
classical wave types, such as electromagnetic/acoustic waves in topological engineering, are described by two-
dimensional (2D) partial differential equations (PDEs), which are not suitable for thin plate motions. We present
a 1D elastic topological interface state induced by symmetry breaking to bridge a knowledge gap in 4D PDE,
particularly for flexural waves on thin-plate frameworks. We also leverage the localized state at the interface for
energy harvesting, which can provide a sufficiently high voltage feeder by piezoelectric effects.

DOI: 10.1103/PhysRevB.106.104107

I. INTRODUCTION

The condensed energy in highly confined waves can be har-
nessed for energy harvesting by converting elastic or acoustic
waves being dissipated to electric resources [1–6]. To en-
able such localized energy, several studies have been actively
pursued and some representative platforms such as gradient
index [7–13], local resonant [14–18], defect-based [19–26]
artificial materials have been developed. Such platforms are
potentially promising candidates for next-generation elastic
energy transport at the desired location with robust amplifi-
cation. Gradient index phononic crystals [7–13] guide elastic
waves with varying effective material properties in a space-
parametric fashion, but do not achieve a significant level of
localized energy. Local resonant structures, which consist of
extra local resonators attached to the main structural body,
have been actively developed [14–18]. These designs enable
the suppression of elastic wave propagation while local res-
onators capture elastic energy. In general, the local resonance
mechanism generates leaky modes, hence for the localization
aspect, the efficiency in terms of quality factor is less than that
of the elastic version of the bound state in the continuum mod-
els [27,28]. Defect-based phononic crystals also have evolved
by introducing a defect to break periodicity in dispersion
relation with a partial impurity, which gives rise to flat bands
with extremely low slope (zero group velocity), indicating
that elastic waves are densely distributed exclusively in the
impurity domain [19–26]. To date, however, the efficiency of
localization is indeed bound by the amplitude of the confined
mode of elastic waves capable of producing millivolts.

Recently, the development of elastic topological phononic
crystals [29–33] and metamaterials [34–38] originating from
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mathematics and condensed matter physics [39–41] has gar-
nered considerable attention. Topological edge states that
are gapless in bulk bands with topological protection are
confined at the boundary and pass through the topological
bandgap in momentum space, according to the bulk-edge
correspondence [29]. These topologically protected features
enable them to be immune to structural defects, resulting in
resilient wave propagation along desired boundaries while
limiting bulk propagation. Additionally, in a lower dimension
(from the boundary mode to singular point mode), a highly
localized so-called interface state can be sought, accompa-
nied by reflection-free behavior [42–44]. Emphasis has been
placed heavily on the exceptional carrier of elastic energy
transfer as a cutting-edge waveguide employing topological
mode inversion supported by helical and valley modes in
elastic continuum models for two-dimentional (2D) systems
[32,37,45,46]. For more details on the physical context of
generic elastic topological systems and their various waveg-
uide designs, please visit [47,48]. In one-dimensional (1D)
systems, however, most of the relevant studies are based on
discrete chain models, therefore there is a strong demand to
explore continuous elastic systems [34,49,50]. Particularly for
an interface state in a thin plate framework, the approach for
constructing topological systems has not been well investi-
gated owing to the higher-order governing equation than that
of other classical waves, which makes it challenging to unveil.
Moreover, such an interface state has promising potential use
for efficient energy capture as a novel kind of voltage feeder
through the piezoelectric effect, opening up exciting possibil-
ities for the localization of gigantic vibration energy.

In this work, we propose topological interface states that
leverage a mirror symmetry in elastic phononic crystals (PCs).
In particular, the system for flexural waves described by
four-dimensional (4D) partial differential equations (PDEs) is
considered, as opposed to 2D PDEs that have been commonly
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FIG. 1. (a) Schematic of the bare steel plate with geometri-
cal dimensions L and H . (b) Mathematical schematic of the 1D
plate model with nonhomogeneous, simply supported, and free edge
boundary conditions. (c) Analytic solutions (solid line) of out-
of-plane displacement fields in comparison to numerical solutions
(dotted square) using weak formulation at frequencies of 10 kHz
(black), 30 kHz (blue), 50 kHz (green), 70 kHz (violet), and 90 kHz
(orange). (d) Distribution of the stiffness matrix considering nodes
and unknown variables given by discretized mesh and corresponding
boundary conditions, with its elements being highly localized around
the diagonal elements.

handled in topological engineering. We construct multilayered
PCs that are topologically trivial estimated by the planewave
expansion method, resulting in a bandgap feature. By break-
ing the inversion symmetry in such a system, a localized
interface state arising from a geometric phase (so-called Zak
phase) transition is obtained. Moreover, the feasibility of
employing the localized state as a voltage feeder in energy
harvesting is examined, with the resultant voltages in the few
tens of volts range. Our findings reveal that establishing highly
confined waves and high voltages requires an optimized sys-
tem that takes evanescent wave couplings between the input
and interface into account.

II. PROBLEM STATEMENT

Elastic waves in bulk media present a rich palette of wave
polarizations such as longitudinal, transverse, and torsional

modes. The geometrical shape of the thin plate system implies
the motion of the guided wave. Plate motions in Lamb modes
are characterized by symmetric and antisymmetric deforma-
tions along the plate thickness and boundary conditions. For
these reasons, dealing with elastic waves rather than other
classical waves (e.g., acoustic waves) entails more complexity.
In this work, we look at the antisymmetric deformation of thin
plates, also known as flexural waves, which propagate in the
lateral dimension direction. For simplicity, we suppose that
the plate medium is homogeneous and isotropic, with no in-
plane (or transverse shear) deformation [Fig. 1(a)]. Thus, the
harmonic plate motion can be described by using Kirchhoff-
Love (K-L) plate theory, as written by

D�2u = −2ρhü − q, (1)

where �2 ≡ ∇2∇2 is the biharmonic operator, u is the out-
of-plane displacement field, and q is a negligible external
load. ρ denotes the mass density, h is the half thickness of
the plate, and D is the flexural rigidity [= 2h3E/3(1 − ν2)]
where E and ν is the Young’s modulus and the Poisson’s ratio,
respectively. Assuming that the solution u is time harmonic
dependent and there is no strain on the y axis, the 1D partial
differential equation (PDE) is formulated as ∂4u/∂x4 = γ 4u
where γ = (2ρhω2/D)1/4. Here, we examine a simplifying
model for the 1D case with the following boundary conditions
to be solved, assuming that [Fig. 1(b)]:

u|x=0 = 1, (2a)

M|x=0 = 0, (2b)

M|x=L = 0, (2c)

Q|x=L = 0, (2d)

where the bending moment M and the shearing force Q are re-
lated to u′′ and −u′′′. The nonhomogeneous simply supported
condition [51] of Eqs. (2a) and (2b) is employed to have an
eigendisplacement loading at x = 0 rather than employing the
additional external load q and to avoid the duplicated loading
conditions, while Eqs. (2c) and (2d) at x = L indicate the free
edge boundary. We obtain the following analytical form by
solving with four boundary conditions:

u(x) = − csc γ L(sinh γ L + cosh γ L)(cosh γ L(sin γ (L − x) + cos γ L sinh γ x + sin γ L cosh γ x)

− sinh γ L(cos γ (L − x) + sin γ L sinh γ x + cos γ L cosh γ x) + sin γ x − sinh γ x)/

(− cot γ L + (cot γ L − 1) sinh 2γ L + (cot γ L − 1) cosh 2γ L − 1). (3)

The elastic properties of the steel background are given
by ρ = 8000 kg/m3, E = 200 GPa, and ν = 0.3. The ge-
ometric parameters of the plate are also given by h = 5 m
and L = 20 m. Evaluating ω = 2π f , for example when f =
[10, 90] Hz, the plate motion of harmonic vibration can be
seen as solid lines in Fig. 1(c). To ensure the validity, we also
conduct a finite element simulator COMSOL using a mathemat-
ical module. In the language of numerical methods, the strong
form of Eqs. (1) and (2) is established as

∇ · �(u) = U(u), (4)

where

�(u) =
[ ∇ · M

2ρhω2/D
∇ · u − M

]T

, (5a)

U(u) = [u M Q]T. (5b)

It properly reads in a weak form and can be written as the
following:∫

	

[∇(
 jυ jφ j (x)) · �(u) + (
 jυ jφ j (x))U(u)]d	, (6)
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FIG. 2. (a) Schematic of multilayered PCs composed of acrylic
and steel in a periodic manner. (b) Band structure calculated by
plane-wave expansion method; the shaded region denotes a bandgap
in the irreducible Brillouin zone. (c) Out-of-plane displacement fields
along the distance at the following frequencies: 30 kHz (black),
50 kHz (red), and 70 kHz (green). The significantly suppressed out-
of-plane displacement field is obtained at 50 kHz, as is anticipated
in (b). (d) Transmission loss along frequency clearly illustrates the
bandgap feature around 50 kHz.

where 	 is the volume element, and υ(x) = 
 jυ jφ j (x) is
the test function which is the linear sum of linear Lagrange
basis function φ j (x) with a node j. The numerical results
[Fig. 1(c), dotted square] of the displacement field are well
consistent with the analytical solutions. Figure 1(d) indicates
the numeric calculation of the stiffness matrix K solving
KU = F where the load vector F corresponds to the boundary
conditions. The values of K become valid that are well-
localized along the diagonal elements while computing a
larger matrix truncated up to the number of j × U with node
j ∈ {1, 2, ..., 12} and unknown variables U ∈ {1, 2, 3}. Con-
sideration of the boundary conditions will remain unchanged
while further utilizing multilayered PCs. It is worth noting that
if a slope boundary (e.g., θ = ∂u/∂x) is enforced, we need one
more variable, which is not mentioned here.

III. BAND CALCULATION

We use multilayered PCs with Bragg gaps endowed by
lattice scattering to hinder flexural-type Lamb wave motion.
The proposed design is constructed of periodic soft-rigid unit
cells, as shown in Fig. 2(a), with N = 6 being the total number
of periodic unit cells. Within the alternative periodic system,
we can evaluate the PCs by the planewave expansion method

using the Fourier expansion of u and Bloch’s theorem. We
recall the biharmonic equation ∂4u/∂x4 = γ 4u, and separate
it and define two parameters α and β for choosing Fourier
coefficients

2h3E

3(1 − ν2)︸ ︷︷ ︸
β

∂4u

∂x4
= 2ρh︸︷︷︸

α

ω2u. (7)

Herein, we apply the spatial harmonic dependence on u as

u(x) = ukeik·x =
∑

G

u(G)ei(k+G)·x, (8)

where the Bloch function uk satisfies the Born–von Karman
boundary condition, which is formulated by Fourier series
expansion with the reciprocal lattice vector G (= 2π

Lunit cell
nxx̂)

where nx is allowed to be integers. Likewise, we can expand
the material parameters in Fourier series as σ = 
Gσ (G)eiG·x
where σ is a pair of each material parameter [equivalently,
σ = (α, β )]. In an effective averaging sense, we have the
following relation:

σ (G) =
{
σA f̃ + σB(1 − f̃ ) for G = 0

(σA − σB)F (G) for G �= 0,
(9)

where f̃ = LA/Luc is the filling fraction. LA and Luc(= LA +
LB) indicate the length of inclusion and the unit cell, re-
spectively. The subscripts A and B represent each part of the
inclusion (or acrylic) and host (or steel). The structure factor
F (G) is defined by

F (G) = 1

Luc

∫
LA

e−iG·x dx, (10)

where it gives rise to f̃ sinc(nπ f̃ ) by integrating over the
length of inclusion. Plugging u and σ in Fourier series into
Eq. (7), we obtain∑

G′
[β(G − G′)(k + G)2(k + G′)2

− ω2α(G − G′)]u(G′) = 0, (11)

where the eigenvalue problem is formulated with ω2(k) to
be evaluated. For the host part, the steel properties remain
the same as in the previous case. We determine the material
properties of the inclusion as acrylic; ρ = 2400 kg/m3, E =
30 GPa, and ν = 0.15. By letting Lunit cell and LA hold 20 cm
and 10 cm with h = 5 cm, the band structure can be achieved
for �-X in 1D case while searching k in the irreducible
Brillouin zone [Fig. 2(b)]. The suppressed out-of-plane dis-
placement fields are clearly confirmed in the bandgap-induced
frequency window [Fig. 2(c), red]; otherwise, the flexural
wave remains in the propagating state [Fig. 2(c), black and
green]. Transmission loss (TL) is also estimated in Fig. 2(d)
by 20log10(|uin/uout|), indicating that the positive-valued large
peaks arise in the central bandgap frequency range.

IV. ZAK PHASE

Topological engineering is receiving a lot of attention due
to the potential pathway to transport wave energy without
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losses and backscattering derived from the bulk-boundary cor-
respondence for 2D systems. Handling the geometric phase
known as the Zak phase for 1D periodic systems also yields
intriguing states with quantized singular states in the bulk
band across the Bloch states that are highly localized at in-
terfaces.

Periodic multilayered PCs with no mirror symmetry may
provide a representative platform for elastic wave suppression.
However, this system is topologically trivial, as there is no
interface state within the Bragg gap between the upper and
lower bands. Interestingly, by breaking the inversion symme-
try (or parity symmetry, P) and incorporating two different
geometry phases mirroring each section, we can achieve an
interface state that allows for the enhancement of out-of-plane
displacement fields [Fig. 3(a)] inside the topological bandgap.
The discriminator, the Zak phase which is the analog of the
Berry phase for 1D case, is used to classify whether it is
topologically invariant or not. The Zak phase in Eq. (12)
[52,53]

θ zak
n =

∫ π/Luc

−π/Luc

[
i
∫

uc

1

2ρv2
dxu∗

n,k (x)∂kun,k (x)

]
dk (12a)

≈ −Im
N∑

i=1

ln

[
1

2ρv2

∫
uc

dxu∗
n,ki

(x)un,ki+1 (x)

]
(12b)

takes two quantized values either 0 or π when an intrinsically
built-in inversion symmetry broken unit cell is employed.
Note that we preserve the same boundary conditions at both
ends without loss of generality. The Zak phase is calculated
using a discrete formula for numerical computing by integrat-
ing over the Berry connection along the single wavevector
axis [Eq. (12b)]. In Fig. 3(b), the broken inversion symmetry
yields two discrete values, and along the structural variation,
the topological phase transition of the second band is observed
so that the values change abruptly from π to 0. The elastic
weight function 1/(2ρv2) does not undergo any change in
the Zak phase as long as it is real-valued constant. Accord-
ing to Fig. 3(c), there is a band inversion and the bandgap
opens around δ=0, exhibiting a symmetric (antisymmetric)
Bloch mode at the upper (lower) band edge for δ < 0. Red
and blue square dots represent symmetric and antisymmetric
modes, respectively. Each band mode shape at δ = ±0.02 is
illustrated in the insets, and it can be seen that when δ > 0,
the symmetries of displacement fields swap, indicating that it
is topologically nontrivial bandgap formation.

To figure out the interface state, we construct mirror sym-
metry PCs with N = 6, where N is the total number of two
different unit cells, −→uc and ←−uc, based on the origin O. The
concise toy model indeed reveals that the localized interface
state can be found by the normalized absolute square of dis-
placement field |u|2 emerging geometric phase transition at
52.55 kHz (red solid line), whereas the zoom-in data such as
black and green solid lines at 30 and 70 kHz are pointless in
the absence of such a phase transition [Fig. 3(d)]. We calculate

an averaging intensity Iavg = ←−uc+−→uc
2

∫ −→uc/2←−uc/2
|u(x)|2dx integrat-

ing over the interparticle distance that occupies the rigid-rigid
section. In Fig. 3(e), extremely large value Iavg ≈ 104 is ob-
tained at the interface state. This also leads to a strong dip in

FIG. 3. (a) Schematic of PCs with broken inversion symmetry
incorporating different periodic configurations −→uc and ←−uc based on
O where 2λ = Luc and δ is the structural variation, resulting in Zak
phase transition that is computed in (b). The abrupt change of Zak
phase is achieved near δ = 0, ensuring a topological interface state.
(c) Band inversion of the bandgap around 52 kHz with varying
the structual variation δ, the red and blue square dots correspond
to symmetric and antisymmetric modes, respectively. The insets
indicate that the symmetries of displacement fields are inverted.
(d) Normalized absolute square of displacement fields for N = 6.
Highly localized state is observed at the interface at 52.55 kHz
(red); otherwise, the fields typically behave governed by boundary
conditions. (e) Averaging intensity along frequency reveals the exact
value of how it is localized, with an amount of approximately 104.
(f) Transmission loss along frequencies indicates the feature of the
interface state with a strong dip that was previously suppressed owing
to the trivial bulk bandgap.

transmission loss [Fig. 3(f), red circle], which was originally
suppressed in the trivial bulk band by periodic PCs across
the frequency spectra. Note that the presented technique is
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not valid for changes involving out-of-plane symmetry along
the thickness direction, as we are considering, analytically and
numerically, a 1D problem.

V. VOLTAGE FEEDER

Unless we are aware of the exact site of the vibration
source, the way in which external stimuli affect the internal
system becomes essential in most natural vibration environ-
ments. This concern motivates the study on how boundary
conditions interact with the main system in topological en-
gineering. Rather than imposing an artificial preload at the
interface, we applied boundary constraints on both ends. We
therefore can reveal the coupling of the evanescent waves
caused by the Bragg gap in the half-frontal system. The
evanescent waves are obviously out of reach of the coupling
at the interface for N = 20 when the number of unit cells
N is modulated [Fig. 4(a)]. For N = 10, on the other hand,
the well-balanced interface state arises, but the intensity at
the interface is comparable to that of the fore-end applied
by the simply supported boundary condition [Fig. 4(b)]. As
a result, measuring the amount to which evanescent waves
interact with the interface is critical. Qualitatively, a well-
localized state with size compactness, such as N = 6, should
be sought [Fig. 4(c)]. The trimer-like state with two maxima
in the vicinity of the interface is originating from a dimer-
ized scheme of Su-Schrieffer-Heeger chain linked by strong
hopping strengths that correspond to rigid-rigid mixture on
the continuum side [49,54]. Figure 4(d) indicates that the
normalized amplification ratio umax/uin estimated by the max-
imum peak on the amplitude of displacement fields ranged
in the rigid-rigid mixture around the interface. The maxi-
mum value of 156.71 at 52.55 kHz in the topological plate
implies that the vibration is extremely confined. To differ-
entiate the performance of the topological plate from other
resonances by global modes, we compare it to the case of
the acrylic bare plate (black square dot) for comparison. We
find that the amplification ratio of topological plates is much
greater than that of acrylic bare plates, as well as at other
frequency spans.

The amount of intensity enhancement can be used as an
alternative to energy capture to overcome the limits of the
mechanical-electric conversion efficiency of piezoelectric ma-
terials [Fig. 4(e)]. For practical purposes, an inset schematic
is presented, which comprises of a piezoelectric material
(PZT-4) with ground and terminal electrodes mounted on
topological mirror-symmetric PCs at the interface. The volt-
age can be retrieved by the relation V = dFt/(εrε0A) where
d (= 2.95 × 10−10 m/V) is the piezoelectric coefficient, F =
σA(= 1 N) is the force, t (= 5 mm) is the thickness, εr (=
1300) is relative permittivity, ε0(= 8.85 × 10−12 F m−1) is
the vacuum permittivity, and A(= 1 cm × 10 cm) is the area.
Note that we determined u|x=0 ≈ 1.07132 × 10−9 m at the
simply supported boundary condition that corresponds to
F ≈ 1 N extracted through the relations e = 1

2 (∇u + (∇u)T)
and σ = λTr(e)I + 2μe where e is the strain and σ is the
stress, and λ and μ are the Lamé parameters. It reveals
that the large voltage, approximately 20 V, induced by the
interface state can be obtained from the compact size of
the piezoelectric material [Fig. 4(f)]. The voltage feeder

FIG. 4. Normalized absolute square of displacement fields for
(a) N = 20, (b) N = 10, and (c) N = 6, respectively. (a) The large
number of N causes evanescent waves that are unable to reach the
interface due to the bandgap, while (b) the case of N = 10 indicates
the well-balanced interface state emerges as a result of the coupling
of evanescent waves, although the intensity is almost in unity arising
from the left boundary condition. (c) Optimized case with a trimer-
like state (yellow circles) and two maxima for N = 6, resulting in the
strong confinement at the interface. (d) Amplification ratio umax/uin

(red solid line) for the optimal case of N = 6. The black square dots
represent the acrylic bare plate for comparison. At 52.55 kHz, the
maximum amplification ratio is reached in topological plates. (e)
Averaging intensity along N shows that an optimal configuration,
such as N = 6, should be sought. (f) Voltage at the site surrounding
O where the piezoelectric material sandwiched by two electrodes is
placed. The voltage levels around 20 V induced by the topological
interface state are indeed substantial, and may possibly be exploited
for energy harvesting.

established by the topological engineering strategy, which
expands the scale from millivolts to volts, may outperform
recently developed methods such as gradient index lenses,
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local resonators, and defect-based PCs based on subwave-
length microstructures.

VI. CONCLUDING REMARKS

The rapid improvement in designing topological
edge/interface states has captivated the desire of topological
photonic and phononic systems inspired from the electronic
equivalents. However, electromagnetic/acoustic waves
in topological engineering are described by 2D PDEs,
which cannot be easily applied to thin plate motions in
classic wave models. Therefore, we provide a 1D elastic
topological interface state generated by breaking the inversion
symmetry for flexural waves on thin plate frameworks, filling
a knowledge gap in 4D PDEs. We propose an interface state
based on elastic phononic crystals (PCs) by harnessing mirror
symmetry. The plane-wave expansion method is used to
construct topologically trivial multilayered PCs, which result
in typical bandgap features. When the inversion symmetry of
a system is broken, a geometric phase transition (also known
as the Zak phase) takes place, resulting in a localized interface

state. With respect to energy harvesting, we investigate at
whether or not the localized state can be leveraged as a
voltage feeder. According to our findings, an optimal system
should account for evanescent wave couplings between the
input and interface in order to obtain high voltages and highly
confined waves.
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