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Force-based algorithms for ab initio atomic structure relaxation, such as conjugate gradient methods, usually
get stuck in the line minimization processes along search directions, where expensive ab initio calculations are
triggered frequently to test trial positions before locating the next iterate. We present a force-based gradient de-
scent method, WANBB, that circumvents the deficiency. At each iteration, WANBB enters the line minimization
process with a trial step size capturing the local curvature of the energy surface. The exit is controlled by a
nonrestrictive criterion that tends to accept early trials. These two ingredients streamline the line minimization
process in WANBB. The numerical simulations on nearly 80 systems with good universality demonstrate the
considerable compression of WANBB on the cost for the unaccepted trials compared with conjugate gradient
methods. We also observe across the board significant and universal speedups as well as the superior robustness
of WANBB over several widely used methods. The latter point is theoretically established. The implementation
of WANBB is pretty simple, in that no a priori physical knowledge is required and only three parameters are
present without tuning.
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Atomic structure relaxation determines the ground-state
atomic configuration by searching for the local minimum in
the energy landscape. It makes the foundation and poten-
tial performance bottleneck for the search of global structure
minimum [1–3] and high-throughput calculations in material
design [4–8]. Conjugate gradient methods (CG) [9], the direct
inversion in the iterative subspace (DIIS) [10], and limited-
memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton
methods (LBFGS) [11] are three widely used methods to relax
the atomic structure following the density functional theory
(DFT) calculation. While DIIS and LBFGS could be slightly
faster in some cases, CG is more stable in the situations where
the initial atomic configuration is far from equilibria. For large
systems, hundreds of steps may be required to converge to the
typical atomic force tolerance of 0.01 eV/Å. So, it will be
tremendously helpful even if the ab initio atomic relaxation
could be sped up to some degree.

One reason for the slow convergence of the local minimiza-
tion goes to the narrowly curved energy valley, which prevents
the efficient execution of the conventional CG. Thus, various
preconditioners have been designed for improving search di-
rections via approximating the Hessian matrices. Zhao et al.
[12] notice that the Hessian matrix of large quantum dots
can be approximated by that of motifs comprising merely a
few atoms. Some other works construct general force fields
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based on a priori physical knowledge. Surrogate potentials
are used to either directly approximate the Hessian matrix
[13–15], possibly with on-the-flight fittings [16,17], or gen-
erate the “preconditioned force” with the implicit inversion of
the Hessian matrix [18].

Another reason is the inefficient execution of the line min-
imization (LM) to which not much attention has been paid
in the previous study. Actually, gradient descent method and
CG are two typical LM-based methods [9,19,20]. A flowchart
of the general LM-based method for the ab initio atomic
relaxation is depicted in Fig. 1. The ab initio LM process,
marked out by the shaded box in Fig. 1, is carried out along
search directions such as steepest descent or CG. During
this process, one begins with an initial trial step size and
then repeatedly invokes an LM algorithm to generate new
trials until certain LM criterion is met. Involving moving
atoms, each trial step is followed by ab initio calculation,
e.g., solving the Kohn-Sham (KS) equation. But, only the
last accepted trial step triggers the update of search direction.
Taking the conventional CG, for instance, we test nearly 80
systems and find that each update of search direction is fol-
lowed by 2.4 calls of LM algorithms on average. In other
words, nearly 60% of the total computational overhead is
paid for the unaccepted trial steps in the LM process. More-
over, preconditioning with the (fitted) classical force fields
does not necessarily waive the cost in the LM process [17].
As a result, the computational cost on the LM process is
far more than that on simply determining a search direction
if the whole procedure gets frequently trapped in the inner
loop.
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FIG. 1. A flowchart of the general LM-based method, where N ∈
N refers to the number of atoms, Rk ∈ R3×N stands for the Cartesian
atomic coordinates, Fk ∈ R3×N denotes the atomic forces applied at
Rk , and Dk ∈ R3×N is the search direction. The white bold text “KS”
refers to solving the corresponding Kohn-Sham equations to obtain
new energies and forces whenever the atomic positions are updated.
The LM process is marked out by the shaded box.

In this work, we present an LM-based gradient descent
method, called WANBB, which avoids trapping in the LM
process during atomic structure relaxation. We achieve this
by (i) calculating an initial trial step size that captures the
local curvature of potential energy surface (PES) and (ii)
devising a nonrestrictive LM criterion that tends to accept
early trials. Nearly 80 systems have been tested, includ-
ing organic molecules, metallic systems, semiconductors,
surface-molecule adsorption systems, ABX 3 perovskites, etc.
The set of benchmark tests favors the universality of everyday
ab initio atomic relaxation. The unaccepted trial steps in the
LM process account for only about 1% of the total solved
KS equations on average in WANBB, compared with nearly
60% in CG. The considerable compression of the LM process
leads to a prominent saving on running time. The average
speedup factors of WANBB over CG, DIIS, and LBFGS
are about 1.5, 1.2, and 1.2, respectively. The robustness of
the atomic relaxation method, i.e., convergence to equilib-
ria regardless of initial configurations, is also investigated.
While CG, DIIS, and LBFGS fail on some systems, WANBB
manages to converge across the benchmark. This robustness
is theoretically established and helpful for the cases with
local lattice distortion or reconstruction. Last but not least,
WANBB is pretty simple. Free of a priori physical knowledge,
it can work with only three parameters present but no tuning
required.

In what follows, we are ready to deliver the algorithmic
development. To facilitate narration, we collect some nota-
tions beforehand. We denote by E (R) ∈ R and F (R) ∈ R3×N ,
respectively, the potential energy and atomic forces evaluated
at R. When describing algorithms, we use subscripts for ab-
breviation: e.g., both Ek and Fk are evaluated at Rk . We denote
by I the identity mapping from R3×N to R3×N . The operator
〈·, ·〉 represents the Frobenius inner product of two 3 × N
matrices

〈M, N〉 := Tr(M�N ) ∀ M, N ∈ R3×N ,

whereas ‖ · ‖F yields the Frobenius norm as ‖M‖F :=√〈M, M〉 for any M ∈ R3×N . We further denote by ‖M‖2,∞
the �2,∞ norm of matrix M, namely, the maximum among the
�2 norms of columns in M. In particular, ‖F‖2,∞ gives the
maximum atomic force. Throughout iterations, we take the
atomic forces Fk as the search direction Dk .

Essentially, given Dk = Fk and the initial trial step size
αtrial

k > 0, the LM process aims at inexactly solving the one-
dimensional minimization

min
r>0

Ẽk (r) := E
(
Rk + r · αtrial

k Fk
)
. (1)

The LM algorithm is exactly some univariate optimization or
root-finding method, initialized from rk = 1. The LM crite-
rion serves as the stopping rule for the process. From this
perspective, the whole procedure can fall into the trap of the
LM process owing to two factors. One is the poorly chosen
initial trial step size, which degrades the starting state of the
LM process. The other is the restrictive LM criterion, which
acts as a stringent stopping rule. The ideal situation is that
the procedure always passes the test of the LM criterion with
just the original initial step size (namely, rk = 1). Intuitively,
we require both good initial step sizes and a loose but safe
criterion to achieve this target. Here, “safe” means that the
convergence property is maintained with the LM criterion.

At first sight, a good initial step size should grasp, as
much as possible, the curvature of PES around the current
configuration. As early as 1988, Barzilai and Borwein [21]
propose the following renowned Barzilai-Borwein (BB) step
sizes: for any k � 1,

αBB1
k := ‖Sk−1‖2

F

〈Sk−1,Yk−1〉 , αBB2
k := 〈Sk−1,Yk−1〉

‖Yk−1‖2
F

,

where Sk−1 := Rk − Rk−1 and Yk−1 := Fk−1 − Fk represent the
difference of successive atomic positions and forces, respec-
tively. Remarkably, these two step sizes satisfy

αBB1
k =arg minα‖α−1Sk−1 − Yk−1‖F,

αBB2
k =arg minα‖αYk−1 − Sk−1‖F.

(2)

In other words, (αBB1
k )−1I and (αBB2

k )−1I approximate the
Hessian around Rk along the last search direction. They
capture the local curvature of PES with merely two 3 × N
matrices. The alternating BB (ABB) step size [22] is presented
as follows:

αABB
k :=

{
αBB1

k , if mod(k, 2) = 1
αBB2

k , if mod(k, 2) = 0
(3)
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FIG. 2. The convergence of energy on arginine by gradient
descent with the pure ABB step sizes (PBB) and our method
(WANBB). E∗ refers to the converged energy. The blue line with
solid markers stands for the convergence of WANBB, while the red
line with hollow markers for PBB.

which is shown to overwhelm BB1 and BB2 in many contexts
(e.g., [22,23]). It is not difficult to prove that the implementa-
tion of (A)BB step sizes requires the same computational and
storage complexity as computing the conjugate parameter in
CG.

Despite the simplicity, the (A)BB step sizes turn out to be
significant benefits in solving various optimization problems.
The most related application goes to solving KS equations as
orthogonality constrained optimization problems, where the
(A)BB step sizes play as important local acceleration com-
ponents (see, e.g., [23–27]). However, the application of the
(A)BB step sizes on the atomic structure relaxation prob-
lem remains to be investigated. In this work, we take the
(A)BB step sizes as the initial trial step sizes to exploit their
merits.

Without LM, the energy values produced by gradient de-
scent methods with the pure (A)BB step sizes (PBB) do
not necessarily decrease monotonically, which may result in
fluctuation or even divergence when starting the algorithms
far from equilibria. An illustrative example is provided in
Fig. 2, from which one can notice that the fluctuation of PBB
leads to a lengthy convergence process. Nevertheless, the
monotone LM criterion, adopted by the conventional CG, can
ruin the merits of the (A)BB step sizes since frequent calls of
LM algorithms are entailed to ensure the monotonic decrease
of the energy and the local curvature of PES may be lost.
Therefore, it is more sensible to design a nonmonotone LM
(NLM) criterion, accepting the original (A)BB step sizes in
most cases.

The existing NLM criteria primarily fall into two cate-
gories: the “max” type (MNLM) [28] and the “average” type
(ANLM) [29]. In the (k + 1)th iteration, the MNLM crite-
rion asks the LM algorithm to return a factor rk > 0 such

that

E
(
Rk + rkα

trial
k Fk

)
� Ēk − crkα

trial
k ‖Fk‖2

F,

where Ēk := maxk
i=k−m(k)+1{Ei}, m(k) ∈ [0, M], both c and M

are given positive constants, i.e., there is a sufficient reduction
with respect to (w.r.t.) the largest one of the past m(k) ener-
gies. The ANLM criterion requires rk to fulfill

E
(
Rk + rkα

trial
k Fk

)
� Ck − crkα

trial
k ‖Fk‖2

F, (4)

〈
F

(
Rk + rkα

trial
k Fk

)
, Fk

〉
� σ‖Fk‖2

F, (5)

where σ ∈ (0, 1), the monitoring sequence {Ck} is updated
through

Ck+1 := ηkQkCk + Ek+1

ηkQk + 1
, Qk+1 := ηkQk + 1 (6)

with C0 := E0, Q0 := 1, and ηk ∈ [0, 1]. Roughly in the
ANLM criterion, a sufficient reduction w.r.t. Ck is obligatory.
It is straightforward to deduce that Ck is a weighted average of
the past energies {Ej}k−1

j=0 and the current Ek . The construction
of the monitoring sequence is completely free of a priori phys-
ical knowledge. Clearly, entailing reduction w.r.t. Ēk and Ck ,
respectively, instead of Ek , both MNLM and ANLM criteria
are less restrictive than the monotone criterion adopted by the
conventional CG because Ēk , Ck � Ek . Moreover, as noted
in [29], the MNLM criterion is sensitive to the choice of M
in some contexts, and is often outperformed by the ANLM
criterion.

However, preliminary simulations show that the ANLM
criterion is not loose enough for the (A)BB step sizes during
the atomic relaxation. We take the gradient descent direction
armed with the ABB step sizes and ANLM criterion to relax
the silicene surface with one adsorbed H2O molecule. From
the short relaxation history in Fig. 3, one can observe that the
monitoring sequence {Ck} (the blue dashed line with square
markers) decreases fast, stays close to the energies {Ek}, and
does not tolerate somewhat large increments. As a result, the
combination “ABB + ANLM” solves 3 KS equations for the
unaccepted trials during the short history, which are marked
out by the black arrows in Fig. 3. For example, the initial
trial step at the eighth iteration gives an energy value of
−99.92 eV, which is higher than C7 = −100.03 eV and thus
is rejected by the ANLM criterion.

To this end, we devise a reweighted ANLM (WANLM) cri-
terion, which differs from the ANLM criterion in the weights
assigned to the past and current energies. Specifically, we de-
note the monitoring sequence in WANLM by {Bk} and update
it via

Bk+1 := Bk + μkPkEk+1

1 + μkPk
, Pk+1 := 1 + μkPk, (7)

with B0 := E0, P0 := 1, and μk ∈ [0, 1]. Then WANLM needs
rk to satisfy both Eqs. (4) and (5) with Ck , Qk , and ηk replaced
by Bk , Pk , and μk , respectively.

The looseness of the WANLM criterion can be understood
via the comparison with the ANLM criterion. Due to Eq. (6)
and η0 ∈ [0, 1], the coefficient of E1 is 1/(1 + η0) � 0.5, in-
dicating a large portion of E1 in C1 and a small gap C1 − E1.
Since the monitoring sequence {Ck} decreases monotonically
(see the Appendix for a rigorous proof), it would then stay
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FIG. 3. The energy curves when relaxing the silicene surface
with one adsorbed H2O molecule using gradient descent method
equipped with the ABB step sizes and ANLM [ηk ≡ 0.85 (this value
is recommended by [29]] or WANLM (μk ≡ 0.05) criterion. “#KS”
refers to the number of solved KS equations. We plot out the history
with #KS � 30. The blue solid line with square markers and orange
line with triangle markers stand for energies produced by “ABB +
ANLM” and “ABB + WANLM,” respectively. The blue dashed line
with square markers and orange line with triangle markers represent
{Ck} in ANLM and {Bk} in WANLM, respectively. The black arrows
indicate the ab initio calculations dedicated to the trials rejected by
the ANLM criterion.

close to the energy values {Ek}, rendering the ANLM criterion
stringent for the (A)BB step sizes as reflected in Fig. 3. In
contrast, from Eq. (7) and μ0 ∈ [0, 1], the coefficient of E1

is μ0/(1 + μ0) � 0.5. Therefore, the monitoring sequence
{Bk} in the WANLM criterion is relatively far away from
the energies {Ek} at the beginning and gradually approaches
{Ek}, leaving sufficient room to accept the (A)BB step sizes.
As shown in Fig. 3, the first 7 energy values obtained by
“ABB + ANLM” and “ABB + WANLM” are the same.
But, one can find a much larger distance from {Ek} to {Bk}
than {Ck}, which enables the WANLM criterion to accept
the 8th initial trial step without invoking extra ab initio

calculations and retain the merits of the ABB step sizes.
All the subsequent iterations of “ABB + WANLM” benefit
from this characteristic and progress to lower-energy values
faster. More comprehensive comparison between the ANLM
and WANLM criteria can be found later in Fig. 5. Regarding
safety, it can be verified that the sufficient reduction in terms
of the atomic force norm holds for the monitoring sequence
{Bk}. One can then establish the convergence to equilibria,
regardless of initial configurations, after noticing the lower
boundedness of {Bk}. For more details, please refer to the
Appendix.

The gradient descent method combining the (A)BB step
sizes with the WANLM criterion is referred to as WANBB.
We set the initial trial step size to be 4.8 × 10−2 Å2/eV at the
first iteration [30], and take the alternating strategy described
in Eq. (3) (i.e., αtrial

k = αABB
k ) afterwards because it leads

to better performance than BB1 and BB2 in our simulations.
Before invoking an LM algorithm, we take absolute value in
case that 〈Sk,Yk〉 < 0 and make truncation for safeguard:

αABB
k := min

{∣∣αABB
k

∣∣, max {− log10(‖Fk‖2,∞), 1.0}}. (8)

As is shown in the Appendix, the convergence of WANBB
to equilibria can be attributed to both Eqs. (4) and (5). For
the sake of implementation, it is more efficient to fulfill only
Eq. (4). In WANLM, we set μk ≡ 0.05, c = 10−4 [31]. The
LM algorithm works by forming quadratic or cubic approx-
imation mk to Ẽk [defined in Eq. (1)]. We explain this by
taking quadratic approximation as example. Suppose the last
scaling factor r̄ > 0 is rejected by the WANLM criterion.
Since Fk is a descent direction, we know that one accept-
able scaling factor must exist in [0, r̄]. Note that already we
have energies Ẽk (0), Ẽk (r̄) and forces Fk . The derivative of
Ẽk at r = 0 is then Ẽ ′

k (0) = αtrial
k ‖Fk‖2

F. Based upon these,
we can uniquely determine a quadratic function mk which
satisfies mk (0) = Ẽk (0), mk (r̄) = Ẽk (r̄), and m′

k (0) = Ẽ ′
k (0).

The quadratic function mk can be regarded as a nice local
approximation to Ẽk . It is natural to take its minimizer in
[0, r̄], which is easy to compute, and generate the next trial
configuration. Analogously, we are able to construct cubic

FIG. 4. The #KS (left) and CPU (right) performance profiles of CG, WANBB, ANBB, DIIS, and LBFGS.
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FIG. 5. Left: the performance profile of ANBB and WANBB on 23 systems where their #KS differ; right: #KS for unaccepted trials in
ANBB and WANBB when relaxing the 23 systems.

models once more information about PES is available. For
details, please see [19, Chap. 3].

We have implemented WANBB in the in-house plane-
wave code CESSP [32–35]. The exchange-correlation energy
is described by the generalized gradient approximation
[36]. Electron-ion interactions are treated with the projector
augmented-wave (PAW) potentials based on the open-source
ABINIT Jollet-Torrent-Holzwarth data set library in the PAW-
XML format [37]. The total energies are calculated using
the Monkhorst-Pack mesh [38] with the k-mesh spacing of
0.2 Å−1. The typical plane-wave energy cutoffs are around
500–600 eV. The KS equations corresponding to the up-
dated atomic positions are solved by the preconditioned
self-consistent field (SCF) iteration [34].

In addition to WANBB, we test the performances of other
relaxation methods as well, including the conventional CG
[9,19], LBFGS [11], and DIIS [10]. By the way, DIIS is the so-
called quasi-Newton method in some software such as VASP

[39,40], which can be derived from Broyden’s method [41].
The implementations of CG and DIIS follow those in [11,19],
and LBFGS is realized by the transition state tool VTST [42].
CG employs Brent’s method [43] as the LM algorithm. We
also conduct numerical comparison between WANBB and
gradient descent combining ABB step sizes with the ANLM
criterion (ANBB), where ηk ≡ 0.85 [29], c = 10−4.

The benchmark for performance test contains nearly 80
systems from various categories, including organic molecules,
metallic systems, semiconductors, surface-molecule adsorp-
tion systems, and ABX 3 perovskites. The number of atoms
ranges from 2 to 429. Some of them are available online,
e.g., in Materials Project [44] and Organic Materials Database
[45]. In the beginning, these systems are at their ideal crystal
positions for defects, heterostructures, and substitutional al-
loys, or simply place a molecule on top of a surface. These
are the typical initial configurations used by researchers in
their simulations. More information on the benchmark can be
found in the Supplemental Material [46]. The atomic structure
relaxation is terminated if either the maximum atomic force
falls below 0.01 eV/Å or the number of the solved KS equa-

tions (#KS) arrives at 1000. The convergence criterion for the
SCF iteration is 10−5 eV.

We evaluate the performances of the relaxation methods
in two ways. One is the number of the solved KS equa-
tions (#KS) needed to reach the 0.01 eV/Å force tolerance.
The other is the running time (CPU) of the atomic structure re-
laxation. We adopt Dolan and Moré’s performance profile [47]
for an overall comparison among CG, WANBB, ANBB, DIIS,
and LBFGS. To this end, for any algorithm indicated by alg ∈
{CG, WANBB, ANBB, DIIS, LBFGS}, we denote its #KS and
CPU for relaxing the nth system by #KSn,alg, CPUn,alg, re-
spectively [48], define ratios

rKS
n,alg := #KSn,alg

minalg #KSn,alg
, rCPU

n,alg := CPUn,alg

minalg CPUn,alg
,

and for any ω � 0, let

πKS
alg (ω) := the number of systems satisfying rKS

n,alg � ω

the number of systems
,

πCPU
alg (ω) := the number of systems satisfying rCPU

n,alg � ω

the number of systems
.

The quantities πKS
alg (ω) and πCPU

alg (ω) estimate, respectively, the
probabilities of rKS

n,alg � ω and rCPU
n,alg � ω over the benchmark.

For example, πCPU
WANBB(1) yields the portion of the systems

where WANBB is the fastest. And πCPU
WANBB(2) means the

estimated probability that, for one system, the running time
of WANBB is not more than twice the shortest running time
needed by all the five algorithms. In terms of the #KS, πKS

alg (ω)
can be interpreted in a similar way. We plot πKS

alg (ω) and
πCPU

alg (ω) as a function of ω for each method in Fig. 4 [49].
Basically, the larger the area under the curve, the better the
overall performance of the method. It is easy to see that the
overall performance of WANBB ranks the best. More specifi-
cally, one can tell from the Supplementa Material Tables I and
II [46] that the average CPU speedup factors of WANBB over
CG, DIIS, and LBFGS are 1.51, 1.21, and 1.16, respectively.
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FIG. 6. The speedup factors of #KS and the #KS of CG (the
upper two), the speedup factors of CPU and the CPU of CG (the
lower two). The 1.0 baselines are marked out by bold black dashed
lines. The system where CG fails is not included.

The comparison between WANBB and ANBB is not ev-
ident from Fig. 4 because the ABB step sizes are highly
efficient so that the NLM criteria are inactive in most cases.
To this end, we pick out systems on which the #KS of these
two methods differ (23 systems in total), and conduct further
comparison between ANBB and WANBB on these systems
(see Fig. 5). One can observe that WANBB is superior over-
all to ANBB and spends less computational overhead for
unaccepted trials. This advantage should be credited to the
nonrestrictive WANLM criterion.

As shown in Fig. 4, though sometimes requiring solving
more KS equations than LBFGS, WANBB turns out to be
faster than LBFGS in most tested systems. LBFGS may make
larger atomic displacements due to constant step size, which
results in underestimating the quality of initial wave functions
and slowing down the SCF iteration. Later, we will explain it
in more detail using the relaxation of the PuO2 surface with
one adsorbed H2O molecule (see Fig. 11 later).

In addition to the efficiency, the robustness is also worth
the whistle. As shown in the Supplemental Material Tables I
and II [46], WANBB converges in all the benchmark systems,
while CG fails in one case due to the breakdown of Brent’s
method, DIIS and LBFGS fail in eight cases and one case,
respectively, due to divergence. This kind of robustness is the-
oretically guaranteed by the convergence property of WANBB
proved in the Appendix.

Taking the performance of CG as the baseline, we illustrate
the acceleration obtained by WANBB for each system, as
depicted in Fig. 6. We have an average CPU speedup factor
around 1.51, and a factor above 2.0 on about 20% of sys-
tems. According to the Supplemental Material Tables I and

FIG. 7. The frequency distributions of the LM step percentages
of WANBB and CG for unaccepted trials. The system where CG fails
is not included.

II [46], CG takes on average 117.68 calls of solving the KS
equations to reach the force tolerance. Thus, a speedup factor
of 1.5–2 can mean a significant saving of computational over-
head. This saving is mainly attributed to the enhanced ab initio
LM process of WANBB since the distribution of #KS speedup
is consistent with that of CPU speedup in Fig. 6. Moreover,
we also count the percentage of the LM steps invoked by
WANBB and CG for unaccepted trials and draw the frequency
distribution over the benchmark in Fig. 7. The average LM
step percentages for unaccepted trials are 59.09% and 1.47%
for CG and WANBB, respectively. It is obvious from these
statistics that WANBB escapes from the LM process quickly,
usually without invoking LM algorithms at all.

The following discussion is concentrated on the per-
formance comparison between CG and WANBB for each
category. In Fig. 8, we plot the mean speedup factors by cate-
gory and the number of atoms, respectively. All description
below is supported by Tables I and II in the Supplemental
Material [46]. Whenever speaking of “speedup” below, we are
talking about the CPU speedup if not specified.

Organic molecules. This class of systems includes various
alkanes and amino acids. The amino acids contain common
organic atomic types, e.g., oxygen, nitrogen, sulfur, etc. The
number of atoms in this class ranges from 26 to 106. Most
of the initial configurations are available in Organic Mate-
rials Database [45]. Compared with CG, WANBB achieves
a mean speedup factor of 1.81 for this class and speedup
factors greater than 2 on over 20% of systems. In the case
of glutamate, the acceleration factor even reaches 3.18, which
means a savings of nearly 70% computational overhead.

Metallic systems. We consider Ag16 cluster, Cu(111)
surface with adsorbed organic molecules, and some al-
loys including Ni3Al-based intermetallic compound as well
as high-entropy alloys (HEAs) such as FeCrNiCoAl. The
speedup factors on these systems w.r.t. CG are mostly around
1.5–3. In particular, for Cu(111) surface with adsorbed or-
ganic molecules, CG needs to solve over 400 KS equations for
atomic relaxations, while WANBB cuts the required #KS
roughly in half. It is also worth mentioning that WANBB
can efficiently treat HEAs with potential strong local lattice

104101-6



FORCE-BASED GRADIENT DESCENT METHOD FOR … PHYSICAL REVIEW B 106, 104101 (2022)

FIG. 8. Mean factors of speedup by category (left) and the number of atoms (right). The system where CG fails is not included.

distortion [50]. Actually, local lattice distortion is an essential
factor in studying HEAs [51], and can be described by the
supercell method with ab initio atomic structure relaxation.
In Fig. 9, the local lattice distortion obtained by relaxing the
body-centered-cubic supercell of FeCrNiCoAl is illustrated
by the smearing radial distribution function (RDF), in sharp
contrast to the peaks at coordination shells in the case of the
ideal lattice. On average in our benchmark, WANBB achieves
a speedup of 1.54 over CG for HEAs.

Semiconductors and heterojunction systems. We test semi-
conductors (CdSe, GaAs, Si, etc.) and heterojunction systems
(GaAs-InAs). Moreover, we consider semiconductors with
defects by constructing the bulk GaAs and Si supercells with
some vacancies. In most of these systems, the acceleration
factors are above 1.5, and sometimes exceed 3. We also in-
vestigate the performances of WANBB compared with CG on
Si supercells with increasing system sizes (see Fig. 10). As
the system size increases, WANBB is more stable in terms of
#KS, and its CPU advantage becomes more prominent.

FIG. 9. RDF of FeCrNiCoAl with 6-Å cutoff.

ABX 3 perovskite systems. This type of system is fairly pop-
ular in recent solar cell studies. We consider the cases where
A = CH3NH3, CH(NH2)2, or Cs, B = Pb or Sn, X = Br, Cl,
or I. Their initial configurations come from Materials Project
[44]. Due to the existence of the organic molecules and their
relative weak interaction with the inorganic framework, the
atomic relaxations of such systems are quite challenging. Tak-
ing CH3NH3SnI3, for instance, CG solves 581 KS equations,
while WANBB entails only about one fifth of the expenditure.

Surface-molecule adsorption systems. Several surface-
molecule adsorption systems have been tested, including a
two-dimensional (2D) silicene surface with one adsorbed
H2O molecule (total 21 atoms), a 2D MoS2 surface with
one adsorbed NH3 molecule (total 16 atoms), 2D PbS(001)
and (111) surfaces with one adsorbed oleic acid molecule
[(001) total 254 atoms, (111) total 429 atoms], and a 2D
PuO2 surface with one adsorbed H2O molecule (total 195
atoms). The results show that CG often undergoes quite a
long way until convergence in this category, and even fails
in one case due to the breakdown of Brent’s method. On the
contrary, WANBB converges in all cases and usually costs
less time; it is even twice as fast as CG on PbS(001) surface
with one adsorbed oleic acid molecule. One interesting ob-
servation is that WANBB occasionally takes equal or a few
more #KS than CG, even though it is less time costly. This
is also observed when comparing WANBB and LBFGS. To
explain, we plot the cumulative SCF iteration numbers of CG,
WANBB, and LBFGS when relaxing the PuO2 surface with
one adsorbed H2O molecule (see Fig. 11). One could observe
that CG and LBFGS often consume more SCF iterations per
KS equation than WANBB. In fact, CG and LBFGS make
larger atomic displacements, resulting in degrading initial
wave functions and slowing down the SCF iteration. On the
other hand, Fig. 11 also reveals that CG and LBFGS pro-
duce more efficient search directions, yielding fewer iteration
numbers. This weakness, however, does not prevent WANBB
from being a more favorable alternative in the context of ab
initio simulations because the cut down on the LM process
obviously brings much more benefits.

2D and other systems. The 2D materials in our benchmark
include C96, Si32, and germanene on hexagonal boron-nitride.
The average speedup factors of WANBB over CG on these
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FIG. 10. Left: the average #KS and CPU speedup factors of WANBB over CG on N × 1 × 1 Si supercells containing from 8 to 256 atoms,
where each size has 10 random samples and the shift on each atom away from equilibrium is no larger than 0.1 Å. Right: the #KS of WANBB
and CG on N × 1 × 1 Si supercells, where the solid lines represent the average values, and the upper and lower boundaries of the shaded area
stand for the maximum and minimum #KS, respectively.

systems are 1.26. We also include systems of other types, e.g.,
cerium-iron oxide and potassium chloride. The former one is
of practical usage for NOx reduction. WANBB reduces the
numbers of solved KS equations by half on both of them.

We recognize that the inefficiency of the LM process is an
important obstacle to the high-performance execution of ab
initio atomic structure relaxation. With the most widely used
CG, nearly 60% of the computational overhead on average is
attributed to the unaccepted trials in the LM process. To this
end, we propose a force-based gradient descent method called
WANBB, where the initial trial (A)BB step sizes grasp well
the local curvature of PES and the nonrestrictive WANLM
criterion always accepts the initial trials without calling extra
ab initio calculations. The robustness of WANBB, i.e., the
convergence to equilibria regardless of initial configurations,
is theoretically guaranteed. The numerical simulations on the
benchmark containing nearly 80 various systems reveal the
average 1.47% computational cost for unaccepted trials in

FIG. 11. Cumulative SCF iteration numbers of CG, WANBB,
and LBFGS on PuO2 surface with one adsorbed H2O molecule.

WANBB and demonstrate its universal speedups as well as
superior robustness over CG, DIIS, and LBFGS.

The speedup of WANBB over other methods should
mainly be credited to the usage of both (A)BB trial step
sizes for capturing local curvatures of PES and the WANLM
criterion for stabilizing the convergence. It is also worth men-
tioning that the (A)BB step sizes are well suited for steepest
descent direction due to resemblance to Newton iteration in
the sense of Eq. (2).

Our work concentrates on the LM process. Nevertheless,
efficient search directions, such as conjugate gradient, to-
gether with subtly designed LM can be another great boon.
The choices of initial trial step sizes and LM criterion may
differ vastly from WANBB. This topic merits future study.

ACKNOWLEDGMENTS

The authors acknowledge J. Fang for the help with CESSP,
and thank Z. Yang and L. F. Wang for the help on the construc-
tion of the benchmark. The computations were (partly) done
on the high-performance computers of State Key Laboratory
of Scientific and Engineering Computing, Chinese Academy
of Sciences. This work was partially supported by the Na-
tional Natural Science Foundation of China under Grants
No. 12125108, No. 11971466, No. 11991021, No. 11991020,
No. 12021001, and No. 12288201, Foundation of Labora-
tory of Computational Physics Key Research Program of
Frontier Sciences, Chinese Academy of Sciences (Grant No.
ZDBS-LY-7022), the Chinese Academy of Sciences (CAS)
AMSS-PolyU Joint Laboratory in Applied Mathematics, and
the Science Challenge Project under Grant No. TZ2018002.

APPENDIX

In this Appendix, we analyze the convergence property of
WANBB. Before moving on, we define the level set

L := {R : E (R) � E0}.
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For the ease of reference, we restate the nonmonotone condi-
tions in WANLM as follows: in the (k + 1)th iteration, Rk+1

satisfies

Ek+1 � Bk − cαk‖Fk‖2
F, (A1)

〈Fk+1, Fk〉 � σ‖Fk‖2
F. (A2)

By the arguments in [29, Lemma 1.1], we know that the step
size αk satisfying both Eqs. (A1) and (A2) always exists and
that Bk is a convex combination of {Ei}k

i=0.
We first show that the atomic position sequence generated

by WANBB remains in L.
Lemma 1. Let {Rk} be the atomic position sequence gen-

erated by WANBB with μk ∈ [μmin, μmax] ⊆ [0, 1]. Then we
have {Rk} ⊆ L.

Proof. We prove by contradiction. Suppose there exists
l1 > 0 such that El1 > E0. By the condition (A1),

El1 � Bl1−1 − cαl1−1‖Fl1−1‖2
F � Bl1−1.

Since Bl1−1 is a convex combination of {E0, . . . , El1−1}, there
must exist some l2 � l1 − 1 for which El1 � El2 holds. We
can repeat the above arguments to obtain a non-negative se-
quence {li} which is finite for its strict monotonicity and ends
up with 0. Therefore, we get E0 < El1 � El2 � · · · � E0, a
contradiction. �

From the update formula (7), one could obtain that the
surrogate sequence {Bk} is always bounded from below by the
potential energy sequence {Ek}.

Lemma 2. Let {Rk} be the atomic position sequence gen-
erated by WANBB with μk ∈ [μmin, μmax] ⊆ [0, 1]. Then we
have Ek � Bk for any k � 0.

Proof. The claim is true for k = 0 by definition. For k � 1,
by the update formula (7) of Bk+1, one has

Bk = Bk−1 + μk−1Qk−1Ek

1 + μk−1Qk−1
� Ek + μk−1Qk−1Ek

1 + μk−1Qk−1
= Ek,

where the inequality follows from the condition (A1). The
proof is complete. �

With Lemmas 1 and 2 in place, we are ready to show the
convergence of WANBB. The proof relies on the conditions
(A1) and (A2) as well as the update formula (7). Specifically,
the condition (A2) ensures a uniform positive lower bound of
step sizes, while Eqs. (A1) and (7) guide us to a sufficient
reduction over {Bk}.

Theorem 1. Suppose the potential energy is bounded from
below and F is Lipschitz continuous, with modulus L > 0, on
L, namely,

‖F (R) − F (R̄)‖F � L‖R − R̄‖F, ∀ R, R̄ ∈ L.

Let {Rk} be the atomic position sequence generated by
WANBB with μk ∈ [μmin, μmax] ⊆ (0, 1]. Then we have

lim
k→∞

‖Fk‖F = 0.

That is to say, the atoms will approach equilibria, regardless
of initial configurations.

Proof. Subtracting ‖Fk‖2
F from both sides of Eq. (A2), we

have

〈Fk − Fk+1, Fk〉 � (1 − σ )‖Fk‖2
F.

Combining Lemma 1, the Lipschitz continuity of F in L, and
the fact σ ∈ (0, 1), we can further derive

(1 − σ )‖Fk‖2
F � ‖Fk − Fk+1‖F · ‖Fk‖F

� L‖Rk − Rk+1‖ · ‖Fk‖
= αkL‖Fk‖2

F,

and hence a lower bound for step size whenever Fk does not
vanish:

αk � 1 − σ

L
. (A3)

Plugging Eq. (A3) into condition (A1), we obtain

Ek+1 � Bk − cαk‖Fk‖2
F � Bk − c(1 − σ )

L
‖Fk‖2

F. (A4)

Let β := c(1 − σ )/L. By the update formula (7) of Bk+1, we
obtain a recursion for the surrogate sequence using Eq. (A4):

Bk+1 = Bk + μkQkEk+1

1 + μkQk

� Bk + μkQk (Bk − β‖Fk‖2
F)

Qk+1

= Bk − β
μkQk

Qk+1
‖Fk‖2

F.

(A5)

A by-product of Eq. (A5) is the monotonicity of {Bk}. Since
E is bounded from below on L and Bk � Ek for any k � 0 (by
Lemma 2), {Bk} is bounded from below as well. Consequently,
by Eq. (A5),

∞∑
k=0

μkQk‖Fk‖2
F

Qk+1
� 1

β

∞∑
k=0

(Bk − Bk+1) < +∞. (A6)

Following from the update formula of {Qk} and the fact
μmax � μk � μmin > 0, Qk � 1, we can derive

μkQk

Qk+1
� μminQk

μkQk + 1
� μmin

μk + 1/Qk
� μmin

μmax + 1
,

which, together with Eq. (A6), yields the summability of ‖Fk‖.
Hence, ‖Fk‖ → 0 as k → ∞ as desired. �
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