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Dynamics of vortex defect formation in two-dimensional Coulomb crystals
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We study the nonequilibrium dynamics of two-dimensional planar ion Coulomb crystals undergoing a
structural buckling transition to a three-plane configuration, driven by a reduction of the transverse confining
frequency. This phase transition can be theoretically modeled using a mapping to a two-dimensional Ginzburg-
Landau theory with a complex order parameter field. We demonstrate that finite rate quenches result in the
creation of stable topological vortices, which are localized point regions around which the phase of the order
parameter field winds a multiple of 2π . The density of the defects as a function of quench rate is investigated
using molecular dynamics simulations, and its scaling is shown to be consistent with Kibble-Zurek theory of
defect formation. Following the quench, the annihilation of vortex and antivortex pairs results in the relaxation of
defect density that follows a diffusive scaling with a logarithmic correction. This paper highlights the potential for
investigating complex nonequilibrium statistical physics of topological defects in an experimentally accessible
ion trap setting.
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I. INTRODUCTION

Trapped ions is one of the most prominent quantum
technologies. Doppler laser cooling can bring ions to low
temperatures at which the ions crystallize forming regular
structures, known as Coulomb crystals, whose shape is de-
termined by the trapping parameters. Linear chain crystals
in Paul traps have the simplest phonon spectrum and have
been widely used in metrology [1], quantum computing [2,3],
and quantum simulations [4]. In Penning traps, large two-
dimensional (2D) planar crystals can be readily created, and
these structures have also been used in metrology and quan-
tum information processing applications [5].

Beyond these simple Coulomb crystal geometries, there
is great interest in exploring more complex structural phases
and the transitions between them [6–10]. The strong long-
range Coulomb interactions between particles leads to highly
nonlinear nontrivial dynamics, whose investigation is of fun-
damental interest in the fields of nonlinear science, complex
systems and solid-state physics; it is useful as a platform
for studying complex nonlinear and nonequilibrium dy-
namics in areas including the simulation of Klein-Gordon
fields on a lattice [11], Kibble-Zurek (KZ) mechanism
of defect formation [12–14], dynamics of discrete soli-
tons [15–17], dry friction [18], energy transport [19,20],
and synchronization [21]. Coulomb crystals with more com-
plexity also provide new lattice geometries for quantum
simulations [22].
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In this paper, we investigate numerically the nonequilib-
rium structural phase transition from a quasi-two-dimensional
one-plane crystal to a three-plane crystal. We focus on the
Kibble-Zurek mechanism of the formation of topological de-
fects and the subsequent coarsening dynamics of annihilation
of defects and antidefect pairs.

Previous studies of the KZ mechanism in ion crystal
systems have focused on the linear to zigzag phase transi-
tion in a quasi-one-dimensional system [12,13]. These are
symmetry-breaking phase transitions, and the resulting de-
fects are either kinks [12,13] if the Z2 symmetry is broken
or helical twists [14] if the U (1) symmetry is broken. The
nonequilibrium U (1) symmetry breaking leading to stable
winding of the order parameter has also been studied in one-
dimensional BECs in toroidal traps [23].

The one-plane to three-plane structural phase transi-
tion considered in this paper can be described by an XY
six-clock model with an intermediate Kosterlitz-Thouless
phase. The defects are U (1) point vortices whose physics
is considerably richer [24]. Previously, simulations of fi-
nite quenches in a two-dimensional XY spin model have
shown that the density of vortices is dictated by both the
KZ mechanism and the coarsening dynamics of annihilation
of vortex/antivortex pairs [25]. This observation was cor-
roborated in an experimental study of colloids undergoing
a phase transition via Kosterlitz-Thouless-Halperin-Nelson-
Young melting scenario [26]. Our molecular dynamics (MD)
simulations demonstrate that faster quenches result in higher
densities of created defects in qualitative agreement with KZ
theory. At late times of the quench protocol the defects an-
nihilate through coarsening dynamics. The density of defects
eventually stabilizes, which may be attributed to the pinning
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effect of the emergent six-clock potential. Our paper intro-
duces a new platform for investigating the nonequilibrium KT
phase transition and more generally the collective dynamics
of interacting vortices.

The paper is organized as follows. Section II presents the
microscopic model, reviews its mapping to the Ginzburg-
Landau field theory and the phase diagram of a one-plane
to three-plane structural transition. Section III uses molec-
ular dynamics simulations to demonstrate the existence of
topological defects in the three-plane phase and presents an
algorithm for determining their location. Section IV focuses
on molecular dynamics investigation of finite rate quenches
where the KZ mechanism and coarsening dictate the evolution
of the average number of defects in the system.

II. GINZBURG-LANDAU MODEL OF ONE-
TO THREE-PLANE TRANSITION

Ion traps confine repulsively interacting ions in space either
by rapidly varying oscillatory electric fields as in the Paul
traps or a combination of static electric and magnetic fields as
in the Penning traps [27]. The dynamics of the ion Coulomb
crystal can be often approximated with the so-called pon-
dermotive approximation or pseudopotential theory, which
replaces the time-varying trapping fields experienced by par-
ticles by an effective time-independent harmonic potential.
The laser cooling reduces the temperature of the ions such
that they can form regular crystal-like configurations, whose
overall shape is determined by the trap parameters. We will
consider a system of N ions confined to a periodic cell on the
x-y plane and by the harmonic confinement in the z direction.
The potential energy is given by

V = 1

2
mωz

N∑
j

z2
j + K

∑
i< j

1

|ri − r j | , (1)

where r j = (x j, y j, z j ) are the coordinates of the jth ion,
K ≡ q2/4πε0, q is the charge of the ion, ε0 is the vacuum
permittivity, m is the mass of the ion, and ωz is the trapping
frequency in the z direction. The periodic boundary conditions
results in a homogeneous spacing in the ion crystal. In a real
experimental system, the open boundary conditions and the
harmonic confinement in the x and y directions would result in
inhomogeneous spacing between the ions; the ions are closer
together in the center of the crystal and further apart near the
edges. The system with periodic boundary condition can be
viewed as an approximation to a central region of a large ion
crystal where the spacing is approximately homogeneous and
the boundary effects can be neglected.

Above a certain critical value of ωz = ω(c)
z the lowest-

energy configuration is a planar triangular lattice. When the
confining frequency is reduced to below ω(c)

z , the one-planar
crystal configuration undergoes a buckling structural tran-
sition into a three-planes, all of which in triangular lattice
geometry but with double the lattice spacing (see Fig. 1). This
buckling instability has been predicted in an early theoretical
work by Dubin [28] and has been observed experimentally in
Ref. [29]. Recently, Podolsky et al. [24] derived a Ginzburg-
Landau (GL) field theory for this transition thereby proving

FIG. 1. Structural buckling transition between a one-plane and
three-plane configuration. (a) The transverse displacement of the ions
in a crystal at different values of ωz in the vicinity of the critical ω(c)

z .
(b) The triangular lattice structure of the three-plane phase.

that it is in the universality class of a two-dimensional XY
model [24].

The GL field theory is derived by Taylor expanding the
nonlinear Coulomb interaction term in Eq. (1) in displace-
ments around the equilibrium lattice positions. In Ref. [24] it
was shown that one must keep the terms up to the sixth order
in the expansion to correctly capture the critical properties of
the structural phase transition. The GL free energy density is
given by

f

K = γ

2
|∇ψ |2 + ε|ψ |2 + u|ψ |4 + v|ψ |6 + w

2
[ψ6 + (ψ∗)6],

(2)

where ε = 1√
3
( mω2

z a2

2K − I2), u = 3/
√

3/4I4, w = 5
8
√

3
I6,

v = − 25
4
√

3
I6, I2 = 6.683, I4 = 3.56, γ = 0.223, I6 = 2.558,

and a is the lattice spacing. The order parameter field at a
lattice point with coordinates [x j, y j , ψ (x j, y j )] is an implicit
function of the transverse displacement,

z j = Re[ψeiK·r j ]. (3)

Here K is the base vectors of the first Brillouin zone of the
triangular lattice given by K = (4π/3, 0), ri = n1a1 + n2a2

with r1,2 = ( 1
2 ,±√

3/2). The order parameter ψ is complex
and can be expressed as ψ = |ψ |eiθ . The potential energy for
the mean-field configuration, which neglects the spatial fluc-
tuations in the order parameter, V (ψ )/K = ε|ψ |2 + u|ψ |4 +
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FIG. 2. (a) Single well potential of GL theory for ε > 0. (b) Mexican hat potential for ε < 0.

v|ψ |6 + w
2 [ψ6 + (ψ∗)6], is shown in Fig. 2. For ε > 0 the

order parameter is zero, ψ = 0, and the system is in the one-
plane phase. The potential is a single well and since the order
parameter has no preferred direction, the one-plane phase is
disordered. For ε < 0 the order parameter is nonzero, and the
system is in the three-plane phase. The potential is a Mexican
hat but with six equally spaced wells which correspond to the
local order of the six degenerate lattice arrangements shown
in Fig. 2(b). This corresponds to the six-clock phase which
has the discrete Z2Z3 symmetry. At higher energies the order
parameter can easily overcome the energy barrier between the
neighboring minima, and the symmetry changes to the broken
U (1) continuous symmetry. Two-dimensional systems with
the broken U (1) symmetry in the order parameters support
the topological defect vortex configuration, which are local-
ized regions where the field winds around the Mexican hat
potential. The presence of these topological defects drastically
alters the physics of the system leading to the existence of the
KT phase [30,31]. Thus, near the critical point of the one-
plane to the three-plane structural phase transition the system
can exist in three phases, disordered, KT, and the six-face

1-plane disordered phase

KT phase

6-clock phase

T

T6

TK T

Quench 
Protocol

FIG. 3. Phase diagram of a structural one-plane to three-plane
phase transition of a Coulomb crystals. The control parameter space
determined by the temperature T and coefficient ε which is a function
of the ratio mω2

z a2/K. The line TKT indicates a transition between
one-plane phase and a three-plane phase in quasi-long-range-ordered
KT phase. The line T6 indicates a transition between the KT phase
and the long-range-ordered three-plane phase with the Z6 symmetry.
The quench is implemented by reducing the transverse confining
frequency ωz at a rate of (ω(i)

z − ω( f )
z )/τQ.

clock phases, depending on the value of ε and temperature T .
The phase diagram was derived in Ref. [24] and is sketched
in Fig. 3. The KT phase is characterized by a change in
behavior in correlation length. For T > TKT , the system is
disordered, the correlation length decays exponentially, and
there is a finite density of unbound vortices. For T < TKT ,
there is a quasi-long-range order with a power law, decays
of the correlation length and vortices, and antivortices form
bound pairs. For T < T6, the system is in the six-clock phase,
which again exhibits a long-range order with exponentially
decaying correlation length.

III. TOPOLOGICAL DEFECTS
IN THE THREE-PLANE PHASE

To verify the prediction of the existence of the topological
defects, we have performed molecular dynamics simulations
of ion Coulomb crystals confined in a box with periodic
boundary conditions in the x and y directions. The topological
defects are produced by quenching a system from a one-
plane disordered phase into the three-plane phase. We use a
Langevin thermostat to simulate the interaction of the ions
with the cooling laser beam, which thermalized the ions. The
equations of motion for the jth ion are given by

m ∂tt x j = −mγ ∂t x j − ∂x jVc + θx j (t ), (4)

m ∂tt y j = −mγ ∂t y j − ∂y jVc + θy j (t ), (5)

m ∂tt z j = −mω(t )2 − mγ ∂t z j − ∂z jVc + θz j (t ), (6)

where m is the mass of the ion, ω(t ) is the transverse confining
frequency, Vc is the Coulomb interaction energy, and γ is the
damping coefficient. The force (θx j, θy j, θz j ) is the stochastic
thermal force satisfying 〈θα, j (t )〉 = 0 and 〈θα, j (t )θβ,k (t ′)〉 =
2mγ kBT δαβδ jkδ(t − t ′), where 〈· · · 〉 denotes ensemble aver-
aging. The transverse frequency is varied linearly with time
ω(t ) = (ω(i)

z − ω
( f )
z )/τQt + ωz(i), where ω(i)

z and ω
( f )
z are the

initial and final frequencies. The integration of the equation of
motion is performed using GPU-accelerated OPENMM [32]
framework, and Ewald sums are used to approximate the
Coulomb interactions in the x and y directions.

To determine the location of defects in a given ion crystal
configuration, one must compute the local order parameter
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cross-hair

s = +1

s = −1

aster

vortex

anti-vortex
s = −1

s = +1

vortex (s=+1)anti-vortex (s=-1)

cross-hair (s=-1)

(a) (b)

aster (s=+1)

FIG. 4. (a) Topological defects in the 2D XY model. Vortices and asters have topological charge s = +1. Antivortices and cross hairs have
topological charge s = −1 [33]. The field lines of asters are oriented radially. Vortices and antivortices have the order parameter field lines
that are oriented orthoradially. The order parameter field of cross hairs does not have a U (1) symmetry but exhibits a π -rotational symmetry.
(b) Example of a order parameter field computed from an ion Coulomb crystal configuration after a finite rate quench from a single-plane to a
three-plane structural phase.

field ψ using the individual ion coordinates. Using Eq. (3)
the order parameter in the six-clock phase can be written as

zi = Re[
eK·ri ] (7)

= |ψ | cos

(
π (2ni + 1)

6
+ δ�i + K · ri

)
, (8)

where ni ∈ {1, . . . , 6} determines the clock state at the po-
sition of the ith ion and δ�i is the fluctuation about
this phase. Denoting the splitting between the planes as
h ≡ maxi[(|〈zi〉|)), where zi is the z coordinate of an ion either
in the + or − sublattice of the three-plane structural phase,
one finds that h = |ψ | cos(π/6)〈cos(δ�)〉 and Eq. (8) can be
written as

zi = h

cos(π/6)
cos

(
δ�i + π (2ni + 1)

6
+ K · ri

)
. (9)

The values of the clock state at each point ni are determined
by allocating a phase value to an arbitrary chosen patch of
three adjacent ions and then assigning all other patches the
best matching value relative to this chosen reference. After
assigning ni, the correction term δ�i is obtained by solving
numerically the nonlinear equation (9) using gradient descent
algorithm.

Figure 4 shows a typical configuration with topological
defects. The locations of the defects are determined by finding
localized regions on the boundary of which the phase � winds
an integer multiple of 2π . The topological charge s of a defect
is defined as a winding number along the contour C encircling
the defect, i.e., s = 1

2π

∫
C ∂l� dl where l is the position along

the path of the chosen contour. In our simulations, we observe
four types of point defects: asters and vortices with charge
+1, and cross hairs and antivortices with charge −1. The ex-
istence of such defects may be predicted on general homotopy
theoretic arguments [34]. Here, we have demonstrated that in
three-plane Coulomb crystal all four types of defects are ener-
getically stable. The quench from a one-plane to three-plane
structural configuration traverses two transitions, disordered

to the KT phase and the KT phase to the six-clock phase as
shown in Fig. 3. The six-clock phase exhibits long-range order
where the phase of the order parameter θ has a preference
toward the six angles that correspond to the ground-state con-
figurations. Thus, in order to establish whether the system is
in the KT or the six-clock phase, we evaluate the histograms
of the angles θ (t ) obtained from multiple simulation runs.
The MD simulations are carried out at fixed temperature T ,
fixed starting and ending transverse confining frequencies, but
at two different values of damping coefficient γ and several
values of quench times τQ. At high damping γ the histogram
of θ at the end of the quench displays six prominent peaks
as shown in Fig. 5(a). This indicates that the system ends
deep in the ordered six-clock phase. At lower γ the peaks
are still present, but their height is much smaller, and the
distribution of θ is close to uniform. This suggests that in this
regime the system is closer to the quasi-long-range-ordered
KT phase. Since the lower damping rate results in slower
rate of dissipation of kinetic energy, the effective temperature
during the nonequilibrium evolution is higher, and, thus, the
system samples the KT phase for a longer period of time.

Figure 6 shows the vortex configurations at the end of
the quenches at different rates τ−1

Q with (a) a low- and (b) a
high-damping coefficient. The higher quench rates result in
a higher defect density, which is qualitatively consistent with
the KZ mechanism of defect formation. The low quench rates
result in a significantly more disordered order parameter field
indicating that in this dynamical regime the system is closer
to the quasi-long-range-ordered KT phase. In the rest of the
paper, we focus on quantitatively probing the evolution of the
average number of vortices and its dependence on the quench
rate.

IV. KIBBLE-ZUREK MECHANISM
OF DEFECT FORMATION

The relationship between the number of defects and the
quench rates across symmetry-breaking phase transitions was
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FIG. 5. Instantaneous configurations of a quasi-two-dimensional ion crystal with 9858 Be+ ions at a temperature of 20 μK and (a) γ =
8.96 × 10−7 ps−1 and (b) γ = 8.96 × 10−8ps−1 in the three-plane structural phase at the end of a nonequilibrium quench from a disordered
single plane phase at a different rate τ−1

Q . The quench is implemented by reducing the transverse confining frequency ωz. The density of
topological defects increases with increasing quench rate. Each color corresponds to a phase angle � of the local order parameter ψ = |ψ |ei�.
The first column demonstrates the disordered phase. The second column shows vortices in the clock phase. The last column shows a histogram
demonstrating a preference for of the six angles in the clock model. The histograms demonstrate less preference for the the six angles in the
clock model with a lower γ which is consistent with being in the KT phase.

initially investigated by Kibble in the context of cosmol-
ogy [35] and Zurek in the context of condensed matter [36]
in what became known as KZ theory. Experimentally, the KZ
mechanism for a six-clock model has been investigated in the
context of ferroelectric materials [37,38]. One should note,
however, that in ferroelectrics the transition happens in three
dimensions where there is no KT phenomena.

Let us review the KZ mechanism as applied to continuous
second-order phase transitions. Consider approaching the crit-
ical point of a symmetry-breaking second-order phase transi-
tion. The correlation length ξ , defined by 〈ψ (0, t )ψ (r, t )〉 ∼
e−r/ξ , diverges as a power law of the control parameter
ξ = ξ0/|ε|μ, where μ is the critical exponent. The system
also slows down on the approach to the critical point, i.e.,
the relaxation time τ , defined as 〈ψ (0)ψ (t )〉 ∼ e−t/τ diverges
as τ = τ0/|ε|μ. The KZ mechanism proposes that the corre-
lation length freezes out when the relaxation time is equal
to the time left until the crossing of the critical point, i.e.,
the freeze-out time t̂ is found by solving τ (t̂ ) = τQ. This
cross-over time t̂ marks a transition between the adiabatic
dynamical regime where the correlation lengths adjust to its
equilibrium value and impulsive regime where the correlation
length is fixed. For a linear quench ε = t/τQ, one observes

t̂ = (τ0τ
μ
Q )1/(1+μ), and the freeze-out correlation length is

ξ̂ = ξ (t̂ ) = ξ0(τq/τ0)ν/(1+μ). In the two-dimensional system,
the number of defects n is inversely proportional to the square
of the correlation length scale in the system, i.e., n ∝ ξ−2.
Thus, the KZ prediction for the defect density in the end of
the quench is n f = ξ̂−2 ∼ (τq/τ0)−2ν/(1+μ).

For KT phase transition, the same arguments applies ex-
cept the correlation length diverge exponentially at the critical
point rather than algebraically, i.e.,

ξ = Aea|ε|−μ

, (10)

τ = Beb|ε|−ν

(11)

The freeze-out time t̂ is obtained by solving the equa-
tion τ (t̂ ) = τQ,

eb|t̂/τQ|−ν=τQ , (12)

which does not have a closed-form solution. The freeze-out
correlation length is given by

ξ̂ = exp[a|ε(t̂ )|−μ], (13)
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FIG. 6. Examples of configurations with topological defects in the three-plane structural phase represented as color plot. The observed
defects are asters and vortices (topological charge s = +1) or cross hairs and antivortices (topological charge s = −1), (a) demonstrates
configurations with 20 μK and (a) γ = 8.96 × 10−7 ps−1 and (b) demonstrates configurations with γ = 8.96 × 10−8 ps−1.

Thus, for the nonequilibrium transition between disordered
and KT phase transition, there is no simple power-law depen-
dence of ξ̂ on the quench rate τ−1

Q . The number of defects
nd will have a complex functional dependence on τQ, the
universal scaling exponent μ, and ν as well as the nonuni-
versal parameters a, b, A, and B. The quantitative verification
of the KZ theory relies on first measuring the equilibrium
scaling relations given by Eqs. (10) and (11) as was previ-
ously performed in the experimental study of KT scaling in
colloids [26].

The high mobility of vortices in two-dimensional systems
results in significant annihilations between vortex and an-
tivortex pairs, adding to the complexity of studying the KZ
mechanism in the KT systems. Thus, the number of defects in
the impulsive regime is not fixed but continuously decreases
as the defects annihilate. In the context of sudden quenches,
this growth of correlation length is known as coarsening.

The dynamics of defects modifies the observed KZ scal-
ing laws for both classical and quantum systems [39]. In
Refs. [25,40], the authors propose that for a quench into
the KT phase, one should account for both KZ mechanism
and coarsening expressing the time evolution of correlation
length as

ξ (t ) =
{
ξeq(t ), for t < t̂,

ξ̂ + f (t ), for t � t̂,
(14)

where f (t ) is the function representing the growth of the
correlation length due to coarsening. Equation (14) expresses
the idea that before the KZ freeze-out time t̂ , the correlation
length adopts its thermal equilibrium value, and after cross-
ing t̂ the correlation length is growing via coarsening. In a
two-dimensional system, which is quenched from disordered

into the ordered phase in the presence of linear damping,
one expects the coarsening to proceed via the diffusing law
where the correlation length grows as the square root of time
f (t ) ∼ t1/2 [41]. Several studies noted that the approach to
diffusive law can be slow and that the coarsening is more
accurately described by including a logarithmic correction
f (t ) ∼ (t/ ln t )1/2 [42,43].

We have carried out a MD simulation to probe the KZ
and coarsening dynamics following a dynamic crossing of
the one-plane to three-plane structural phase transition We
simulate the dynamics of N = 9858 Be+ ions at a temperature
of 20 μK confined to a periodic box in the xy directions
and a harmonic potential in the z directions by numerically
integrating Es. (4)–(6). To establish whether the collective
dynamics is sensitive to the friction coefficient, the simula-
tions are carried out at high damping γ = 8.96 × 10−7 ps−1

and low damping γ = 8.96 × 10−8 ps−1. The system is first
thermalized at a confinement frequency ω(i)

z sufficiently far
from the critical frequency ω(c)

z such that the correlation length
is small, i.e., of the order of the lattice spacing. After that the
confining frequency is decreased linearly at a rate ωz = ω(i)

z +
t (ω( f )

z − ω(i)
z )/τQ such that the system undergoes a transition

between a one-plane and three-plane structural phases at a rate
1/τQ. The defects are counted using the method presented in
Sec. III, and in order to obtain the ensemble averaged defect
number 〈n(t )〉 the simulations are carried out ∼140 times for
each τQ.

Figure 7 shows the evolution of the defect density as func-
tion of time following phase transition at different quench
rates. Several dynamical regimes can be seen in the figure.
Initially, the system is in the one-plane phase far from phase
transition point, the correlation length is small and the density
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FIG. 7. Evolution of the average number of defects following
quenches from one-plane disordered phase into a three-lane six-face
clock phase at finite rate 1/τQ. The simulated system contained 9858
Be+ ions at a temperature of 20 μK whereas γ = 8.96 × 10−7 ps−1

in the high friction (HF) case, and γ = 8.96 × 10−8 ps−1 in the low
friction (LF) case. The ions are confined in a periodic box in the xy
directions of size 1395.00 × 1376.98 μm. The starting and ending
frequencies were set at ω(i)

z = 7.70 and ω( f )
z = 7.42 MHz, and the

critical frequency is ω(i)
z = 7.60 MHz. (a) is the evolution of the

number of defects in the high friction case, whereas (b) shows both
the high friction and the low friction cases on the same plot.

of defects is large. As ωz approaches the critical frequency,
the defect density decreases adjusting to the new equilibrium
values. This regime crosses over to rapid relaxation where
the density of vortices decreases significantly. According to
the KZ theory, this crossover occurs at t > t̂ . The relaxation
continues at a slower pace consistent with the power-law
coarsening dynamics. Finally, the relaxation slows further
as the system enters the clock phase and the domains are
stabilized. Figure 8(b) compares the evolution of n(t ) with
low and high dampings at three selected quench rates. For the
most part the shape of the n(t ) curve does not depend on the
damping coefficient with higher damping resulting in a lag
in the dynamics due to the slower response of the system.
There is, however, a significant dependence of n(t ) on the
damping coefficient at later times when the system is undergo-
ing coarsening. We observe a higher rate of vortex-antivortex
annihilation at a lower friction coefficient. Changing friction
coefficient can alter the dynamical class of the model, in
particular, the limit of zero friction corresponds to the energy-
conserving model.

In Fig. 8 we zoom in into the late time evolution at three
different quench rates to verify whether the relaxation in the
system follows the coarsening scaling law. The growth of
the correlation length due to coarsening in the KT phase in
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g
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FIG. 8. Late time evolution of the average number of defects for
three quenches at different rates 1/τQ. The slopes of the dashed lines
is −1, indicating a n ln n ∼ t−1 coarsening scaling.

the high damping regime is predicted to follow ξ ∼ (t ln t )1/2

and, consequently, the number of defects follow a power law
with a logarithmic correction n ln n ∼ t−1 [42]. In Fig. 8, one
can see that there is a region where the power law with the
logarithmic correction is valid. However, this regime crosses
over fairly quickly to a regime of slower relaxation, which
we believe is either due to the stabilizing effect of entering
into the clock phase or the pinning of the vortices by the
discreteness of the lattice.

Finally, Fig. 9 shows the number of defects at the end of the
quench at t = τQ as a function of τQ. We observe two scaling
regimes. At fast quench rates (small τQ), more defects are
observed in the end of the quench for low friction dynamics.
On the other hand, at slower quench rates the final density
of defects is higher for high friction simulations. This can
be understood intuitively as follows. Lowering the damping
coefficient results in effectively higher temperature in the sys-
tem, lower spatial correlation length and a higher number of
topological defects. This explains the higher defect numbers
for short quench protocols in the low friction regime. For
long quenches, the defects have more time to annihilate and

FIG. 9. Plot of the number of defects at the end of the quench, nf

as a function of quench rates with HF γ = 8.96 × 10−7 ps−1 and LF
γ = 8.96 × 10−8 ps−1.
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the final low Nd in the low friction regime can be attributed
by the higher rate of vortex-antivortex annihilation. For large
τQ, the fitted power-law scaling exponent is −0.9 and −1.07
for the high and low friction, respectively. This can be com-
pared to the approximate scaling exponent of −0.72 reported
in the numerical study of KZ scaling in the overdamped XY
GL field model [25]. One should keep in mind, however, that
the comparison with previous results is not straightforward
since for KT transition KZ scaling is not a simple power
law. In addition, we observe the sensitivity of the scaling to
friction, and, hence, the dynamic critical exponent z is likely to
be lower than the exponent of the overdamped TDGL model
of z = 2.

V. CONCLUSION

In this paper we have studied the nonequilibrium dynam-
ics of a planar Coulomb crystals undergoing a structural
transition from a one-planar to three-planar configurations.
The mapping to the Ginzburg-Landau theory reveals that
this phase transition corresponds to a transition from a dis-
ordered paramagnetic phase to an ordered six-clock phase

with an intermediate KT phase. We used molecular dynamics
simulations to confirm that the KT and the six-clock phase
support stable topological defect structures: vortices, antivor-
tices, cross hairs, and asters. The density of defects depends
on the quench rate of the structural transition as predicted
by the Kibble-Zurek theory of defect formation. We have
verified that the defect scaling law is consistent with but not
identical to the KZ scaling previously observed in numeri-
cal simulation of the two-dimensional XY spin model [25].
Moreover, we have observed signatures of coarsening due
to defect/antidefect annihilation, which follows a relaxation
power law with a logarithmic correction.

Our paper demonstrates that large planar ion Coulomb
crystals can be used as model for studying nonequilibrium
statistical physics of vortices in an effectively quasi-two-
dimensional system. Such Coulomb crystals with open bound-
ary conditions can be realized in Penning traps. Whereas the
focus of this paper was on the system with repulsive Coulomb
interactions, a similar transition is expected for a lattice with
dipolar interactions [24]. We hope that our paper will stimu-
late research towards the experimental study of the predicted
topological defects and their rich collective dynamics.
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