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Multiband superconductors can host collective excitations with marked differences with respect to their
single-band counterpart. We first study the spectrum of collective amplitude fluctuations in a clean two-band
superconductor, showing that the spectral weight of the Higgs mode rapidly deviates from the naive extension of
the single band case as the interband coupling is turned on. These results are then used to critically analyze the
nonlinear optical response in MgB2, providing an explanation for the apparently contradictory results of recent
experiments, pointing towards a selective relevance either of the Leggett mode or of the amplitude fluctuations
at twice the lower gap. By using exact numerical simulations and realistic estimates of disorder we compute the
relative contribution of the quasiparticle, amplitude, and phase fluctuations to the nonlinear optical response. We
show that at low pumping frequency only the resonance at twice the smaller gap emerges, as due to the BCS
response, while the Leggett mode dominates only in a narrow range of higher pumping frequencies matching its
low-temperature value. Our findings provide a fresh perspective on the potential of nonlinear THz spectroscopy
to detect collective modes in other multiband systems, such as iron-based superconductors.
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I. INTRODUCTION

Multiband superconductivity has been reported for a va-
riety of interesting systems, and it has been linked to both
conventional (phonon-mediated) and unconventional pairing
mechanisms. To the former category belongs the benchmark
case of MgB2 [1], which has been historically the first well-
studied case of multiband superconductors, but also more
recent examples as superconducting (SC) interfaces between
insulating oxides [2,3] or layered dichalcogenides [4]. To
the latter category belong the widely studied families of
iron-based superconductors, where pairing originates from
electronic correlations, as possibly due to the exchange of
spin fluctuations among quasi-nested holelike and electronlike
bands [5–7]. Even though rather often metals display mul-
tiple bands at the Fermi level, the characteristic feature of
multiband superconductors that is common to all the above-
mentioned cases is the presence of markedly different SC
gaps �α on the various sheets of the Fermi surface, labeled
here with a band index α. This fact can lead to a series
of spectroscopic signatures rather different from the single-
band case, since the ratio �α/Tc between the gap values and
the critical temperature Tc can deviate from the standard,
single-band BCS case, even in the presence of weak-coupling
pairing [8,9]. This effect manifests in all the probes sensitive
to thermal activation of single-particle excitations, such as in
the specific heat, and in the spectroscopic probes sensitive to
the particle-hole excitations above the 2�α optical gap in each
band. In both cases, the observed behavior differs from the
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single-band case, and very often only the lower optical gap
can be resolved in the optical absorption, since this is the only
one in the dirty limit [10–14].

In addition to the above modifications of the quasiparticle
excitations, multiband superconductors host also a spectrum
of collective fluctuations much richer than in the single-band
case [15–26]. Indeed, by considering for the sake of discus-
sion the two-band case, each order parameter admits both
amplitude (|�α|) and phase (θα) fluctuations below Tc. In
the phase sector, besides the Goldstone mode of the bro-
ken U (1) symmetry, associated with the fluctuations of the
overall θ1 + θ2 phase, a second so-called Leggett mode con-
nected to relative phase fluctuations θ1 − θ2 emerges [15].
While the Goldstone mode is dynamically pushed to the
plasma energy by its coupling to charge fluctuations, the mass
ωL of the Leggett mode is only controlled by the pairing
strength [15,16]. For weak interband coupling it can occur
below the lower optical gap, and it can even soften completely
in systems with three bands at the verge of a time-reversal-
symmetry-breaking transition [17–20]. For what concerns the
amplitude fluctuations, the general behavior is rather different
from the single-band case, where the spectral function of
the so-called Higgs mode has a well-defined resonance at
twice the gap value. As has been already noticed in previous
works [22,23,25,26], for multiband superconductors ampli-
tude fluctuations in each band carry information on the optical
gaps of both the bands.

This rich phenomenology, which already challenges the in-
terpretation of experiments with conventional spectroscopies,
makes the understanding of high-field THz spectroscopies
rather complex [21,23,25,26]. An example is provided by
recent findings in MgB2, where both time-resolved proto-
cols [24] and third-harmonic generation in transmission [27]
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have been used to investigate the nonlinear optical response
triggered by strong THz light pulses. As has been widely
discussed within the context of single-band models [28–33]
the main essence of these experiments is to trigger a nonlinear
current jNL which scales with the third power of the THz
field E , jNL ∼ χ (3)E3, where χ (3) is the nonlinear optical
kernel and time convolution has been omitted for simplicity.
Whenever the χ (3) admits a marked maximum (resonance)
at a given frequency ωgres one can observe, under specific
experimental conditions, oscillations in the differential probe
signal at ωres as a function of the pump-probe time delay tpp in
time-resolved experiments or enhanced THG for a multicycle
light pulse centered at approximately ωres/2 [34,35]. In gen-
eral, ωres can be identified with any collective excitation of the
system nonlinearly coupled to the light. In a superconductor
this is represented either by the threshold for the BCS particle-
hole continuum at the optical gap 2�, or by the collective
amplitude and phase modes. As a consequence, in a multiband
superconductor one could expect in principle multiple sig-
natures: Quasiparticles or Higgs fluctuations at 2�α of each
band, and the Leggett mode at ωL. In MgB2 ωL lies in between
the lower 2�π and the higher 2�σ optical gap, as it has
been proven by spontaneous Raman measurements [36]. On
the other hand, nonlinear optics reported possible resonances
in χ (3) at either ωL [24] or 2�π [27], with the two features
appearing mutually exclusive in the two experimental setups,
challenging their interpretation.

In the present paper we provide a detailed analysis of
the nonlinear response of multiband superconductors, with
the twofold aim from one side to clarify the nature of the
collective fluctuations, in particular the Higgs mode, and from
the other side to establish the experimental conditions for
their detection via nonlinear optics, which has been recently
applied both to MgB2 [24,27] and iron-based superconduc-
tors [37–39]. For what concerns the amplitude fluctuations,
we will show that the redistribution of spectral weight be-
tween the two peaks at 2�α in the spectral functions depends
crucially on the structure of the coupling matrix. This leads
in particular to a pile up of the spectral weight at twice the
largest gap for MgB2 and to a less straightforward redistribu-
tion for iron-based superconductors, crucially depending on
the system parameters. In the latter case, an analogous effect
has been observed for the Leggett mode, whose signature
moves at twice the largest gap as the SC coupling becomes
predominantly interband [21]. Once established the nature of
the collective fluctuations of each order parameter, we will
critically analyze their manifestation in the nonlinear opti-
cal response for the specific case of MgB2. Indeed, as has
been widely discussed in the single-band case [31–33], the
relative contribution of both quasiparticle and Higgs-mode
fluctuations to the χ (3) response at 2�α critically depend
on the disorder level of the sample, with the former ones
dominating at weak and intermediate disorder and the latter
one dominating at very strong disorder. As a consequence, no
definitive conclusion can be drawn without an accurate quan-
titative estimate of the disorder level of the sample, which
can be obtained by a direct inspection of linear spectroscopy.
We will use the experimentally estimated values γα/(2�α )
in each band to extract the contribution of each mode to
the nonlinear kernel, with γα being the scattering rate for

FIG. 1. Sketch of the various contributions to THG stemming
from the spectrum of the collective fluctuations in MgB2, encoded
in χ (3)(2
P ). Dotted lines denote the temperature dependence of
the two order parameters and of the Leggett mode, while shaded
areas mark the typical frequency broadening of the corresponding
resonances in the nonlinear optical kernel. Around 2�σ (T ) both the
BCS and Higgs fluctuations have a sizable weight, while around
2�π (T ) BCS fluctuations dominate. The orange shade covers the
region of the plot where BCS/Higgs resonances are smeared out and
damped by thermal fluctuations. The dashed-dotted lines denote the
pumping frequencies of the experiment by Giorgianni et al. [24] (red)
and by Kovalev et al. [27] (blue).

carriers in the α band. In particular we extend the clean-limit
calculations of Refs. [21,24] to an effective model accounting
for the disorder-mediated coupling of BCS, amplitude and
phase fluctuations to light, in order to establish the dominant
contributions to the nonlinear response as a function of the
temperature and the frequency of the light pulse, as summa-
rized in Fig. 1. We then show that the apparent discrepancy
among the two experiments of Ref. [24] and [27] is purely
linked to the different experimental conditions. In particular
the strong signatures at 2�π observed in Ref. [27], where
the pumping frequency is of the order of �π (T ≈ 0), should
be ascribed to BCS quasiparticle excitation in the π band. In
contrast, the measurements of Ref. [24] are performed with
a larger frequency, matching one half of the low-temperature
value of the Leggett mode, making it the most relevant contri-
bution to the nonlinear response, see Fig. 1.

Finally, we show how multiband MgB2 is the ideal system
to estimate the effects of the linear-response screening in the
SC state to correctly match the theoretical predictions with
the experimental results. This issue has been recently raised
by the analysis of experiments on d-wave cuprate supercon-
ductors [40], but seems not relevant for conventional s-wave
systems as NbN. Here we show that in the multiband case, due
to the presence of a low �α/Tc ratio in one band, screening
effects must be included to capture the correct temperature
dependence of the THG, in analogy with what is seen in the
case of a nodal single-band superconductor.

The plan of the paper is the following. In Sec. II we study
the spectrum of the amplitude fluctuations in a two-band
superconductor, and we show representative results for the
case of MgB2 and iron-based superconductors. In Sec. III

094515-2



CONTRIBUTION OF COLLECTIVE EXCITATIONS TO … PHYSICAL REVIEW B 106, 094515 (2022)

we introduce the formalism to study the nonlinear optical re-
sponse of MgB2 in the clean or disordered case. In Sec. IV we
define a proper phenomenological model to account for dis-
order effect, where the couplings between light and electronic
fluctuations are computed numerically via an exact procedure.
In Sec. V we present the theoretical results and we compare
them with the existing experimental data. Section VI contains
the final discussion and conclusions. The Appendixes contain
additional material. Appendix A presents a detailed study
of the experimental optical conductivity of MgB2, aimed at
extracting realistic estimates for the ratio between scattering
rate and SC gap in each band. Appendix B contains additional
details on the normalization procedure for the light-matter
coupling constants, while Appendix C explains the effect of
short-range interactions on the value of the Leggett-mode
frequency.

II. AMPLITUDE FLUCTUATIONS: FROM THE
INTRABAND TO THE INTERBAND-DOMINATED CASE

As we mentioned in the introduction, the recent experi-
mental advances in the use of strong THz pulses to probe
SC systems has been responsible for an increasing theoretical
interest on the nature of collective fluctuations of the SC
order parameter. In particular the observation of an increased
nonlinear optical response below Tc calls for a deeper un-
derstanding of the nature of collective excitations, and their
coupling to the electric field. Indeed, as discussed in detail,
e.g., in Refs. [33,34], in order to understand the experiments
one has to address two separate problems: (i) the nature of the
collective excitations, encoded in their spectral function and
(ii) their coupling to light. This is the scheme developed in
detail to study more conventional collective excitations like
phonons [41,42]: Their contribution to the nonlinear response
depends on their nature (oscillation frequency and damping)
and on their coupling to light, dictated by symmetry (with a
distinction between infrared or Raman-active phonons). In the
case of single-band superconductors the ongoing discussion
on the contribution of the Higgs mode to THG has been fo-
cused on the second aspect: Indeed, while it is well understood
that the Higgs mode peaks at twice the SC gap in a single-band
supercondutor, its nonlinear coupling to light has been shown
to depend on disorder, being negligible in the clean limit [29]
and sizable in the strong-disorder limit [31–33]. However,
as we shall see in the present section, for a multiband su-
perconductor also the nature of the Higgs fluctuations is not
trivial, being strongly affected by the nature of the interband
coupling.

To address this issue, we introduce a two-band (α, β =
1, 2) BCS Hamiltonian, in close analogy with previous
works [21–26],

H =
∑
αk,σ

ξαkc†
αk,σ cαk,σ −

∑
αβq

gαβ
†
αq
βq, (1)

where 
†
αq is written explicitly as


†
αq =

∑
k

c†
αk+q/2,↑ c†

α−k+q/2,↓. (2)

The kinetic term contains ξαk = εαk − μ, where εαk is the
band dispersion, μ is the chemical potential and σ =↑,↓ is
the spin index. We consider a continuum model with free-
electron-like dispersions of the form

εαk = sα

(
k2

2mα

− εα0

)
, (3)

where εα0 is the distance of the bottom (sα = 1, electronlike
band) or top (sα = −1, holelike band) of the band from the
chemical potential in the normal state and mα is the band
mass. Such an approximation is good both for MgB2 [43] and
pnictides [44]. The interacting term contains the symmetric
matrix gαβ that includes an effective s-wave interaction among
Cooper pairs belonging to the same band (diagonal entries)
or to different bands (off-diagonal entries). When the deter-
minant |g| of the interaction matrix is positive (negative) the
pairing is said to be intraband (interband) dominated.

To study the collective fluctuations we derive the ef-
fective action for the bosonic pairing fields, by following
a standard procedure outlined in several works; see, e.g.,
Refs. [16,19,21,45] for the multiband case. We perform a
canonical Hubbard-Stratonovich (HS) transformation to de-
couple the interaction along the superconducting channel of
each band by introducing the complex fields �α . The resulting
action is then quadratic in the fermionic variables that can
be integrated out, obtaining the effective action for the HS
fields. We separate then the mean-field contribution from the
fluctuating part truncated at Gaussian order in the HS fields.
Minimization of the mean-field contribution leads to the equa-
tions for the gap amplitudes that read

(� − g−1)� = 0, (4)

where � = (�1,�2) can be chosen real due to the U (1)
symmetry of the action and being � − g−1 a symmetric ma-
trix. The term �αβ = �αδαβ is the so-called Cooper’s bubble

reading in terms of Eαk =
√

ξ 2
αk + �2

α ,

�α = 1

V

∑
k

tanh (βEαk/2)

2Eαk
, (5)

where β is the inverse temperature and V the volume of
the system. The remaining action for the uniform (|q| = 0)
gaussian fluctuations of the mean-field gaps can be written as

Sfluc ∼ Re δ�T MA Re δ� + Im δ�T MP Im δ�. (6)

The first (second) contribution involves fluctuations δ� of the
real (imaginary) part of the order parameter with respect to
the mean-field gaps. Since we chose a real mean-field gap, the
first term corresponds to amplitude fluctuations, whose prop-
agator is given by M−1

A . Being then Im δ� = (�1δθ1,�2δθ2),
the second contribution describes the fluctuations of the phase
θα in each band, governed by the propagator M−1

P . We notice
that in this continuum model the amplitude and phase fluctu-
ations are decoupled at |q| = 0 [21].

We then study the behavior of the amplitude fluctuations
of a generic two-band superconductor as a function of the
interband pairing g12. At Gaussian level these are expressed
as

〈|δ�α||δ�β |〉 = (
M−1

A

)
αβ

, (7)
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where the matrix MA reads

MA =
(

χ
σ1σ1
1 + 2g−1

11 2g−1
12

2g−1
12 χ

σ1σ1
2 + 2g−1

22

)
. (8)

Here by g−1
i j we mean (g−1)i j . The fermionic bubble χσ1σ1

α

reads explicitly, introducing the fermionic Matsubara frequen-
cies iωn,

χσ1σ1
α = (

4�2
α − (iωn)2

)
Fα (iωn) − 2�α, (9)

where the function Fα (iωn) is defined as

Fα (iωn) = 1

V

∑
k

tanh (βEαk/2)

Eαk
[
4E2

αk − (iωn)2
] . (10)

To put in evidence the main difference between the single
and the two-band cases, let us write the determinant of the
matrix MA,

|MA| = (
4�2

1 − ω2
)
F1(ω)

(
4�2

2 − ω2
)
F2(ω) + 2g12

|g|
�2

�1

(
4�2

2 − ω2
)
F2(ω) + 2g12

|g|
�1

�2

(
4�2

1 − ω2
)
F1(ω). (11)

A zero of the determinant signals the presence of a well-
defined mode of the system. Since (4�2

α − ω2)Fα (ω) = 0 at
ω = 2�α , it is possible to get a zero in (11) either if the
two bands are identical or if the interband coupling is zero,
otherwise the determinant is always nonzero and we find only
two finite minima at twice the amplitude of the two gaps.

In the latter case the spectra of the amplitude fluctuations
in (7) present two maxima and not two divergences. This is a
first striking difference with respect to the s-wave single-band
case, where the Higgs-mode fluctuations emerge out of a
proper divergence of the spectral function at 2�, at least at
weak and intermediate coupling [29,46]. A similarly broader
Higgs mode is indeed predicted in d-wave single-band super-
conductors [47]. Most importantly, at finite interband coupling
both 〈|δ�1|2〉 and 〈|δ�2|2〉 present a finite spectral weight at
both ω = 2�1 and ω = 2�2. To assess their relative weight as
a function of interband coupling, we introduce the parameter
|η| < 1 [21] such that

η = g12 − √
g11g22

g12 + √
g11g22

. (12)

For −1 < η < 0 (0 < η < 1) we are in the intraband
(interband)-dominated regime. Notice that η = −1 corre-
sponds to a purely intraband interaction, i.e., to a diagonal
coupling matrix. Instead for η = 1 the product of the diagonal
terms is zero. Together with η, we fix the ratio ωc/�1, where
ωc is the usual bosonic energy scale of the pairing, the ratio
�2/�1 of the two gap amplitudes, and the ratio of the DOS
at Fermi surface N2/N1. The entries of the coupling matrix
will then be consistently determined in order to satisfy the gap
equations (4).

We analyzed two cases in order to get an insight into the
spectra of the amplitude fluctuations in MgB2 (see left panels
of Fig. 2) and in a hole-doped compound of the parent pnictide
BaFe2As2 (BKFA) (see right panels of Fig. 2). In the first case
we use N2/N1 = 0.75 and �2/�1 = 3 [1,48], where label 1
refers to the π band and 2 to the σ one. In the second case
we set N2/N1 = 0.35 and �2/�1 = 2 [9,44], with label 1
assigned to the β band (holelike, at �) and 2 to the γ one
(electronlike, at M).

We plot the values of 〈|δ�1|2〉 and 〈|δ�2|2〉 for different
values of η. As we will see, in our phenomenological model
for the nonlinear response in the disordered case, the 〈|δ�α|2〉
fluctuations associated with the most disordered band will be

the most coupled to light and thus will dominate the Higgs
sector. Therefore we avoid to report explicitly the behavior of
〈|δ�1||δ�2|〉.

For both sets of band parameters, at η = −1 we have two
well-defined divergences at ω = 2�α for 〈|δ�α|2〉. We notice
that as soon as the interband coupling is activated, the spectral
weight of 〈|δ�1|2〉 at ω = 2�2 stays constant and the one
at ω = 2�1 gradually decreases, while the complementary
behavior is observed for 〈|δ�2|2〉. The situation for η = 1 is
different in the two cases of MgB2 and pnictides. In MgB2,

FIG. 2. The modulus of the amplitude fluctuations for the smaller
(a), (c) and bigger (b), (d) gaps at fixed gap and DOS ratio �2/�1 =
3, N2/N1 = 0.75 (as appropriate for MgB2) (a), (b) and �2/�1 = 2,
N2/N1 = 0.35 (as appropriate for BaFe2As2) (c), (d) as a function
of interband coupling (blue tones for intraband and red tones for
interband). Higgs fluctuations in MgB2 (e) and in 122 pnictides (f)
for realistic values of the interband coupling. Values of 〈|δ�1|2〉 are
magnified ×4 for clarity.
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FIG. 3. The values r1, Eq. (13), in panel (a) and r2, Eq. (14),
in panel (b) as a function of DOS anisotropy and gap ratio for
dominated interband scattering η = 1. Values greater than one have
been saturated in order to better appreciate the region of anoma-
lous behavior. Solid black line is the solution of gap equations for
g11 = g22 = 0. Blue dots are the position of the appropriate gap and
DOS ratio for BKFA.

the spectral weight at ω = 2�2 is largely predominant over
the one at ω = 2�1 for both channels, while in BKFA there is
a comparable weight at both ω = 2�1 and ω = 2�2.

To further clarify this behavior, we plot the ratio of the
peaks at ω = 2�1 and ω = 2�2 for both channels for the
extreme case η = 1, as a function of the DOS and gap
anisotropy. In Fig. 3(a) we plot

r1 = 〈|δ�1|2〉(ω = 2�1)

〈|δ�1|2〉(ω = 2�2)
, (13)

while in Fig. 3(b) we show

r2 = 〈|δ�2|2〉(ω = 2�2)

〈|δ�2|2〉(ω = 2�1)
. (14)

We start by observing that in the case η = 1 we do not
necessarily have a completely off diagonal (g11 = g22 = 0)
coupling matrix. As can be seen by explicitly solving the gap
equations, this happens only when the gap and DOS ratios
satisfy

N2

N1
=

(
�1

�2

)2
�1

�2
≈

(
�1

�2

)2

, (15)

where the approximation is valid in the limit ωc 	 �1,�2.
The solution of this equation is plot as a solid black line in
Fig. 3. Changing the DOS ratio away from this condition
at fixed gap ratio, or the converse, implies to increase one
among g11 or g22 in order to keep the gap equation satisfied,
while the other remains zero. Thus, one order parameter can
now sustain amplitude fluctuations due to both interband and
intraband scattering channels, while the other only through
interband scattering, resulting in a predominant Higgs weight
at twice the order parameter that has more scattering channels
available. This is reflected in the peak ratios r1 and r2, which
are, respectively, bigger than one roughly below (g11 
= 0,
g22 = 0) and above (g11 = 0, g22 
= 0) the black line.

In summary, the naive expectation that in a multiband su-
perconductor the amplitude fluctuations in each band α have a
sharp maximum at the optical gap 2�α for the same band is in
general not correct. In general, the absence of a zero in the de-
terminant (11) makes the maxima of the spectral function for
amplitude fluctuations in a multiband system much smoother
than in a single-band case. In addition, signatures at one or the

other optical gap can be strongly suppressed by means of the
interband pairing.

In Figs. 2(e) and 2(f) we show the spectral function of
MgB2 and 122 compounds, computed for realistic values of
η. In the MgB2 case, which is of interest in the following
sections, we derive a suitable coupling matrix in order to
reproduce the behavior in temperature of the π gap of the
sample used by Kovalev et al. [27]. We fix the gap ampli-
tude at zero temperature at 2�0

π = 1.1 THz and the critical
temperature at Tc = 36 K as measured by the experiment.
The Debye frequency is set at ωc = 55 meV, i.e., the average
phonon frequency from ab initio calculations, and we take the
calculated ratio between density of states per spin at the Fermi
level, Nσ /Nπ = 0.73. We fix as well the level of interband
coupling [21] η = −0.46 desumed from the same ab initio
calculations [1]. We can solve the gap equations at T = 0 and
T = Tc to obtain the adimensional coupling matrix elements
g̃αβ = gαβNβ , namely, g̃ππ = 0.13, g̃σσ = 0.29, g̃πσ = 0.06
and g̃σπ = 0.08, a similar procedure being used in Ref. [49].
The obtained values are comparable with the usual coupling
matrices used for MgB2 [1,48] when the renormalization
due to the Coulomb pseudopotential is taken into account in
the static limit [10,50], reading in the two-band case g̃αβ →
(g̃αβ − μαβ )/(1 + ∑

β g̃αβ ).
As one can see in Fig. 2, while for pnictides the ampli-

tude fluctuations in each band retain a reasonable amount
of spectral weight on both optical gaps [see Fig. 2(f)], for
MgB2 the Higgs fluctuations in both bands have most of the
spectral weight at the largest optical gap, i.e., at 2�σ ; see
Fig. 2(e). This result must be taken in mind while discussing
the Higgs-mode contribution in THz experiments, as we will
do in the next section.

III. NONLINEAR OPTICAL RESPONSE IN MgB2

Once clarified the nature of the amplitude fluctuations in
a multiband superconductor, we want now to provide an es-
timate of their contribution to the nonlinear optical response,
and their relative importance as compared to BCS particle-
hole excitations and to the Leggett mode, whose spectrum
has been studied previously by several authors [16,21,36].
We will focus on the case of MgB2, whose THz response at
strong fields has been recently measured [24,27], by providing
a phenomenological estimate of the contributions of the differ-
ent superconducting fluctuations induced by the paramagnetic
coupling of light triggered by disorder.

Let us first recall the main idea behind the computa-
tion of the nonlinear optical response, as it appears both in
pump-probe experiments and in measurements of THG in
transmission. As mentioned in the introduction and detailed
in several works, we need to compute the nonlinear cur-
rent jNL ∼ χ (3)E3. By using the effective action approach
mentioned before, one can compute [26,29,34,45] jNL ∼
δS(4)/δA ∼ AKA2 as derivative of the fourth-order action
S(4)[A] ∼ AiAjKi j;kl AkAl expressed in terms of the gauge field
A, which is minimally coupled to electrons in the original
Hamiltonian (1). After integrating out both the fermions and
the collective modes one obtains the various contributions
to the nonlinear optical kernel K . The bare processes in-
volve direct excitations of particle-hole processes by light
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(b)

(a) (c)

(d)

FIG. 4. The bubbles involved in our phenomenological model of
THG in MgB2. Wavy lines denote the gauge field A, which does
not count in the expressions for K (ω) reported in the main text,
while continuous lines are fermionic Nambu-Green functions in the
superconducting state. The green vertices in panels (a) and (b) denote
diamagnetic coupling of light with fermions and contain an overall
factor e2/mα , while red vertices in panels (c) and (d) denote paramag-
netic processes with an overall factor evα . Blurred fermionic bubbles
in panels (c) and (d) indicate that in the presence of disorder we
should take into account the diagram resummation associated with
scattering by impurities, as done in [33], which is included in our
model through the weights wα . The blue vertices in panels (b) and
(d) represent coupling with collective modes, specifically the Higgs
and the Leggett, dashed lines.

and will be denoted as BCS response in what follows, while
vertex corrections represent the contribution of the collective
modes, like Higgs and Leggett fluctuations. Finally, the in-
tensity of the THG scales as ITHG = K (2
p), where 
P is
the central frequency of the THz light pulse, and the factor
of two denotes the sum-frequency process behind nonlinear
driving of the system. We refer for further details to previous
works [21,29,33,34].

A. Clean system

For the clean case the only BCS contribution is due to
diamagnetic processes [29], originating from a term like
∼A2sαe2/(2mα )c†

αk,σ cαk,σ in the microscopic Hamiltonian,
corresponding to the usual diamagnetic contribution to elec-
tronic current. KBCS

dia in the two-band model is simply given by
the sum of two single bandlike expressions, reading

KBCS
dia =

∑
α

(
sαe2

2mα

)2

χσ3σ3
α , (16)

where χσ3σ3
α = 4�2

αFα (ω). The corresponding bubble is
shown in Fig. 4(a). The enhancement of THG response when
2ω = 2�α , which we interpret as particle-hole excitations of
BCS quasiparticles, is determined by the divergence of the
χσ3σ3

α bubble, the prefactor in round brackets in Eq. (16) being
only a measure of the strength of diamagnetic coupling with
the two bands, since it includes the mediating charge e and the
inverse band mass 1/mα .

The Higgs contribution KH
dia in the clean two-band case is

given by a more involved expression reading

KH
dia =

∑
αβ

(
sαe2

2mα

)(
sβe2

2mβ

)
χσ3σ1

α χ
σ3σ1
β

(
M−1

A

)
αβ

. (17)

We notice that if the interband coupling is zero we recover also
here the sum of two single bandlike amplitude fluctuations, as
shown, e.g., in Ref. [45]. The fermionic bubble χσ3σ1

α reads

χσ3σ1
α = 2�α

V

∑
k

ξαk tanh (βEαk/2)

Eαk
[
4E2

αk − (ω + i0+)2
] . (18)

As it has been discussed in Ref. [29], such a bubble vanishes
in the particle-hole symmetric cases since the integral (18)
scales as Nα

∫ ∞
−∞ dξGα (ξ ), with Gα (ξ ) odd function of ξ and

Nα DOS at the Fermi level of band α. The coupling becomes
however finite if one can account for a finite particle-hole
asymmetry of the band, by retaining a linear term in the
expression for the DOS, namely, Nα (ξ ) ≈ Nα + ξ/(2ε0α ), so
that

χσ3σ1
α = �α

4ε0α

[
2g−1

αα + 2g−1
12

�ᾱ

�α

− (
4�2

α − ω2
)
Fα (ω)

]
, (19)

with ᾱ = 2, 1 if α = 1, 2. Even including such an asymmetry,
for MgB2 the χσ3σ1 remains extremely small, since usually
�α/ε0α 
 1. The situation could be different for pnictides,
where a similar prefactor �α/ε0α is indeed obtained by con-
sidering a constant DOS but accounting for the fact that
the bottom/top of the electron/holelike band lies inside the
bosonic frequency range ∼ωc. In that case the integration
runs over an asymmetric shell above and below the Fermi
surface and Eq. (19) is finite. However, whenever the χσ3σ1

bubble is not zero one should also retain the coupling of
Higgs to the density/phase sector, which again suppresses
this effect [29,45]. As we shall see below, in what follows
we will consider as main coupling of the Higgs to light the
one induced by paramagnetic processes, so the structure of
Eq. (19) will only be used to rescale such a coupling as a
function of temperature.

While the Higgs-mode contribution is negligible in the
clean limit, the coupling to phase fluctuations is crucial in
order to guarantee gauge invariance of the theory, especially
for a system with an approximated parabolic band structure
as the one considered here [21,29,51]. For the clean multi-
band case this has been done in Refs. [21,51], leading to a
contribution to the nonlinear kernel completely analogous to
the Higgs case (17) [see Fig. 4(b)], where now we should
consider coupling with the phase fluctuations χσ3σ1

α → χσ3σ2
α

and (M−1
A )αβ → (M−1

P )αβ , with

MP =
(

χ
σ2σ2
1 + 2g−1

11 2g−1
12

2g−1
12 χ

σ2σ2
2 + 2g−1

22

)
. (20)

The resulting expression can be rearranged as

K̃L
dia = −KBCS

dia + KL
dia. (21)

The first term cancels the BCS fluctuations, so that in the clean
case one is left only with the Leggett-mode contribution KL

dia,
which reads

KL
dia =

(
sσ e2

2mσ

− sπe2

2mπ

)2
λ

L
, (22)

where λ = 8g−1
σπ�σ�π . The zeros of the denominator

L = ω2 − λ
χ

σ3σ3
1 + χ

σ3σ3
2

χ
σ3σ3
1 χ

σ3σ3
2

(23)
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determine the dispersion of the Leggett mode. Notice that the
Leggett-mode response only survives when the bands have
different masses and/or opposite (holelike vs electronlike)
character, so that the term in parentheses of Eq. (22) is not
zero. In contrast, when the two bands have same mass and
same character the nonlinear optical kernel is proportional to
the density response of the system K ∼ 〈ρρ〉, which must
vanish at |q| = 0 and finite ω because of charge conserva-
tion [21,51]. Since the BCS approximation by itself is not
gauge invariant this result can only be achieved by integrating
out the phase mode, as encoded indeed in the above Eq. (21).
In summary, in the clean case where only diamagnetic-like
coupling to light matters, only the Leggett mode contributes
to the nonlinear response, in agreement also with the exper-
imental observation in spontaneous Raman experiments in
the symmetric channel [36], whose response function reduces
in the effective-mass approximation to the same density-like
correlation function considered here.

B. Disordered system

In presence of disorder the nonlinear kernel acquires
a finite contribution also from processes mediated by
paramagnetic-like matter-light coupling terms, originating
from terms like ∼Aevαkc†

αk,σ cαk,σ in the microscopic Hamil-
tonian, with vαk band velocity, as shown by Figs. 4(c)
and 4(d). In particular, Fig. 4(c) represents the BCS response,
while Fig. 4(d) represents the correction due to amplitude or
phase fluctuations. Recently, an exact numerical calculation
of all these processes in the presence of disorder has been pre-
sented for the single-band case [33]. The relative weight of the
two is mainly determined by the level of disorder of the band,
expressed as a function of the adimensional ratio γ /(2�)
of the quasiparticle scattering rate over the gap amplitude.
Since the extension of these results to the multiband case is
rather challenging, we will construct here a phenomenological
model where the frequency dependence of the various con-
tributions is borrowed from the clean-limit calculation, while
the coupling of the various modes to light is estimated nu-
merically by the exact results. Such an approach is motivated
by the observation that for the disorder level of MgB2 the
simulations of Ref. [33] have proven that the overall frequency
dependence of the third harmonic current induced by both
BCS and Higgs fluctuations has a rather similar structure as in
the clean case, the only relevant difference being the overall
spectral weight of the response.

Let us start from the BCS contribution. We will retain
the structure in frequency of the σ3σ3 bubble to model the
spectrum of the BCS fluctuations, and we will consider the
following phenomenological expression for the paramagnetic
contributions activated by disorder

KBCS
para =

∑
α

wBCS
α χσ3σ3

α , (24)

where wBCS
α is a suitable frequency independent weight de-

pending on the level of disorder and on the dispersion of the
band. In principle we could also consider the diamagnetic
contribution that is still present in a disordered system, but it
has been shown that already at small disorder level [γ /(2�) ≈
0.1] it is overwhelmed by paramagnetic processes [33]. For

what concerns the Higgs modes we will consider the analo-
gous of (24),

KH
para =

∑
αβ

wH
α wH

β

(
M−1

A

)
αβ

, (25)

by introducing again proper Higgs-light couplings wH
α . Fi-

nally, the paramagnetic coupling of the Leggett mode with
light can be rewritten in terms of a phenomenological weight
wL, so that

KL
para = wL

L
. (26)

The overall nonlinear response will then be given by

K = KBCS
para + KH

para + KL
para, (27)

with suitable effective couplings wBCS
α ,wH

α , and wL obtained
by a microscopic calculation with disorder, as detailed in
the next section. We stress that while wBCS

α describes the
direct coupling of light to quasiparticle-quasihole pairs, i.e.,
it represents an effective description of the blurred diagram
in Fig. 4(c), both wH

α and wL account for the quasiparticle-
quasihole processes mediating the coupling of light with
Higgs or Leggett collective excitations, thus are approxima-
tions of the blurred bubbles Fig. 4(d).

IV. EFFECTIVE COUPLINGS TO LIGHT
IN THE PRESENCE OF DISORDER

We determine the values of wBCS
α , wH

α , and wL by consid-
ering the results by Seibold et al. [33] which treat the effect
of disorder exactly including every possible vertex and self-
energy correction. The starting point is an attractive Hubbard
hamiltonian on a square lattice with local disorder

H = −
∑
i jσ

ti jc
†
iσ c jσ − U

∑
i

ni↑ni↓ +
∑

iσ

Viniσ , (28)

where niσ = c†
iσ ciσ . The first term is the kinetic term with

nearest-neighbor hopping ti j = t , the second is an attractive
interacting term, and the last is a random impurity potential
−V0 � Vi � V0 coupling to the local density, with V0 deter-
mining the strength of disorder. The time evolution of the
mean-field density matrix is then computed in the presence
of a monochromatic vector potential A(t ), which allows one
to calculate the third order nonlinear current j averaging over
a certain number of disorder configurations. We refer to the
original work [33] for further details.

To estimate the effective couplings we compute the non-
linear current at zero frequency, considering that its behavior
is representative of the disorder dependence of the nonlinear
response at all frequencies. This quantity is shown in Fig. 5(a),
where we report the results of Ref. [33] for the BCS response
along with its corrections due to amplitude and phase fluctua-
tions, as a function of γ /(2�). In Ref. [33] it was considered
a relatively large value of the SC coupling, U/t = 2. Here,
to properly model the case of MgB2, we performed the same
calculations for a smaller SC coupling U/t = 0.8 and the
disorder level desumed from the experimental conductivity.
In general, for a given disorder level, the absolute value of the
nonlinear current depends both on the band structure and on
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FIG. 5. In panel (a) we report the nonlinear current at zero fre-
quency computed by Seibold et al. in Ref. [33] for the three separated
contributions: BCS (blue line), Higgs (red line), and phase (green
line). These results are used to extract the phenomenological weights
for the coupling of light to quasiparticles (wBCS), to the Higgs modes
(wH ) and to the phase modes (wP) as a function of disorder. In panel
(b) we make a comparison between the zero frequency third-order
currents allowing only BCS fluctuations (blue line) and all collective
modes (red line) in the U/t = 2 and U/t = 0.8 cases. The U/t = 0.8
values are all normalized by the same factor in order to have a similar
vertical scale.

the value of �, being larger for smaller U at weak disorder.
Nevertheless, we suggest that the ratio of the relative contri-
butions of BCS, Higgs and phase response depends mostly on
the disorder level and not on the SC coupling. This can be
seen in Fig. 5(b), where the results at U/t = 0.8 and U/t = 2
are compatible within the error bars, once renormalized to
have a similar scale. This observation makes it reasonable
to assume that the relative strength of the amplitude (phase)
couplings with respect to the BCS one wH/wBCS (wP/wBCS)
are indeed quite universal, and only depend on the disorder
level appropriate for each band, γα/(2�α ). Finally, we do
not expect that long-range Coulomb interactions, absent in
Eq. (28), will modify the present results. Indeed, the spectra of
both the Higgs [46] and the Leggett [16] mode are unaffected
by the Coulomb interactions, which are instead relevant for
single-phason excitations, which are pushed to plasma energy.
In principle, as discussed in Ref. [33], disorder can make even
these processes, not included here, relevant. How they are
actually affected by the presence of long-range forces is at
the moment an open question in both single and multiband
superconductors.

We consider a final correction accounting for the different
Fermi velocities vFα of the two bands of MgB2, which are
of paramount importance in determining the visibility of the
contributions from the different order parameters. This can be
intuitively justified by realizing that each paramagnetic vertex
of the diagrams depicted in Fig. 4 carries a factor evFα . This
factor is indeed foreseen in analytical approximations at both
strong and small disorder levels [26,31] for BCS and Higgs
fluctuations. For the BCS contribution we then take

wBCS
α = e4v4

Fαw̃BCS

(
γα

2�α

)
, (29)

where w̃BCS is the value of the BCS-only contribution to the
zero frequency nonlinear current reported in Fig. 5 at the
disorder level γα/(2�α ). For the Higgs contribution we use

instead

wH
α = e2v2

Fαζα

√
w̃H

(
γα

2�α

)
, (30)

the square root taking into account the presence of two
fermionic bubbles in Fig. 4(d). Here w̃H is now the value of
the Higgs-only contribution to the zero frequency non linear
current. The ζα factor is introduced to account for the soft-
ening of the light-Higgs coupling by approaching the critical
temperature, and it corresponds to the numerator of (19),
which is indeed proportional to �α . We notice that includ-
ing or not the frequency-dependent part of (19) makes no
detectable difference. For the Leggett contribution, mimick-
ing (22) we take

wL =
[

e2v2
Fσ

√
w̃P

(
γσ

2�σ

)
− e2v2

Fπ

√
w̃P

(
γπ

2�π

)]2

λ, (31)

where w̃P is the value of the phase-only contribution of the
zero frequency nonlinear current. Also here the λ factor, being
proportional to �σ�π , softens the coupling by approaching
the critical temperature. We stress that in the recent analysis
of Refs. [25,26] impurity scattering has been introduced at
the level of the Mattis-Bardeen formalism, which corresponds
to neglect vertex corrections due to disorder. In this limit the
only coupling to the phase is diamagnetic and then subleading
in the presence of disorder. However, as previous works both
in the linear [52] and nonlinear [33] regime has shown, the
paramagnetic coupling of light to the phase induced by an
exact treatment of disorder is crucial at low energy. In the
present multiband case our phenomenological model takes
into account also this latter type of processes, which are of
paramount importance to account for the Leggett-mode con-
tribution to K .

V. RESULTS

We show in Fig. 6 the results of ITHG from a monochro-
matic field at frequency ω as a function of temperature T ,
corresponding to the modulus squared of the nonlinear kernel
defined before, ITHG ∝ |K (2ω)|2 [29]. We focus first on the
separate Higgs and BCS contributions, in order to distinguish
their effects at the two optical gaps.

To highlight the importance of the disorder-mediated cou-
pling of the modes to light we also show in Figs. 6(a) and 6(b)
the fictitious response obtained by using wH

α = wBCS
α = 1, i.e.,

by assuming that the coupling of light is the same for both
fluctuation channels in both bands, in order to understand the
structure of their spectra in the clean limit. We stress two
crucial aspects. First, due to the different absolute values of
the order parameters, for a fixed pumping frequency ω the
resonant condition ω ≈ �α (T ) will in most cases occur with
only one band, due to the thermal softening of the signal as
the temperature increases and the two gap values approach
each other. This is due to the presence of the ∼ tanh(β�α/2)
factor in the numerator of the function Fα (ω) [see (10)], which
softens the resonance in the region �α/T � 2; see dashed line
in Fig. 1. Second, we notice in Fig. 6(b) that at the level of
interband coupling of MgB2, the spectral weight of amplitude
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FIG. 6. Comparison between the BCS (a), (c) and Higgs (b), (d)
contributions to the THG signal as a function of temperature and
pump frequency, with the parameters defined in Sec. II. In panels
(a) and (b) the clean diamagnetic response is reported assuming equal
band mass, so that the relative visibility of the two bands in the Higgs
channel is only determined by the level of interband coupling; see
Fig. 2. The prefactor �/ε0 in panel (b) is set to 10−3. In panels
(c) and (d) the dominant paramagnetic response activated by disorder
is reported. The stronger visibility of the fluctuations in π band is
determined by its stronger disorder and larger Fermi velocity.

fluctuations is concentrated on the bigger order parameter,
with a very faint prominence of the peak in correspondence
of the π gap.

In Figs. 6(c) and 6(d) we report the results using the
appropriate weights due to disorder. We stress that in order
to have a realistic estimate of the ratio γα/(2�α ) in each
band we performed a careful analysis of the absorption in
linear response, as detailed in Appendix A, obtaining that
γσ = 4.5 meV and γπ = 6.2 meV. These values should be
contrasted with the values quoted, e.g., in Ref. [26], where the
very large value γπ = 100 meV has been used. As we explain
in detail in Appendix A, accounting only for elastic scattering
processes due to disorder are not consistent with such large
values, even though they have been provided sometimes in the
previous literature as a result of fitting the conductivity with
a Drude-like model in a range of frequencies where inelastic
effects dominate.

For both BCS and Higgs channels the visibility of the π

gap is enhanced with respect to the σ one because the Fermi
velocity of the π gap is larger, the ratio vFπ/vFσ ≈ 1.85 being
extrapolated from ab initio calculations [53]. We notice as
well that at least at the smaller optical gap the Higgs fluc-
tuations are subdominant with respect to the BCS ones, see
the intensity scale for Fig. 6(d). In addition, even if disorder
enhances the Higgs contribution in the lower π band, as we
noticed before the Higgs fluctuations of the π order parameter
are mostly located at the larger optical gap; see Fig. 3(e) and
Fig. 6(b). On the other hand BCS fluctuations in the π bands
have a maximum at 2�π , so that once disorder triggers the
BCS paramagnetic response in the lower π band one recovers
a larger signal at the lower optical gap; see Fig. 6(c).

FIG. 7. Contribution to the THG signal coming from BCS (blue),
Higgs (orange), and Leggett (green) fluctuations for pump frequen-
cies 
P = 1.25 THz (b) used by Giorgianni et al. [24] and 
P = 0.5
THz (c) used by Kovalev et al. [27]. Even though the ITHG has been
computed by summing all contributions, in panels (a) and (c) we
show the THG response coming from the dominant one alone, along
with the temperature dependence of the gaps (white dashed lines)
and the corresponding pumping frequency (horizontal solid lines).

We then performed simulations of the THG intensity in-
cluding all the contributions of BCS, Higgs and Leggett
fluctuations, whose results are shown in Fig. 7. We selected
two pump frequencies in order to capture the composition of
the THG signal in the two experimental situations of Gior-
gianni et al. [24] and Kovalev et al. [27]. In the first case we
are in resonance with the Leggett mode at T = 0, where the
contribution of the relative phase fluctuations is maximized;
see the red horizontal cut in Fig. 7(a). As expected, the lead-
ing contribution for 
P = 1.25 THz is by far given by the
Leggett excitation, while the relatively small bump observed
at T ≈ 0.7Tc is given by the resonance with the larger σ order
parameter, as shown in Fig. 7(b). Interestingly, at that point the
weight of Higgs and BCS fluctuations is comparable. In the
second case, the pump frequency 
P = 0.5 THz corresponds
to the blue horizontal cut shown in Fig. 7(c). In this situation
the resonance condition for THG occurs with the smaller
π order parameter at temperatures where the corresponding
BCS part of the nonlinear kernel still has a sizable spectral
weight, while the resonance with the larger σ order parameter
occurs for temperatures T ≈ Tc, where the nonlinear kernel is
already small due to the thermal effect discussed before. In
addition, at this pumping frequency the Higgs contribution is
very small since the spectral weight of amplitude fluctuations
in the π band move to the largest optical gap, as explained
before, being far from resonance condition in the experiments
of Ref. [27]. Also the Leggett gives a vanishingly small con-
tribution, which is not surprising: if the pumping frequency is
much lower than half the T ≈ 0 value of the Leggett mode,
the resonance condition ω ≈ ωL(T )/2 can only occur for
T ≈ Tc, where the Leggett-mode contribution to the nonlinear
optical kernel is negligible. This is also the condition studied
in previous theoretical work [25], whose conclusions about
the irrelevance of the Leggett are only due to the frequency
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FIG. 8. (a) The theoretical results for the temperature depen-
dence of the π (dashed line) and σ (dotted line) gaps are compared
to the experimental data (full circles) obtained by Kovalev et al. [27].
The experimental pump frequencies ω1 = 0.3 THz (gray line), ω2 =
0.4 THz (red line), and ω3 = 0.5 THz (blue line) are also reported.
(b) BCS contribution to the THG signal from the π band for a
monocromatic field at the two pump frequencies ω1 and ω3 taking
into account screening of the applied field (full lines) and neglect-
ing it (dotted lines). (c) Simulated temperature dependence of the
THG signal including all fluctuation channels and a realistic pump
field. (d) Experimental results of Ref. [27] for the same pumping
frequencies. The curves at each frequency are normalized to the
corresponding maximum THG signal in temperature for a direct
comparison.

mismatch between the pumping frequency and the Leggett
mode and to the lack of inclusion of paramagnetic coupling
of light to the phase. In contrast, in the experimental situation
of Ref. [24] the set up has been designed ad hoc to match the
condition 2
P ≈ ωL(T ≈ 0) where the Leggett-mode contri-
bution is maximized.

At last, to make a closer comparison with the experi-
mental results of Ref. [27] we account for two additional
effects. First, we observe that in order to reproduce the ex-
perimental data, reported in Fig. 8(d), the internal screening
of the applied field must be considered. This issue has been
recently discussed in Ref. [40] within the context of THG
measurements in cuprate superconductors. In these systems
the d-wave symmetry of the order parameter makes the sub-
gap optical absorption finite even at very low temperature,
leading to a significant temperature dependence of the internal
screening. This fact affects the comparison between the ex-
perimentally measured THG and the theoretical computation
of the nonlinear current, which in principle accounts for the
response to the internal field, jNL(3
P ) ∼ K (2
P )Ā3

int. To
account for the difference between the external field, whose
spectral components one can easily simulate, and the internal
one, which accounts for the response of the material, the
authors of Ref. [40] suggested to normalize the measured
THG to the third power of the measured transmitted first
harmonics. For the moment we use the same approximation
and we compute jNL(3
P ) ∼ K (2
P )Ā3

extt
3, where t (
P ) =

|Et (
P )|/|Eext (
P )| is the temperature-dependent transmis-
sion ratio measured on the same MgB2 sample in Ref. [27].

We show in Fig. 8(b) the effect of the internal screening
for the IBCS

THG from the π band obtained for a monocromatic
incident field at frequencies ω1 = 0.3 THz and ω3 = 0.5 THz.
For the smaller pump frequency, when the screening effect is
neglected (gray dotted line), we observe a small peak at the
temperature T ∗ ≈ 0.8Tc such that ω1 = �π (T ∗), followed by
an increase of the THG signal at lower temperatures. This is
again due to the smallness of the ∼ tanh (β∗�π/2) factor at
the resonance and is ultimately linked to the two-band nature
of MgB2, for which βc�π (T = 0) ≈ 0.73 is much smaller
than the single-band value βc�(T = 0) ≈ 1.76, for which this
effect is usually not observed. To reconcile this behavior with
the experimental curve, it is then essential to consider the ac-
tion of screening, the transmission of the material decreasing
rapidly near Tc and then being roughly constant down to zero
temperature; see the gray full line in the same panel. At the
larger pump frequency, where correspondingly T ∗ 
 Tc, the
effect of the screening does not influence the shape of the peak
but just contributes to renormalize its overall intensity.

Finally, we compute the THG intensity by simulating also
a realistic narrow-band multicycle pulse with form A(t ) =
A0e−(t/τ )2

cos (
Pt ), where the parameter τ , akin to the tem-
poral duration, is fitted to match the temporal duration of the
experimental pulses used by Kovalev et al. [27]. The results
obtained by including all the fluctuations channel and the
internal screening is reported in Fig. 8(c). We observe an
excellent agreement for the gray and blue curves (ω1 and ω3

frequencies) while the red one (ω2) presents an experimentally
larger peak than what we found, due to the fact that for ω2 the
resonance condition occurs in a range of temperatures where
the largest relative deviations occur between the theoretical
gap values and the experimental ones; see Fig. 8(a).

VI. DISCUSSION AND CONCLUSIONS

In the present paper we investigate in a qualitative and
quantitative way the nonlinear optical response in multiband
superconductors, showing that THz spectroscopy represents
an excellent tool to investigate the collective modes in this cat-
egory of superconductors. A first issue, addressed in Sec. II,
concerns the nature of the Higgs modes in a multiband super-
conductor. In general, while in a single-band superconductor
both the quasiparticle BCS continuum and the Higgs mode
have a sharp resonance at the optical gap, i.e., at twice the
value of the SC order parameter, in the multiband case one can
have multiple amplitude fluctuations with different intensity
at the two optical gaps. In general, the amplitude fluctuations
in a given band α do not necessarily have their maximum at
the optical gap 2�α of the same band, due to a subtle interplay
between the gap anisotropy and the interband pairing strength.
For the specific case of MgB2 amplitude fluctuations in both
bands have larger spectral weight at 2�σ , i.e., at the larger
optical gap; see Fig. 2(e). This result reflects also on the non-
linear optical kernel, where a crucial ingredient is the correct
estimate of the coupling of collective excitations to light, in
particular in the presence of disorder where paramagnetic-like
processes should be considered, as demonstrated by extensive
work in the context of single-band superconductors [31–33].
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Indeed, despite the fact that the lower band is in the relatively
large disorder limit, due to the large estimated ratio γπ/(2�π )
for the samples used in Ref. [27], the Higgs fluctuations of the
π band have a large spectral weight at 2�σ , giving overall a
small contribution of the Higgs at 2�π ; see Fig. 6(d). On the
other hand, the relatively large γπ/(2�π ) ratio strongly en-
hances BCS fluctuations in the π band, whose spectral weight
piles up at 2�π in full analogy with the single-band case.
These results fully account for the experimental results of
Ref. [27], where the system is driven with three pumping fre-
quencies matching the resonant condition in correspondence
of the lower gap �π ; see Figs. 8(c) and 8(d). On the other
hand, under this driving conditions the Higgs and Leggett
mode give a negligible contribution to the nonlinear response.

For what concerns the results of Ref. [24], in that case
the experiment has been designed with a driving frequency
matching half the value of the Leggett mode around zero tem-
perature, namely, in the temperature range where the Leggett
resonance (that is usually rather broad since it is located
above the lower optical gap) is reasonably well defined. In
this range of driving frequencies the largest contribution to the
nonlinear response is due to the Leggett mode [see Figs. 7(a)
and 7(b)], confirming then the original interpretation provided
in Ref. [24]. However, it should be emphasized that in contrast
to Ref. [24] the theoretical estimate of the phase-fluctuation
contribution to the nonlinear kernel has been based here on the
finite paramagnetic coupling of the light to the phase mode,
triggered by disorder. This coupling emerges in the exact treat-
ment of disorder implemented in Ref. [33] and confirmed here
by calculations at smaller SC coupling, while it is absent in the
Mattis-Bardeen-like treatment of disorder considered in previ-
ous theoretical work [25,26]. Including only the diamagnetic
coupling to the phase, as done in Ref. [25], surely underesti-
mates the Leggett-mode contribution to the nonlinear optical
kernel. In addition, if one analyzes the THG for a pumping
frequency matching the largest gap value, ω ≈ �σ (T ≈ 0),
as done in Ref. [25], it is not surprising that the Leggett mode
gives a small contribution. This is the direct counterpart on
the band σ of the results shown in Fig. 7(d) on the band π ,
where the Leggett-mode contribution is largely subdominant.
Nonetheless, we stress that the overall scale of the THG due to
the Leggett mode appears smaller than the one due to the BCS
excitations, as one can see by comparing Figs. 7(a) and 7(c).
To test this prediction experimentally it would be interesting
to perform THG measurements on the same sample for a
wider range of pumping frequencies, in order to measure the
absolute variation of the ITHG as different collective modes are
excited by the light pulse.

Finally, envisioning possible applications of this analysis,
we would like to comment on recent experiments in electron-
doped [37] or hole-doped [39] 122 multiband iron-based
superconductors. So far, the nonlinear response in these sys-
tems has been probed via time-domain protocols either with
multidimensional THz pulses [37] or via THz pump-optical
probe response [39]. In the former case, the authors observed
marked oscillations of the transmitted signal as a function
of the pump-probe delay tpp at a frequency corresponding to
twice the smaller gap. This result [34,35] implies a marked
resonance of the nonlinear kernel at the lowest optical gap,
as also suggested by THG experiments in FeSe0.5Te0.5 [38].

However, to really establish the predominance of the Higgs
over the BCS response one would need again to estimate
the role of disorder for each band, which was not explicitly
provided in Ref. [38]. Disorder effects were neglected in the
theoretical analysis of Ref. [37], but the effects of the applied
electromagnetic field were included within a nonperturbative
scheme, so they could access a regime not captured by the the-
oretical scheme implemented in the present work. The relative
importance of the two effects is an interesting open ques-
tion that deserves further investigation. Finally, in Ref. [39]
the authors measured the time-resolved signal for a pumping
frequency much smaller than both optical gaps, so that one
probes in time the square of the applied electric field weighted
with K (ω ≈ 0), as theoretically expected by computing the
convolution of the kernel with the pump profile [34,35,54].
The results confirm the increase of the nonlinear response in
the SC state, with the additional observation of a larger B1g

signal when superconductivity coexists with nematic order.
Also in this case, the claim of a relevance of the Higgs is
not supported by realistic theoretical calculations: indeed, the
authors of Ref. [39] do not consider the role of disorder,
which is crucial not only to enhance all the paramagnetic
processes, including the BCS ones, but also to change the
symmetry of the nonlinear kernel, which is the main focus of
Ref. [39]. As a consequence, one cannot expect, as claimed
in Ref. [39], which the clean-limit calculation reproduces the
same polarization dependence of the dirty-limit results. More
specifically, detailed recent calculations in Ref. [35] have
shown, for the case of cuprates, which the BCS contribution
due to paramagnetic processes activated by disorder has a
rather different polarization dependence of the diamagnetic
one, and both should be considered to properly account for
the measured polarization dependence of the signal. We fi-
nally observe that the calculation itself of the Higgs-mode
contribution presented in Ref. [39] has been done assuming
only intraband pairing, which is in striking contrast with the
predominance of interband pairing in these systems [5–7].
As we explained in Sec. II, to correctly account for the
amplitude-mode spectrum in a multiband superconductor it
is crucial to use a realistic pairing matrix, and in particular
the interband pairing strength has a crucial role in mixing
the amplitude fluctuations in the two bands. In addition, in
the presence of disorder nematicity has a peculiar effect in
mixing the fully symmetric A1g and the B1g channel already
in the nonsuperconducting state [55], as evidenced by mea-
surements of the spontaneous Raman spectroscopy [56]. At
present, a striking outcome of Ref. [39] is that the case of
pnictides evidences how THz light pulses can access non-
linear optical processes complementary to the ones visible
in ordinary Raman measurements. This is probably the most
interesting perspective, which motivates future work aimed at
establishing the selection rules encoding how light can access
the different interaction mechanisms at play in such complex
systems.
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TABLE I. Survey of scattering rates listed in literature. The type labels are single crystal (SC), film (F), and polycrystal (P); the experiment
labels are reflectance (R) and transmission (T) with temperature of acquisition of the spectra in brackets; the fit labels are single Drude (SD),
double Drude (DD), and Lorentz (L) when present. Values marked with a single asterisk have been fixed by the authors of the experiment
to theoretical ab initio values from [68]. Single Drude fittings marked with a double asterisk do not attribute the observed spectral weight
specifically to the σ or π band; thus the results are arbitrarily listed in the σ column.

Ref. Type Exp. ωp,σ (eV) ωp,π (eV) γσ (meV) γπ (meV) Fit

[60] SC R (300 K) 2.6 4.2 37 87 DD+L
[61] SC R (300 K) 4.14∗ 4.72 12.4 85.6 DD+L
[62] 1000 nm F R (50 K) 2.54 1.27 6 248 DD
[57] 100 nm F T (45 K) — 4.10 — 12 SD
[58] 50 nm F T (40 K) 3.74+0.44

−0.24 — 99+25
−13 — SD**

[63] SC R (300 K) 4.14∗ 5.89∗ 25 248 DD+L
[59] 100 nm F T (40 K) 1.5 — 37 — SD**
[11] PC R (300 K) 1.39 4.94 30 1160 DD+L
[64] 400 nm F T (45 K) 1.69 ± 0.02 — 9 ± 1 — SD**

Sapienza University via Grants No. RM11916B56802AFE
and RM120172A8CC7CC7.

APPENDIX A: STUDY OF THE CONDUCTIVITY OF MgB2

1. Normal state

In order to determine the contribution of the various super-
conducting modes to the observed THG signal, it is necessary
to assess the disorder level in the π and σ bands of the MgB2
13-nm-thin film analyzed by Kovalev et al. [27]. Here we
focus mainly on the available experimental data for the normal
state conductivity.

The impurity scattering rates γσ and γπ of MgB2 have
been widely debated in literature. A survey of selected results
obtained by modeling linear response functions with one or
two Drude terms, plus Lorentz oscillators where included,
is reported in Table I. We considered both transmission
protocols [57–59] of THz light through various films and
reflectivity measurements [11,60–64] in a wide spectral range
on single crystals, polycrystals, and films. While transmission
protocols are limited to a few THz region, in the thin film
approximation they give immediate access to the complex
conductivity without using Kramers-Kronig relations. Con-
versely, broad spectrum reflectivity protocols require to use
the latter to derive the real and imaginary part of linear re-
sponse functions, but can be combined with ellipsometry, as
done in [11,61], to obtain more reliable extrapolations even
at low frequency. Thus they can both provide a reasonable
benchmark of the impurity scattering rates. Other experi-
mental techniques used to infer the impurity scattering rates
are Raman spectroscopy [12] and magnetoresistance [65–67],
which usually indicate smaller scattering rates than those
coming from linear response functions.

The spectral range analyzed by Kovalev et al. [27] is
restricted between 0.5 THz and 2.5 THz, where we expect
Drude-like behavior with a constant scattering rate to be dom-
inant. Indeed, the large values of scattering rates obtained in
most of the works listed in Table I arise from the attempt to use
a constant γ in a range of frequency where inelastic effects are
relevant. Since here we need to estimate only elastic impurity
effects, it is imperative to restrict the analysis to a small range

of frequency, as the one provided by the equilibrium mea-
surements of Ref. [27]. Due to the presence of two electronic
bands crossing the Fermi surface, in principle we expect both
of them to contribute to the normal state conductivity.

A first indication on the disorder level of the film can then
be extrapolated directly from the experimental data. We can
interpolate the frequency ω0 = 1.34 THz at which the real
(σ1) and imaginary (σ2) part of the conductivity intersect and
the corresponding value of the real conductivity σ1(ω0) =
3.2 × 105 
−1 cm−1. In the case of a single Drude component
ω0 corresponds to the scattering rate γ , and the zero frequency
conductivity is σ1(0) = 2σ1(ω0). In our case of two Drude
components we can show that irrespectively on the specific
scattering rates and plasma frequencies of the two bands we
have σ1(0) > 2σ1(ω0), thus the zero frequency conductivity of
this film is at least σ1(0) = 6.4 × 105 
−1 cm−1. This value
is higher than other previously reported extrapolations from
linear response functions [57,62,63], thus indicating an ex-
tremely clean film.

It is now imperative to distinguish the π and σ contribu-
tions to the conductivity. We evaluate two different scenarios
according to the ratio ρ = γσ /γπ . In pristine MgB2 samples
both theoretical [68] and all the previously cited experimental
studies support the hypothesis that the scattering rate in the σ

band is smaller than the one in the π band, thus we can assume
ρ < 1.

In the first scenario we consider γσ 
 γπ , as implicitly
assumed by Kovalev et al. [27] and reported also by Hwang
et al. [62] and Kuz’menko et al. [11], the behavior in fre-
quency is thus completely determined by the σ carriers as in a
single-band case. If we perform a fit of the experimental con-
ductivity with a single band Drude model, the obtained best
fit value ωp,σ = 5.1 eV is notably higher than the theoretical
in-plane plasma frequency of the σ band ωp,σ = 4.14 eV [68].
We stress that including an overall static dielectric constant, as
done in [11,60,61,63], will renormalize the plasma frequency
to a still higher value, incompatible with the theoretical
prediction.

To reinforce the rebuttal of this hypothesis, we report a
previous study by Zhang et al. [69] on epitaxial MgB2 thin
films of thicknesses between 6 nm and 40 nm grown by the
same hybrid physical-chemical vapor deposition (HPCVD)
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FIG. 9. Main panel: The fit (full and dashed lines) of the real
(circles) and imaginary (squares) part of the experimental conduc-
tivity (full circles) from Kovalev et al. [27] for the three values of
ρ = γσ /γπ mentioned in the text. Inset: The expected position of the
maximum ωmax of the imaginary part of the conductivity as a function
of ρ (full line) with respect to intersection ω0 between the real and
imaginary part of the conductivity (dashed line).

technique used by Kovalev et al. [27]. The study concluded
that the conductivity of those samples is mainly determined
by the π band plasma. This result has been established by
analyzing the behavior of DC resistivity with temperature of
the various films and is compatible with the clean sample sce-
nario described with ab initio simulations [68]. The observed
low resistivity at low temperatures and its mild growth with
temperature suggest indeed that the scattering rates of σ and π

bands are comparable, thus ruling out the γσ 
 γπ scenario.
In the second scenario we then consider γσ and γπ compa-

rable. We contemporarily fit the real and imaginary part of the
conductivity with the sum of two Drude peaks with different
plasma frequencies and impurity scattering rates. Due to the
very narrow frequency range accessed by the experiment, we
decide to fix the ratio ωp,π /ωp,σ = 1.42 according to ab initio
calculations [68] and the ratio ρ of the scattering rates. We fix
the value ω0 = 1.34 THz at which σ1 and σ2 intersect and we
plot the expected position of the maximum of the imaginary
part as a function of ρ in the inset of Fig. 9. We notice
that for ρ � 0.5 the predicted position of the maximum is
incompatible with the experimental observation, which occurs
in close proximity to or even for a frequency larger than ω0.

We show the results for the normal state in Fig. 9 for
three values of ρ. We choose ρ = 0.05 (blue curves), which
is the situation of an extremely dirty π band; ρ = 0.16 (or-
ange curves), which is the value of best agreement between
the experimental and theoretical σ s

1/σ
n
1 discussed later; ρ =

Nπ/Nσ = 0.73 (green curves) following from Born approxi-
mation when we assume similar intraband scattering matrix
elements of the impurity potential between σ and π Bloch
states. For completeness we report in Table II the corre-
sponding values of quasiparticle scattering rates and plasma
frequencies.

TABLE II. Values of quasiparticle scattering rates and plasma
frequencies used in the fits. In bold are the parameters used in the
main text.

γσ /γπ γσ (meV) γπ (meV) ωp,σ (eV) ωp,π (eV)

0.05 4.47 89.48 4.64 6.59
0.16 2.78 17.36 3.65 5.2
0.73 4.55 6.21 2.97 4.22

We notice that both values of scattering rates are smaller
than what is reported in Table I, with the notable exception of
the result by Jin et al. [57], which was indeed obtained by a
fit in a similar frequency range. As we mentioned before, this
is however consistent with the expectation that elastic effects
only dominate at low frequencies, so that pursuing a Drude fit
with a constant scattering rate in a range of frequencies where
inelastic effects dominate leads to an unphysical enhancement
of γ . For what concerns the plasma frequencies, we obtain a
smaller value than the theoretically predicted one. The values
can be reconciled by introducing a dielectric constant as re-
called before or by using an extended Drude formalism with
frequency-dependent scattering rates [61]. Inclusion of inelas-
tic effects leads in general to a larger scattering rate with a
consequent increase of the spectral weight. This compensates
the small underestimate of the plasma frequencies that we
have obtained from such a low-frequency fit.

2. Superconducting state

In this section we compare the experimental optical con-
ductivity in the superconducting state and the theoretical fit
with our estimates of the scattering rates. We will stick to the
data at T = 4 K and T = 12 K presented in Ref. [27], thus we
show the ratio between the real part of the optical conductivity
in the superconducting state and the one in the normal state
(σ s

1/σ
n
1 ). Since we want to study the behavior as a function

of disorder level in the two bands, we can use Zimmerman’s
optical conductivity [70]. In order to adapt it to the two-band
case we take the sum of the two contributions coming from π

and σ bands of MgB2:

σ s
1

σ n
1

= σ s,π
1 + σ s,σ

1

σ n,π
1 + σ n,σ

1

. (A1)

The normal state conductivity is written (α = σ, π ),

σ n,α
1 = ω2

p,α

4πγα

1

1 + ω2/γ 2
α

≡ σ 0
αD(ω/γα ), (A2)

analogously the conductivity in the superconducting state is

σ s,α
1 = σ 0

αZ[ω/(2�α ), γα/(2�α ), β�α], (A3)

with Z explicitly given in Ref. [70]. Following what we have
already discussed previously for the normal state, we keep
fixed ωp,π /ωp,σ = 1.42 and for fixed ratio ρ we determine the
corresponding quasiparticle scattering rates γπ and γσ in order
to keep the intersection point between the real and imaginary
part of the optical conductivity at the experimental ω0 = 1.34
THz. The remaining free plasma frequency is fixed in order to
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FIG. 10. The fit (full lines) of the ratio between the real part of
the optical conductivity in the superconducting and in the normal
state (full circles) from Kovalev et al. [27] for the three values of
ρ = γσ /γπ mentioned in the text. Panel (a) is at T = 4 K, and panel
(b) is at T = 12 K.

match the experimental value of the normal state conductivity
at ω0.

We desume �π (T ) and �σ (T ) from the coupling ma-
trix presented in Sec. II. Thus, we have all the required
parameters to use in expression (A1): Notably there is no
dependency on the single plasma frequencies but only on
their ratio, which we keep fixed. We show in Fig. 10 the
obtained curves for the three values of ρ presented before,
at T = 4 K [Fig. 10(a)] and T = 12 K [Fig. 10(b)]. We can
observe that at both temperatures there is extra subgap ab-
sorption not captured by the BCS approximation considered
by Zimmerman’s expression, probably due to the contribution
of phase fluctuations [52,71]. Moreover, in the T = 12 K case
also the region above gap deviates from the prediction, but
still we can recover a good agreement if we set a higher effec-
tive temperature, a similar effect being present in Ref. [59].
Focusing on the T = 4 K case, the best agreement is obtained
for ρ = 0.16, with smaller values substantially deviating from
the experimental data and larger ones still presenting a qualita-
tive agreement. Nevertheless, we notice that for ρ = 0.16 the
predicted normal state conductivity deviates the most from the
measurements, in particular for what concerns the imaginary
part. This is why we decided in the main text to stick to the
result of Born approximation and set ρ = 0.73.

For completeness, we performed also simulations of the
THG intensity from the various collective modes for ρ =
0.16, but we did not notice significant deviations from the
results shown in the main text. We observed an enhancement
of the Higgs mode contribution of roughly a factor two in
Fig. 6(d) and a consequent dominance of the Higgs at T ≈
0.7Tc, i.e., in resonance with the σ gap in Fig. 7(b).

APPENDIX B: NORMALIZATIONS

There is a certain degree of arbitrariness in defining the
weights of our phenomenological model of a two-band disor-
dered system. To clarify the procedure that we have adopted
we start from the single-band description. The paramagnetic
BCS contribution at ω = 0 and T = 0 reads

KBCS
para = wBCSχσ3σ3 (ω, T = 0) ≡ w̃BCS, (B1)

since at ω = 0 and T = 0 we want the result to coincide with
the nonlinear current calculated in [33], namely, w̃BCS in the
main text. This means that the weight should be normalized

as

wBCS = w̃BCS

χσ3σ3 (ω, T = 0)
. (B2)

In presence of two bands we want to generalize the previous
result. Then considering again that at ω = 0 and T = 0 we
have

KBCS
para =

∑
α

wBCS
α χσ3σ3

α (ω, T = 0), (B3)

we mimic Eq. (B2) by taking

wBCS
α = e4v4

Fαw̃BCS
α∑

β χ
σ3σ3
β (ω, T = 0)

, (B4)

which corresponds to take an average weight of the wBCS
α

by the ω, T = 0 values of the χσ3σ3 clean bubble. A similar
procedure is adopted for wH

α ,

wH
α = e2v2

Fαζα

√
w̃H∑

βγ ζβζγ

(
M−1

A

)
βγ

(ω, T = 0)
, (B5)

and wL

wL =
(
e2v2

Fσ

√
w̃P

σ − e2v2
Fπ

√
w̃P

π

)2
λ

λL(ω, T = 0)
. (B6)

APPENDIX C: SHORT-RANGE INTERACTION

Plugging the calculated ab initio coupling matrix into ex-
pression (23), the predicted Leggett-mode frequency is not
compatible with both Raman [36] and pump-probe exper-
iments [24]. A better agreement is obtained in Ref. [36]
considering an additional repulsive short-range interaction to
the Hamiltonian

H → H +
∑
αβq

Uαβ�†
αq�βq, (C1)

where �†
αq is written explicitly as

�†
αq =

∑
kσ

c†
αk+q/2,σ cαk−q/2,σ , (C2)

and U a suitable two by two matrix. It is possible to decouple
this interaction in the particle-hole channel by introducing the
Hubbard-Stratonovich fields ρα , associated with the density
fluctuations of the two bands. An analogous procedure has
been adopted in a previous work [21] to treat the repul-
sive Coulomb interaction in the two-band case. As has been
already pointed out in that context, the phase and density
fluctuations are then coupled and cannot be integrated out
separately. The action (6) is then modified as

Sfluc ∼ |δ�|T MA|δ�| + (δθ δρ)MP,D

(
δθ

δρ

)
, (C3)

having defined the vector δρ = (δρ1, δρ2). The matrix of
coupled phase and density fluctuations is a straightforward
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generalization of Eq. (B8) of Ref. [21],

MP,D =

⎛
⎜⎜⎜⎜⎜⎝

( iωn
2

)2
χ1 − λ

4
λ
4

iωn
2 χ1 0

λ
4

( iωn
2

)2
χ2 − λ

4 0 iωn
2 χ2

− iωn
2 χ1 0 −χ1 + 2U −1

11 2U −1
12

0 − iωn
2 χ2 2U −1

12 −χ2 + 2U −1
22

⎞
⎟⎟⎟⎟⎟⎠. (C4)

Here we denoted χα = χσ3σ3
α . With lengthy calculations it can be shown that the nonzero solution of |MP,D| = 0 reads

ω2 = λ
(χ1 + χ2)

χ1χ2
− λ

U11 + U22 − 2U12

2
, (C5)

that being λ < 0 in the case of MgB2 shifts the frequency of the Leggett mode to a higher value, as already stated in Ref. [36].
There is in any case no physical reason why one should retain U = g, i.e., using the same entries for the interaction respectively
in the particle-hole and particle-particle channels. In our model we used then the last term of the previous equation as a fitting
parameter in order to match the experimental ωL ≈ 2.5 THz.
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