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In this work we explore the interplay between superconductivity and nematicity in the framework of a
Ginzburg-Landau theory with a nematic order parameter coupled to the superconductor order parameter. In
particular, we focus on the study of the vortex-vortex interaction in order to determine the way nematicity
affects its attractive or repulsive character. To do so, we use a dynamical method based on the solutions of the
time-dependent Ginzburg-Landau equations in a bulk superconductor. An important contribution of our work
is the implementation of a pseudospectral method to solve the dynamics, known to be highly efficient and of
very high order in comparison to the usual finite-differences and -elements methods. The coupling between
the superconductor and the (real) nematic order parameters is represented by two terms in the free energy: a
biquadratic term and a coupling of the nematic order parameter to the covariant derivatives of the superconductor
order parameter. Our results show that there is a competing effect: while the former independently of its
competitive or cooperative character generates an attractive vortex-vortex interaction, the latter always generates
a repulsive interaction.
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I. INTRODUCTION

The nature of the vortex-vortex interaction in Ginzburg-
Landau (GL) type theories has attracted much attention over
the years, both from the condensed matter community, where
GL theories are the successful phenomenological theory of
BCS superconductors [1,2], and also from the high-energy
community where vortices appear as nonperturbative solu-
tions of the Higgs model and other quantum field theories [3].

An important first step in the description of the interactions
was taken by Kramer [4], who gave a simple (approximate)
expression for the vortex-vortex interaction, showing that vor-
tices repel for κ > 1/

√
2 and attract for κ < 1/

√
2, where

κ = λL/ξ is the GL parameter defined as the ratio of the
London magnetic penetration length and the superconductor
coherence length. The particular critical value κc = 1/

√
2

also signals the boundary between type I and type II super-
conductors characterized by the presence of an Abrikosov
vortex lattice phase. This particular value of κc holds for stan-
dard macroscopic three-dimensional superconductors, and the
problem has been revisited by many authors using a variety of
techniques and applied to different systems of interest [5–13].
A very detailed numerical analysis of the vortex-vortex in-
teraction in the context of the standard GL model has been
performed by Chaves et al. [14].

The noninteracting character of vortices for κc in the GL
model can be established analytically using the Bogomol’nyi
identity and showing that the energy per unit length is propor-
tional to the vorticity (or the number of vortices) [15]. From a
mathematical point of view, the value κ = 1/

√
2, commonly

referred to as the self-dual point, is very interesting. It can be

shown that the second-order Euler-Lagrange equations are in
this case equivalent to a set of much simpler first-order equa-
tions known as self-dual equations. In high-energy physics,
where the Ginzburg-Landau free energy corresponds to the
static energy of the U(1) Higgs model, these equations are
known under the name of Bogomol’nyi-Prassad-Sommerfeld
(BPS) and were studied originally in Refs. [15,16] for the
case of vortices, and for the case of monopoles in Ref. [17].
In the superconductor literature these equations (in an axially
symmetric ansatz) were first discussed in Ref. [18].

The existence of static configurations can be proved rig-
orously and the space of solutions can be fully characterized
(moduli space) not only for the geometry of the plane (which
we are dealing with in this work), but also for more general
geometries (in general manifolds without boundaries). Fur-
thermore, the existence of a self-dual point also indicates the
presence of more exotic symmetries which in addition to the
existing fields of the theory (represented by standard commut-
ing fields) involve additional fields that are represented by
anticommuting Grassman variables (supersymmetries) (see,
for instance, [19] and references therein). These supersym-
metries play a fundamental role in the understanding of
the nonperturbative sector of modern quantum field theories.
Self-dual points exist for many theories with multiple order
parameters but not for all of them. When self-dual equa-
tions do not exist, the nature of vortex-vortex interaction must
be studied numerically.

In this work we are interested in Ginzburg-Landau the-
ories with nematic order parameters. The existence of an
electronic nematic phase in strongly correlated systems has
been originally theoretically proposed in Refs. [20,21], and a
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large amount of theoretical models [22–24] and experimental
evidence have been documented since then (for a more recent
review, see Ref. [25]). In particular, an in-plane anisotropic
phase has been reported in the underdoped regime of both
cuprate [26–29] and Fe-based [30–33] high-temperature su-
perconductors with a concurrent breaking of the C4 symmetry
in the structural and transport properties, driven by electronic
degrees of freedom [32,34].

In particular, we are interested in exploring how the pres-
ence of the nematic order alters the vortex-vortex interaction.
We focus on how the new parameter affects the boundary be-
tween type I and type II superconductivity in bulk samples (by
bulk samples we mean three-dimensional materials where any
characteristic length such as the London penetration length or
the superconductor coherence length are much smaller than
the dimension of the sample; in mesoscopic samples and/or
films, the phenomenology is expected to be different (see,
for example, Ref. [35] for standard BCS superconductors).
We also show that if the nematic order parameter is taken
constant in space and time as an external field, the existence
of a self-dual point can be easily established.

In the case where the nematic order parameter is allowed
to vary in time and space, we study how nematic order affects
the vortex-vortex interaction in the superconducting phase via
numerical methods for values of κ close to κc. It is impor-
tant to notice that most known high-Tc superconductors are
characterized by larger values of κ than those considered here
(in some Fe-based superconductors the GL parameter can be
taken κ ∼= 15 [36] but larger values are common for most
cuprates and other Fe-based superconductors). Therefore, this
work may not be applied directly to these superconductors
but may shed light on how nematicity manifests in the super-
conducting phase via the vortex-vortex interaction. We also
mention that the values of κ used in this work are commonly
used in numerical simulations [37,38].

In order to study how nematicity affects the vortex-vortex
interaction, we use a dynamical technique. That is, we ad-
dress the problem of vortex-vortex interaction by studying
the dissipative dynamics as dictated by the time-dependent
Ginzburg-Landau (TDGL) equation [39]. The TDGL model
has a very long history, and it can be used for a variety of
purposes [40].

Contrary to other approaches that require the use of ap-
proximations or particular Ansätzes, a dynamical approach
gives a direct access to the characterization of the vortex-
vortex interaction. A very relevant point of our work is the
particular numerical method that we apply for solving the
TDGL that gives us a high level of control over the sources
of numerical uncertainties. The most extended technique to
solve this equations in studies of superconductivity is via
the method of finite differences. Although it has been suc-
cessfully applied in many cases (for an example see [41]),
from a practical point of view finite-difference methods are
resource expensive and in some cases they might even be-
come unstable. Moreover, they display numerical dissipation
and numerical dispersion that can result in spurious solu-
tions especially when implemented at the lowest orders in
the derivatives [42]. By numerical dissipation we mean an
enhanced dissipation which appears as the result of the imple-
mentation of a numerical technique that might result in certain

cases in larger than expected damping of high-frequency
modes when performing a numerical integration. In other
words, an artificial viscosity of numerical origin. Numerical
dispersion is a spurious dispersivity also resulting from errors
in the numerical method; for example, in a weakly interact-
ing bosonic superfluid, it manifests as a numerical dispersion
relation that is more dispersive than the expected Bogoliuvov
prediction, or in other words, in spatial modes that propagate
faster than expected. This effect shows up in the simulations as
spurious moving oscillations or wiggles in the fields [43–45].

We use here pseudospectral methods instead. These meth-
ods have been applied in many areas, but most importantly
they have been recently used and optimized for the study
of turbulence in quantum fluids (i.e., the disorganized spa-
tiotemporal evolution of quantized vortices in superfluids and
Bose-Einstein condensates) a domain where they have been
applied very successfully [43–45]. The problem of quantum
fluids is very close to that of superconductors as in that
field TDGL dynamics serve a first step in the preparation
of initial conditions. So, the application of these methods
to superconductors can be done with a simple adaptations
of codes already developed in Refs. [43–45], and are ex-
pected to give excellent results concerning precision and
performance. In particular, pseudospectral methods have no
numerical dispersion nor dissipation, and thus (when properly
implemented and at the proper spatial resolution) they only
present the dissipation that naturally arises from the nature of
the equations of motion. They can also reproduce the exact
dispersion relation of the physical system without numerical
contamination. All these properties result from the fact that
these methods display exponentially rapid convergence of the
numerical solutions with the increase of spatial resolution
(against algebraic convergence in finite-differences methods,
see Ref. [46] for a detailed comparison).

Our work is organized as follows. In Sec. II we intro-
duce the free energy and the TDGL equations describing our
model. In Sec. III we introduce the numerical method and
we apply it to the standard GL model (without nematicity),
with the main purpose of validating the method against known
results. In Sec. IV we apply the method to the specific problem
of vortex-vortex interactions for the model with nematicty,
and we leave for Sec. V a list of the main results of our
work together with some discussions concerning future lines
of research.

II. GINZBURG-LANDAU MODEL WITH NEMATIC ORDER
PARAMETER AND TDGL EQUATIONS

The Hemholtz free energy of the original Ginzburg-Landau
(GL) model is

Fs =
∫

dV

[
αGL|ψ |2+ βGL

2
|ψ |4+ h̄2

2m
|Dψ |2 + (∇ × A)2

8π

]
,

(1)

where ψ is the complex superconducting order parameter
related to the superfluid density via |ψ |2 = ns, A is the vector
potential related to the magnetic induction as ∇ × A = B, and
D = −i∇ − e

h̄c A is the covariant derivative. The fields have

units of [ψ] = 1
[L]3/2 and [A] = [M][L]2

[Q][T ] (where [L], [M], [Q],
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and [T ] stand, respectively, for length, mass, charge, and time
units). The parameters αGL and βGL depend on the tempera-
ture, more specifically, αGL = α0(T − Tc), changing sign at Tc

signaling the transition to the superconducting phase. Here m
is a parameter with dimensions of mass but notice that it is not
directly linked to the mass of any particular particle. It can be
linked to the phase stiffness of the order parameter. We keep
this notation as it is the most widely used in the literature.
The charge of the Cooper pairs (twice the electron charge) is
noted as e while h̄ and c are the Planck constant and the speed
of light, respectively. Here, and for the rest of our work, we
consider vortexlike solutions that are translational invariant
along the ẑ direction (with the magnetic field pointing in the
+ẑ direction), so any z dependence of fields will be ignored.
In writing Eq. (1) we have also assumed that the supercon-
ductor is isotropic in the x-y plane, this fact is not strictly true
in unconventional superconductors that exhibit orthorhombic
phases (this has important consequences for the character of
the nematic order parameter as we discuss below).

The superconducting current is given by

j = h̄e

2im
(ψ∗∇ψ − ψ∇ψ∗) − e2

mc
A|ψ |2. (2)

A time-dependent modification of the GL equations can be
established under the assumption that the derivative of the free
energy is a generalized force. Energy dissipation can happen
in the system either in the form of heat (related to the Joule
effect due to the normal cores of the vortices) and/or through
irreversible variation of the order parameter [39]. Thus, the
purely dissipative dynamics of the model is given by the
equations

h̄2

2mD
∂tψ = − δFs

δψ∗ ,
σ

c2
∂t A = −δFs

δA
. (3)

Here σ is the electrical conductivity with units of [σ ] =
[T ]−1, and D is a diffusion constant with units of [D] =
[L]2[T ]−1. Notice that we are neglecting a term propor-
tional to the second time derivative of A and that we are
working in the gauge A0 = 0. Equations (3) are known as
the time-dependent Ginzburg-Landau (TDGL) equations and
were introduced more than 50 years ago by Schmid [39]. A
stochastic noise term related to thermal fluctuations can be
added, and then they become Langevin-type evolution equa-
tions, suited for superconductors

Note that the numerical method we introduce next is es-
pecially well suited for this approach, as the pseudospectral
numerical truncation preserves the Langevin structure of the
equations (see [47] for a discussion of thermal fluctuations
in the context of superfluids using this method). However, in
this paper we only take account of the temperature via the
standard temperature dependence of the parameters of the free
energy. We stress here that the dynamics is dissipative and, in
the present case, this is a totally reasonable assumption.

The dissipative character of the dynamics can be easily
shown by considering that

dFs

dt
= δFs

δψ∗ ∂tψ
∗ + δFs

δA
∂t A

= −
(

2mD

h̄2

δFs

δψ∗
δFs

δψ
+ c2

σ

δFs

δA
δFs

δA

)
< 0. (4)

In order to account for a nematic phase, an additional order
parameter needs to be included in the free energy. In many
families of unconventional superconductors (like for instance
in Fe-based superconductors) nematicity is related to the exis-
tence of a tetragonal to orthorhombic phase transition. Thus,
we take the nematic order parameter to be a real field η, with
the symmetry property that η → −η under a π

2 rotation of
the crystallographic structure. This should be contrasted, for
instance, with the order parameter of nematic liquids, which
involves a continuous rotation and where the nematic order
parameter is a tensor:

FN =
∫

V
dV

[
γ2(∇η)2 + γ3η

2 + γ4

2
η4 + h̄

2m
λ1η(|Dxψ |2

− |Dyψ |2) + λ2η
2ψ2

]
. (5)

The first three terms correspond to the nematic free energy
while the last two terms couple the nematic order parameter
to the superconducting order parameter and (via the covariant
derivative) to the vector field. While the biquadratic term does
not depend on the nematic character of the order parameter,
and it is in fact quite common in several theories with multiple
order parameters (for an example on multiband supercon-
ductors, see Ref. [48]), the term proportional to λ1 depends
specifically on the nematic nature of η since it would not be
present otherwise as η −→ −η when we interchange x ←→
y. GL theories of this type were considered, for instance, in
Ref. [49] to study vortices is FeSe compounds (notice though
that they work in the limit λL → ∞, that amounts to neglect-
ing gauge field dynamics and structure). Vortices were also
considered in Refs. [50,51] (for a case in which the nematic
parameter is complex, see [52]). Superconducting-nematic
coupling of this kind was also considered in [53] in the study
of strain detwined mixed states [54]. In a more general setting,
additional terms incorporating strain, stress, and their cou-
plings to the order parameters can also be included [54–58].

The dynamics of the nematic order parameter is prescribed
by

h̄2

2mDn
∂tη = −δF

δη
, (6)

where Dn is the nematic diffusion constant.
All parameters depend in principle on the temperature. The

thermodynamical phases of the model are determined by the
signs of αGL and γ3, and by the sign and value of λ2. We
will assume that we are in a case where both symmetries are
broken for every value of λ2. This implies that αGL < 0 and
γ3 < 0. Further restrictions on λ2 are derived later.

Important parameters of our model are the different lengths
associated to each order parameter:

ξ 2 = h̄2

2m|αGL| , λ2
L = mc2

4πe2ρ0
, l2

η = γ2

|γ3| , (7)

where ξ is the superconductor coherence length, λL is the Lon-
don length, and lη is the nematic coherence length (here ρ0 =
|αGL|
βGL

with [ρ0] = [L]−3). Next, we rescale the vector field and
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the order parameters as

ψ = √
ρ0ψ̃, A = mc|αGL|

eh̄
a, η = η0η̃, (8)

where η2
0 = − γ3

γ4
. Note that this redefinition implies that the

magnetic vector potential has units of [a] = [L]. Next we
define new coefficients for the nematic free energy in Eq. (5)
as

λ̂1 = λ1η0

h̄
, λ̂2 = λ2η

2
0

|αGL| ,

�2 = γ2

|αGL|(ρ0/η
2
0

) , �4 = γ4η
2
0(|αGL|ρ0/η

2
0

) . (9)

Notice that λ̂1, λ̂2, and �4 are dimensionless, and [�2] =
[L]2. Finally, the (dimensionless) GL parameter is

κ = λL

ξ
. (10)

Using the newly defined parameters and fields, the free energy
can be expressed as

F = |αGL|ρ0

∫
dV

[
1

2
(|ψ̃ |2 − 1)2 + ξ 2|∇ψ̃ |2 − a Im(ψ̃∗∇ψ̃ ) + 1

4ξ 2
a2ψ̃2

+ κ2

4
(∇ × a)2 + �2(∇η̃)2 + �4

2
(η̃2 − 1)2 + ξ 2λ̂1η̃(|Dxψ̃ |2 − |Dyψ̃ |2) + λ̂2η̃

2ψ̃2

]
, (11)

where the rescaled covariant derivative is D = −i∇ − a
2ξ 2 . It is possible to rewrite the theory if we redefine the time variable in

terms of a dimensionless parameter τ ,

t = h̄2

2mD|αGL|τ, (12)

and we rescale the electrical conductivity and the diffusion constant as

σ1 = 4πσ

c2

2mD|αGL|
h̄2 , Dη = Dn

(
ρ0/η

2
0

)
. (13)

This redefinition implies that [σ1] = [L]−2. The dynamics of the new fields is prescribed by

∂τ ψ̃ = −
(

1

|αGL|ρ0

)
δF

δψ̃∗ , (14)

∂τ a = −
(

1

|αGL|ρ0

)
2

κ2σ1

δF

δa
, (15)

D

Dη

∂τ η̃ = −
(

1

|αGL|ρ0

)
δF

δη̃
. (16)

A straightforward calculation yields the following equation of motion for the order parameter:

∂τ ψ̃ = ξ 2∇2ψ̃ + ψ̃ (1 − |ψ̃ |2) − ia · ∇ψ̃ − i

2
ψ̃∇ · a − 1

4ξ 2
a2ψ̃ − λ̂2η̃

2ψ̃ − iλ̂1

2
η̃(ax∂xψ̃ − ay∂yψ̃ )

− λ̂1

4ξ 2
η̃ψ̃

(
a2

x − a2
y

) + ξ 2λ̂1[∂x(η̃∂xψ̃ ) − ∂y(η̃∂yψ̃ )] − iλ̂1

2
[∂x(axη̃ψ̃ ) − ∂y(ayη̃ψ̃ )]. (17)

For the nematic order parameter, we have

D

Dη

∂τ η̃ = 2�2∇2η̃ + 2�4η̃(1 − η̃2) − 2λ̂2ψ̃
2η̃ − ξ 2λ̂1(|∂xψ̃ |2 − |∂yψ̃ |2)

− λ̂1

4ξ 2
ψ̃2(a2

x − a2
y

) + λ̂1[axIm(ψ̃∗∇xψ̃ ) − ayIm(ψ̃∗∇yψ̃ )]. (18)

For the components of the vector potential we find

∂τ ax = 2(1 + λ̂1η̃)

κ2σ1
Im(ψ̃∗∇xψ̃ ) − (1 + λ̂1η̃)

κ2ξ 2σ1
ax|ψ̃ |2 − 1

σ1
(∇ × ∇ × a)x, (19)

∂τ ay = 2(1 − λ̂1η̃)

κ2σ1
Im(ψ̃∗∇yψ̃ ) − (1 − λ̂1η̃)

κ2ξ 2σ1
ay|ψ̃ |2 − 1

σ1
(∇ × ∇ × a)y. (20)

In order to find constraints for the parameters of our theory, we analyze the potential part of the Helmholtz free energy:

V (|ψ̃ |2, η̃2) = ρ0|αGL|
∫

dV

[
1

2
(|ψ̃ |2 − 1)2 + λ̂2η̃

2ψ̃2 + �4

2
(η̃2 − 1)

]
. (21)
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The quartic terms in the previous expression constitute a
quadratic form in |ψ̃ |2 and η̃2, represented by the matrix

� = |αGL|ρ0

2

(
1 λ̂2

λ̂2 �4

)
. (22)

Imposing that this form is positive definite implies that

λ̂2 > −
√

�4. (23)

Our theory also supposes that both the nematic and super-
conducting symmetries are broken in the initial state. We will
consider η̃v and ψ̃v to be the equilibrium values of the nematic
and superconducting order parameters and the minima for
the potential defined in Eq. (21). These values must satisfy
that ∇V (η̃v, ψ̃v ) = 0. This relation defines a linear system of
equations for η̃v and ψ̃v , given by

|ψ̃v|2 + λ̂2η̃
2
v = 1,

λ̂2

�4
|ψ̃v|2 + η̃2

v = 1. (24)

Solving the system yields the equilibrium values of the uni-
form state [the minima of the potential defined in Eq. (21)]
for each order parameter:

|ψ̃v|2 = 1 − λ̂2

1 − (
λ̂2

2/�4
) , η̃2

v = 1 − (λ̂2/�4)

1 − (
λ̂2

2/�4
) . (25)

These minima exist if the constants of the model satisfy
certain relations which determine the range of values the pa-
rameters of the theory can take. For the biquadratic coupling
parameter λ̂2, we have that

λ̂2 < 1, λ̂2 < �4, |λ̂2| <
√

�4. (26)

Therefore, the admitted values for the biquadratic coupling
between the superconductor and nematic order parameters are

−
√

�4 < λ̂2 < min(1, �4). (27)

Finally, from Eq. (17), notice that the terms involving second
derivatives of ψ̃ must be positive definite when η̃ = η̃v . Im-
posing this condition also implies that the value of λ̂1 must be
bounded for the problem to remain stable. For a constant ne-
matic order parameter, the terms involving second derivatives
of the superconducting order parameter are

ξ 2(1 + λ̂1η̃v )∂2
x ψ̃ + ξ 2(1 − λ̂1η̃v )∂2

y ψ̃, (28)

which implies that

|λ̂1| <
1

η̃v

<

√
1 − (

λ̂2
2/�4

)
1 − (

λ̂2/�4
) . (29)

Having stated the theoretical bases that determine the free
energy that describes our system, we will analyze in the next
section the vortex-vortex interaction in the pure GL model
(no nematic order) in order to validate our numerical method
against known results.

III. VORTICES IN TDGL DYNAMICS USING
PSEUDOSPECTRAL METHODS

In this section we introduce the basic tools used for the
numerical solution of the TDGL equations, while we refer

the reader to the literature for more specific details on pseu-
dospectral methods [42]. We show first how the method works
in the standard Ginzburg-Landau problem (without nematic
order) and then how some known results can be recovered.
The use of a dynamical method allows for the calculation of
the energy and the intervortex distance as a function of time, a
valuable asset that can be used to characterize the interaction
force between vortices without extra assumptions. Moreover,
it can become useful in the study of stable (and sometimes
unstable) fixed points of the equations.

A. General considerations and initial conditions

The code used for the simulations is the geophysical high-
order suite for turbulence, or GHOST for short [43,44], which is
an accurate and highly scalable pseudospectral code that has
been successfully applied to solve a variety of partial differen-
tial equations often encountered in studies of turbulent flows
and in magnetohydrodynamics [59–61], and more recently in
superfluids [45].

The pseudospectral method is based on a Fourier decom-
position of each dynamical variable (both order parameters
and the magnetic field) into a set of finite (but large) Fourier
modes, and solves a system of equations that determines the
time evolution of the Fourier coefficients of said decompo-
sition. This ensures the exponentially fast convergence of the
method. Computation of spatial derivatives turns into products
in Fourier space, which can be computed efficiently. As an
example, terms like ∇2ψ̃ are computed as −k2ψ̂k, where
the hat denotes the Fourier transform and k the wave vector.
Nonlinear terms, on the other hand, become convolutions,
whose computation in one dimension requires O(N2) opera-
tions (where N is the linear spatial resolution). As an example,
the Fourier transform of |ψ̃ |2 is given by

̂(|ψ̃ |2)k =
∑

m

ψ̂∗
mψ̂k−m. (30)

To circumvent this cost, the Fourier transform of each vari-
able is computed [as Fourier transforms require O(N ln N )
operations), and products of two fields (in the example, ψ̃∗ψ̃)
are computed in real space and then transformed back to
Fourier space. For a finite number of Fourier modes, comput-
ing this product introduces aliasing. Note that in a discrete
grid with N points xi = 2π i/N , with i = 0, . . . , N − 1, the
Fourier modes eikx and ei(k+Nm)x are indistinguishable in those
points (for m integer). Thus, Fourier transforming back the
nonlinear product (in the example, ψ̃∗ψ̃) results in harmonic
modes with wave numbers k + Nm being spuriously projected
into lower wave numbers. This can be solved by dealiasing
with the 2

3 rule after transforming back each product of two
fields to Fourier space, which amounts to truncating Fourier
space (i.e., low-pass filtering) to preserve only 2

3 of the modes
available. It can be shown that this process is equivalent to
performing the exact convolution in Eq. (30) in the truncated
space, with no surviving aliasing contamination [42]. As they
are based on a Fourier basis, pseudospectral methods are
known to be optimal on periodic domains, and thus fields are
restricted to specific geometries and configurations. Here, to
show the applicability of the method we consider this case,
even though generalization to nonperiodic domains is possible

094512-5



R. S. SEVERINO et al. PHYSICAL REVIEW B 106, 094512 (2022)

using another expansion basis [42], or more generally using a
Fourier continuation method [62]. Such generalizations will
be considered elsewhere.

Our simulation box consists of a 2πLx × 2πLy region in
the xy plane, with Lx and Ly parameters that can be cho-
sen arbitrarily. The numerical method also allows for a third
length Lz to be chosen, but in our particular case this choice
is irrelevant since we are dealing with translational invariance
in the ẑ direction and the relevant physics takes place in the
xy plane. We fixed Lx = Ly = L = 1 with a spatial resolution
of N = 512 points in each direction, which in turn means that
our simulation box is 2π long in each direction. Although we
have chosen L = 1, we will keep writing it when necessary in
order to keep track of the length dimensions. These choices
define a uniform two-dimensional (2D) grid on the simulation
box with spacing between points in each axis of �r = 2π

512
∼=

0.012L, which determines the scale of the smallest lengths we
can resolve. We fixed the superconducting coherence length
as ξ = 0.04L, around three times the size of the spatial sep-
aration in each direction. This choice allows us to accurately
resolve the vortex core, related to the mathematical singularity
of the initial condition [see the discussion around Eq. (34);
note that a finite-differences method would require a finer grid
to achieve similar accuracy [42]].

The TDGL equations for the standard superconductor (i.e.,
with no coupling to a nematic order parameter) are then

∂τ ψ̃ = ξ 2∇2ψ̃ + ψ̃ (1 − |ψ̃ |2) − ia · ∇ψ̃ − i

2
ψ̃∇ · a

− 1

4ξ 2
a2ψ̃, (31)

∂τ a = 2

κ2σ1
Im(ψ̃∗∇ψ̃ ) − 1

κ2ξ 2σ1
a|ψ̃ |2 − 1

σ1
(∇ × ∇ × a).

(32)

The first of these equations is the same as the one appearing
in Ref. [63] in the study of quantum turbulence flows. The
main difference is that in that work the vector field a (which
in that context is a velocity field) is fixed, whereas here a is
the magnetic vector potential and it is dynamical.

As already mentioned, these equations are discretized
in space using a Fourier expansion, and in time using a
Runge-Kutta method of second order. Spatial derivatives are
computed in Fourier space, while nonlinear terms in the fields
are computed in real space and dealiased using the 2

3 rule to
truncate the resulting Fourier expansion and control aliasing
instabilities [47]. The 2

3 rule for dealiasing is a filter in which
all modes with wave number k > kmax = N/3 (where N is the
linear resolution) are set to zero. In other words, the Fourier
series is truncated up to a maximum wave number kmax which
implies that, when compared with the maximum Nyquist fre-
quency kN = N/2, this truncation preserves 2

3 of all modes
in Fourier space. Therefore, dealiasing is just the elimination
of aliasing in the product of Fourier-projected fields by fil-
tering its components with the highest wave numbers. This,
together with the condition ξ > �r, ensures the exponentially
fast spatial convergence of the solutions. Since the system
is dissipative, the diffusion term (proportional to ∇2) is re-
sponsible for setting the timescale used for the numerical
simulations. In order to find a limit to the time step necessary

for convergence of the numerical method, we have to calculate
the Courant number C through the Courant-Friedrichs-Levy
condition (CFL, for short). Conventionally, it is stated that
C < 1 to guarantee convergence. We construct two Courant
numbers, Cψ̃ and Ca, through analyzing the diffusive terms in
the equations. Through dimensional analysis, we can state that

Cψ̃ = ξ 2 �τ

�r2
, Ca = 1

σ1

�τ

�r2
. (33)

For the range of parameters used in this paper, a time step
of �τ < 9 × 10−4 is enough to guarantee that both Courant
numbers are within the desired range, thus guaranteeing con-
vergence.

For the initial condition on the superconducting order
parameter we follow [63], and start with single vortexlike
configuration in the xy plane of the form

ψ̃ (x, y, t = 0) = ψ̃v

(λ + iμ)√
λ2 + μ2

tanh

(√
λ2 + μ2

√
2ξ

)
, (34)

where

λ =
√

2 cos (x), μ =
√

2 cos (y), (35)

which in fluid dynamics are related to the Clebsch potentials,
and are chosen to ensure periodicity, required by the Fourier
expansion used to solve the equations.

Our simulation box has in fact four subsectors, [0, π ] ×
[0, π ], [π, 2π ] × [0, π ], [0, π ] × [π, 2π ], and [π, 2π ] ×
[π, 2π ]. Note that the field in Eq. (34) has one zero in each
of these subsectors, associated to the position of a vortex (see
Fig. 1). Our “physical” system is nevertheless only one of
these sectors, [0, π ] × [0, π ]; the other three can be consid-
ered simply as a mathematical trick (or images) to implement
periodic boundary conditions in the extended domain. As far
as λL, ξ , and lη are small, and the positions of the vortices are
not too close to the boundary of the domain of interest, our
vortices do not feel the effects of the border nor are influenced
by the image vortices in the other subsectors. More vortices
can be created initially by taking powers or by applying the
translation operator to Eq. (34), and multiplying the resulting
superconducting order parameters for each individual vortex.

For the vector potential we choose as initial condition

ax(x, y, t = 0) = a0 sin (x) cos (y), (36)

ay(x, y, t = 0) = a0 cos (x) sin (y), (37)

which sets the initial magnetic field as Bz(x, y, t = 0) =
2a0 sin (x) sin (y), with a0 a normalization constant related
to the magnetic flux [see Eq. (39)]. These initial conditions
are known in the area of fluid dynamics as the Taylor-Green
vortex, and correspond to the ones used by [63] as a fixed
background in the study of quantized vortices in superfluids.
They do not correspond to any concrete physical realization
from the point of view of superconductivity. Nevertheless,
as far as we are not concerned with the initial transient, our
choice satisfies the correct requirements of periodicity and
topology needed for our purposes, and are simple to imple-
ment numerically.

The vector potential is such that the circulation of the
magnetic field (related to the winding number or vorticity) in
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FIG. 1. Plots of |ψ̃ (x, y, t = 0)|2 (left) and magnetic field Bz(x, y, t = 0) (right) on the 2πL × 2πL simulation box. Notice that since
[a] = [L], Bz = ∇ × a is nondimensional. The sign of the vorticity of each vortex matches that of the magnetic field, signaled by the matching
colors in each plot.

the entire simulation box is 0, but on the [0, π ] × [0, π ] sector
it is∮

BZds =
∫ π

0

∫ π

0
2a0 sin (x) sin (y)dx dy = 8a0. (38)

It is easy to verify that this calculation yields the same result
in the regions [0, π ] × [0, π ] and [π, 2π ] × [π, 2π ] and op-
posite to that in the regions [0, π ] × [π, 2π ] and [π, 2π ] ×
[0, π ]. The sign of the flux in each of the four subsectors is
correlated to the winding number of the vortex configurations,
as is shown in the matching colors of the plots in Fig. 1.

Finally, in order to satisfy the condition that the magnetic
flux is conserved throughout the simulation we need to ad-
just the ratio of the circulation of the magnetic field to the
number of vortices. This is done by setting a0 to satisfy that
the magnetic flux of nv vortices in the [0, π ] × [0, π ] sector
is � = nv�0 = 4παnv , with �0 the flux quantum. Thus, a0

satisfies that

a0 = παnv

2
√

2
. (39)

B. Application of the numerical method to the standard
Ginzburg-Landau problem

In this section we apply our numerical method to the
standard GL problem, i.e., with no nematic coupling to the
superconductor order parameter. The main purpose of this
section is to verify the validity of the numerical scheme by
comparing with known results obtained by other methods
or from the theory. Readers interested only in the influence
of nematicity on the vortex-vortex interaction may skip the
following results and refer directly to Sec. IV.

From the previous discussion, we remind the reader that
the relevant parameter in our theory is the Ginzburg-Landau
parameter κ . Regarding the dynamics, we have also defined
the diffusion constants and the electrical resistivity, which
control the rate of the relaxation processes involved in our
model. In this work we are not interested in very specific
details of the dynamics, but rather in the simpler question of
whether equilibrium configurations exist, and in the repulsive
or attractive character of the interactions between topological
objects. To answer these questions the specific values of the

diffusion constants are not relevant, and thus we choose them
all to be of the same order of magnitude.

We first focus on the nv = 1 vortex problem, taking three
representative values for the GL parameter: κ− = 0.49, κc =

1√
2
, and κ+ = 0.92 (these specific values are chosen to make

a comparison with results published before, see below). For
the case of of nv = 1 it is known that static cylindrically
symmetric solutions exist for any value of κ . Indeed, it is easy
to see that starting from Eq. (34) as an initial condition, a
static solution is attained after a fast relaxation. We show in
Fig. 2 density plots of the order parameter and magnetic field
for the three chosen values of κ . Naturally, the equilibrium
configurations have cylindrical symmetry and the same results
could have been obtained in this particular case by solving
a simpler set of ordinary nonlinear differential equations. In
performing the simulations we maintained a fixed value of
ξ = 0.04L and varied κ , so the most noticeable effect is on
the magnetic field via the change of λL (ψ̃ also changes, but
in a less evident way).

The fast convergence towards the static configuration is
better observed by looking at the time evolution of the energy
per unit length of the vortex configuration, as shown on the
left panel of Fig. 3 for three chosen values of κ . It is well
known [15] that at the critical value κc, a configuration of
nv vortices has an energy per unit length of Ec = nvE0, with
E0 = �0/2 in our notation. We thus use E0 to normalize
our results for each nv . For example, a configuration of a
single vortex at κ = κc should have a normalized energy of
E/E0 = 1, and energy E < 1 (E > 1) for κ < κc (κ > κc). In
all cases, our calculations of the energy converge to a value
which corresponds to the energy of the static configuration
(compared with values reported in Ref. [5]), and is dependent
on the value of κ as expected. This example shows that the
dynamical numerical method can reproduce known results for
the single-vortex case.

We now turn to study the case of two vortices (nv = 2).
It is well known that in this case static vortex solutions exist
only for κ � κc, while for κ = κc vortex configurations can
exist at arbitrary separations between vortices. For κ < κc a
giant vortex with nv = 2 is expected, and for κ > κc, due to
the repulsive character of vortex-vortex interaction, no static
configuration is expected (unless the system is subject to the
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FIG. 2. Density plots of the magnetic field Bz (top) and of the superconductor order parameter |ψ̃ |2 (bottom). The gray lines serve as visual
guides that intersect at (πL/2, πL/2). A small region in the vicinity of the vortex is shown. The superconductor coherence length is fixed at
ξ = 0.04L, which implies that the most noticeable change is in the London length λL . It is smaller than ξ for κ < κc and larger for κ > κc, as
can be readily seen from the first and third panels.

FIG. 3. Left: normalized and dimensionless energy E/E0 as a function of the dimensionless time τ for a single vortex under TDGL
dynamics and three different values of κ . After a fast relaxation, the energy converges to the expected value (dashed lines) according to static
numerical calculations using cylindrically symmetric solutions (see Ref. [5]). Right: energy as a function of the physical time t of a two-vortex
configuration for κ− = 0.49 (top) and κ+ = 0.92 (bottom).
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FIG. 4. Density plots of the magnetic field (top) and of the superconductor order parameter (bottom) for the dynamics of two superimposed
nv = 1 vortices (see text) at three different time instances with a GL parameter of κ = 0.92. The superconducting coherence length is fixed at
ξ = 0.04L.

pressure of an external magnetic field). We take the initial
condition on the superconductor order parameter as

ψ̃ (t = 0, x, y) = ψ̃2
v

[
(λ + iμ)√
λ2 + μ2

tanh

(√
λ2 + μ2

√
2ξ

)]2

, (40)

which is just the square of Eq. (34). This corresponds to two
superimposed single vortices with total vorticity correspond-
ing to nv = 2, referred to before as a giant vortex. Naturally,
the normalization constant a0 of the vector field has to be
adjusted for the case nv = 2. Note also that the vortices can
be initially placed at different positions, respect to each other,
by adding or subtracting a real constant d to λ or μ, which
will separate them either in the x or y direction depending on
which one is chosen.

We show in the right panel of Fig. 3 the energy as a function
of time for κ = κ− and κ+. For κ− we placed the vortices at a
distance d = 3.5ξ from each other, and let the system evolve.
Notice that the total energy of the configuration starts as two
times the energy of a single vortex (as reported in Ref. [5])
for this value of κ , and as time passes it converges to the
energy of two superimposed vortices, as expected. To study
κ+ we set d = 0; note that in this case the energy first stays
in a plateau and in a second stage starts decreasing again.
The first plateau is a transient corresponding to the energy
of the unstable axially symmetric nv = 2 solution, while the
value that the total energy finally converges to corresponds to
twice the energy of a single nv = 1 vortex. In Fig. 4 we show
the field configurations at different times in the evolution for

κ+. The two superimposed nv = 1 vortices are not a stable
solution of the TDGL equations, and the giant vortex splits
into two vortices of vorticity nv = 1, also as expected.

IV. VORTICES IN THE NEMATIC PHASE

In this section we study how the nematic coupling affects
the vortex-vortex interaction and its physical properties, fo-
cusing first on how coupling of ψ̃ to a nematic order parameter
η̃ changes what we found in the previous section for the
nv = 1 single-vortex configuration. We then consider the par-
ticular case in which the nematic order parameter is taken as a
constant background, showing that self-dual equations and the
value of the critical GL parameter, separating attracting and
repulsing interactions, can be derived exactly by using a sim-
ple modification of the original Bogomol’nyi [15] analysis.
Finally, we relax the hypothesis of a fixed constant nematic
background and study how nematicity affects the interactions
between vortices in a more general setup.

A. Single vortex with nematic order

We start by presenting the results for the case in which
only a biquadratic coupling between the superconducting or-
der parameter and the nematic order parameter is present,
represented by the term proportional to λ̂2 in the equations of
motion and free energy. The idea is to understand the role of
each coupling to the nematic parameter separately, and how
each one of them changes the properties of the vortex-vortex
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FIG. 5. Density plots of Bz, |ψ̃ |2, and η̃ in the xy plane for λ̂2 = 0.5 (top) and λ̂2 = −0.5 (bottom) with λ̂1 = 0. The GL parameter in
both cases is κ = 0.92. A small region in the vicinity of the vortex core is shown. Cylindrical symmetry is maintained and the nematic order
parameter varies in the vortex core: it is enhanced for λ̂2 > 0, and depressed for λ̂2 < 0.

interaction. Notice that in the presence of the biquadratic
coupling, both the superconducting coherence length ξ and
the nematic coherence length lη (defined when there is no
coupling between the order parameters) do not necessarily
represent the relevant lengths of the problem. Indeed, ignoring
for the moment the magnetic field and under the assumption
that a linear approximation is valid, we can write

ψ̃ = ψ̃v + h1, η̃ = η̃v + h2, (41)

where h1 and h2 are small perturbations around the equilib-
rium values. Substituting into the equations, we get

∇2

(
h1

h2

)
=

( 2ψ̃2
v

ξ 2
2λ̂2ψ̃v η̃v

ξ 2

2λ̂2η̃vψ̃v

�2

2η̃2
v

l2
η

)(
h1

h2

)
. (42)

The eigenvalues (α1, α2) of the matrix are related to the solu-
tions for the perturbations, which will be a linear combination
of decaying Bessel functions (in the Higgs model version of
the model, the inverses of these eigenvalues are related to
effective masses for each of the fields).:

h1,2 = C1K0[
√

α1(r − r0)] + C2K0[
√

α2(r − r0)]. (43)

For small λ̂2 we can do a perturbative expansion, finding

α1 = 2

l2

(
1 − λ̂2

�4
− l2λ̂2

2

�4
(
l2
η − ξ 2

)
)

+ O
(
λ̂3

2

)
, (44)

α2 = 2

ξ 2

(
1 − λ̂2 + ξ 2λ̂2

2

�4
(
l2
η − ξ 2

)
)

+ O
(
λ̂3

2

)
, (45)

while if lη = ξ ,

α1 = 2
(
�4 − λ̂2

2

)
�4ξ 2

, α2 = 2(λ̂2 − 1)(λ̂2 − �4)

�4ξ 2
. (46)

We see that for λ̂2 > 0 (λ̂2 < 0) the size of the vortex core
increases (decreases). Alternatively, this can be thought of as
an increase (decrease) of the critical temperature for λ̂2 < 0
(λ̂2 > 0). The validity of the linear approximation depends on
the value of the London length. Indeed, the linear approxima-
tion is not expected to be valid for large κ , and higher-order
terms involving the gauge fields need to be retained in order
to predict the correct asymptotic behavior [64]. For a recent
discussion of this issue in a setting similar to ours, see for
instance [65].

The magnetic field and the superconducting and nematic
order parameters are displayed in Fig. 5, where we show the
density plots obtained by solving the full TDGL, using the
same initial conditions for ψ̃ and a as for the standard GL
problem [Eqs. (34), (36), and (37)]. For the nematic order pa-
rameter we chose a uniform background η̃(t = 0, x, y) = η̃v .

We notice that for positive coupling, the nematic order
parameter is enhanced in the core of the vortex (and depressed
far away from the core), while depressed in the same region
for negative λ̂2 (and enhanced far away from the core). Also,
note that the superconductor order parameters and the mag-
netic field are more spread out in space for positive coupling
than for negative coupling. This is so because the effective
coherence length and the effective London length are related
to the value of ψ̃v , which shows this behavior with λ̂2. As
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FIG. 6. Density plots obtained by solving TDGL equations for a single vortex with a C4-symmetry-breaking coupling, with λ̂1 = 0.5
(top) or λ̂1 = −0.5 (bottom). In both cases the biquadratic coupling λ̂2 is set to zero. The vortex cores elongate along a preferred direction,
determined by the sign of λ̂1. Notice that for both signs of the coupling parameter the nematic order parameter is enhanced in the vortex core.

expected, when λ̂1 = 0 the distributions of each order param-
eter and the magnetic field in the xy plane are cylindrically
symmetric.

As a second step we analyze how the behavior is modified
when there is a C4-symmetry-breaking coupling, in particu-
lar, we consider the two signs with λ̂1 = ±0.5. As we have
stated before, the idea is to better understand the role of each
parameter in the vortex-vortex interaction. In particular, λ̂1

couples the nematic order parameter to the derivatives of the
superconducting order and the magnetic field in a different
way, i.e., with a different sign, for the x̂ and ŷ directions.
The resulting density plots from running the TDGL dynamics
are shown in Fig. 6. The effect of the C4-symmetry-breaking
coupling causes the vortices to elongate along the x̂ (ŷ) axis
for positive (negative) λ̂1. Notice, nevertheless, that in both
cases the nematic order parameter is enhanced in the vortex
core.

Finally, we analyze the case when both λ̂2 	= 0 and λ̂1 	=
0. When λ̂2 > 0 and λ̂1 	= 0, both couplings tend to enhance

the value of the nematic order parameter in the core of the
vortex, so we do not expect major surprises. But for the case
λ̂2 < 0 and λ̂1 < 0 both terms compete, and the behavior of
the nematic order parameter in the vortex core is more difficult
to predict. This situation can be observed in Fig. 7. Indeed,
for specific values of λ̂2 and λ̂1 the minimum of the nematic
order parameter may happen in a ring around the vortex core,
as illustrated in Fig. 7.

B. Self-dual equations with a uniform nematic background

We show in this section the existence of self-dual equa-
tions for the case in which the nematic order parameter is
taken as a fixed given constant background (in space and time)
η̃ = η̃b. Here, the role of the nematic order parameter is to
generate a fixed asymmetry in the x-y plane (for a similar
phenomenon in multiband superconductors see for instance
[66]). The proof is a very simple modification of the original
reasoning in [15], and it helps to understand mainly the influ-
ence of λ̂1 in κc. The free energy can be written as

F = ρ0|αGL|
∫

V

1

2
(|ψ̃ |2 − 1)2 + ξ 2(1 + λ̂1η̃b)|Dxψ̃ |2 + ξ 2(1 − λ̂1η̃b)|Dyψ̃ |2 + κ2

4
(∇ × a)2 + λ̂2|ψ̃ |2η2

b. (47)

Defining �x = 1 + λ̂1η̃b and �y = 1 − λ̂1η̃b we obtain the modified Bogomol’nyi identity

|
√

�xDxψ̃ − i
√

�yDyψ̃ |2 = �xDxψ̃Dxψ̃
∗ + �yDyψ̃Dyψ̃

∗ + i
√

�x�y(Dxψ̃Dyψ̃
∗ − Dxψ̃

∗Dyψ̃ ). (48)
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FIG. 7. Profiles of the order parameter, magnetic field, and nematic order parameter along x for y = π/2, with fixed λ1 = 0.5 for λ2 = 0.5
(left) or λ2 = −0.5 (right). The relation between the coherence lengths of the superconductor and nematic order parameter is lη/ξ = 1. A local
maximum of η̃ aligns itself with the magnetic field around x/L = 1.57 for λ̂1 = 0.5 and λ̂2 = −0.5 (see right panel).

Then, up to a total derivative term,

ξ 2(�x|Dxψ̃ |2 + �y|Dyψ̃ |2) = ξ 2|
√

�xDxψ̃ − i
√

�yDyψ̃ |2 −
√

�x�y

2
|ψ̃ |2∇ × a. (49)

On the other hand,

κ2

4
(∇ × a)2 = κ2

4
{[∇ × a − c1(|ψ̃ |2 − c2)]2 + 2c1(|ψ̃ |2 − c2)∇ × a − c2

1(|ψ̃ |2 − c2)2}. (50)

Then,

F = |αGL|ρ0

∫
V

[
ξ 2|

√
�xDxψ̃ − i

√
�yDyψ̃ |2 + κ2

4
[∇ × a − c1(|ψ̃ |2 − c2)]2 − c1c2κ

2

2
(∇ × a)

+1

2
(c1κ

2 − √
�x�y)|ψ̃ |2(∇ × a) + 1

2

(|ψ̃ |2 − 1
)2 − κ2c2

1

4
(ψ̃2 − c2)2 + λ̂2|ψ̃ |2η̃2

b

]
. (51)

Then, choosing

c1κ
2
c = √

�x�y,
1

2
= κ2

c c2
1

4
,

κ2
c c2

1c2

2
= 1 − λ̂2η̃

2
b, (52)

the free energy can be expressed as a sum of squares plus a
term proportional to the magnetic flux. Thus, the minimum
energy configurations are found by demanding the squares to
be zero, that is, √

�xDxψ̃ = i
√

�yDyψ̃, (53)

∇ × a = c1(ψ̃2 − c2). (54)

Solving the systems defined in Eq. (52) yields the values of
the constants

c1 = 2√
�x�y

, c2 = 1 − λ̂2η̃
2
b, (55)

and the critical value of the GL parameter

κ2
c = �x�y

2
=

(
1 − λ̂2

1η̃
2
b

)
2

. (56)

It is clear that if λ̂1 = 0, we recover the classical GL limit
where the intervortex interaction changes character. Thus, we
see that the main role of λ̂1 is to lower κc with respect to
the standard GL theory. Notice that at this step, λ̂2 does not
affect the value of κc. As we will see in the next section, this
situation changes once the nematic order parameter becomes
dynamical.

Finally, using the obtained parameters we can calculate that
the energy per unit length at κc is

F = �0

2

(
1 − λ̂2η̃

2
b

)√
1 − λ̂2

1η̃
2
b. (57)

As expected, the free energy is proportional to the magnetic
flux (indicating the absence of interaction between vortices)
and reduces to the standard Bogomol’nyi result for λ̂1,2 = 0.

C. Numerical study of the vortex-vortex interaction

As we have seen, when there is no coupling to a ne-
matic parameter, it can be deduced from GL theory that
κc = 1/

√
2 is the critical value which determines whether the

interaction between vortices is attractive or repulsive and, if
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FIG. 8. Density plots of the magnetic field, superconducting order parameter, and nematic order parameter for λ̂2 = −0.35 (top) and
λ̂2 = 0.240 (bottom). Notice that for λ̂2 < 0, η < ηv on the core of the vortices, and η > ηv for λ̂2 > 0.

the nematic order parameter is a constant background, the
C4-symmetry-breaking coupling λ̂2 lowers this value. In this
section we solve the full TDGL equations in order to study
how κc changes when we include a coupling between the
superconducting and nematic order parameters. In order to
do so, we start with two vortices placed in the xy plane at
a given distance d (of order ξ ), and study how they evolve
under TDGL dynamics. Choosing an initial condition where
vortices are already separated is more efficient, as we do not
have to wait for the splitting time to see if the configuration is
stable or not, a process which can take an extremely long time
near κc.

The initial conditions for the nematic order parameter and
the vector potential remain the same as in the previous section,
but with the condition that the total magnetic flux corresponds
to that of two flux quanta. The superconducting order param-
eter is initially set as

ψ̃ (t = 0, x, y) = ψ̃1(t = 0, x, y)ψ̃2(t = 0, x, y), (58)

ψ̃1,2(t = 0, x, y) = ψ̃v

[(λ ± d ) + iμ]√
(λ ± d )2 + μ2

× tanh

(√
(λ ± d )2 + μ2

√
2ξ

)
, (59)

which places two nv = 1 vortices in the xy plane separated
a distance ≈2d from each other in the x axis. The initial
direction in which they are separated can be easily changed
to the y axis by choosing to shift μ instead of λ. Under the

presence of a nematic order, these cases do not need to be
equivalent.

1. Biquadratic coupling (λ̂2 �= 0, λ̂1 = 0)

We begin by studying the case for a biquadratic coupling
between the superconducting and nematic order parameters.
As we have mentioned before, this coupling does not un-
veil the specific nematic nature of the order parameter, as

TABLE I. Estimated values of the critical GL parameter κ when
only a biquadratic coupling is present, shown for two representative
values of opposite sign of λ̂2. There is no clear dependence on the
ratio of the coherence lengths. The critical value decreases as we
increase �4.

λ̂2 = −0.353

�4
l2
η

ξ2 = 0.5
l2
η

ξ2 = 1.0
l2
η

ξ2 = 2.0

0.25 1.05 ± 0.05 1.05 ± 0.05 1.05 ± 0.05
0.5 0.85 ± 0.01 0.87 ± 0.01 0.88 ± 0.01
1 0.76 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
2 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01

λ̂2 = 0.240

�4
l2
η

ξ2 = 0.5
l2
η

ξ2 = 1.0
l2
η

ξ2 = 2.0

0.25 0.81 ± 0.01 0.81 ± 0.01 0.80 ± 0.01
0.5 0.74 ± 0.01 0.76 ± 0.01 0.77 ± 0.01
1 0.73 ± 0.01 0.73 ± 0.01 0.73 ± 0.01
2 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01
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FIG. 9. Density plots of the magnetic field (left), superconducting order parameter (center), and nematic order parameter (right) for λ̂1 =
0.5 (top panels) and λ̂1 = −0.5 (bottom panels). For λ̂2 = 0 the equilibrium value for the nematic order parameter is η̃v = 1, and a local
maximum for η can be found where the vortex cores are, regardless of the sign of the coupling parameter. Also, we can see how the coupling
has the effect of elongating the vortices along a selected direction, as was also shown previously in the single vortex case.

a biquadratic coupling of this kind could be present for any
standard real scalar (i.e, invariant) order parameter too. From
Eq. (27) we know that the allowed values of λ̂2 are limited
by the nematic potential coefficient �4. In our simulations we
have explored a few representative values of �4 which in turn
define the interval in which λ̂2 can vary.

We present first some examples of our simulations starting
with two vortices in the xy plane, picking up two opposite sign
values for the biquadratic coupling. In Fig. 8 we set �4 = 0.5

and
l2
η

ξ 2 = 0.5. We fixed the coherence length at ξ = 0.04L and
we varied λL. For each simulation we evaluated whether the
vortices attracted or repelled each other by plotting the density
of each order in the xy plane and tracking the vortex cores in
time. By fine tuning λL we can determine κc within a certain
margin of error.

In Fig. 8 (top) we show the density plots for λ̂2 = −0.35
and κc

∼= 0.85. We chose this as the critical value of the
GL parameter, determined by noting that after a long sim-
ulation (τ = 10 × 102) and for κ = 0.84 the vortices show
very little attraction, while for κ = 0.86 they show very little
repulsion. Therefore, we can estimate that the critical value is
κc = 0.85 ± 0.01. We also verified that for a long simulation
there was no resolvable motion of the vortices. The fact that
κc > 1/

√
2 indicates that the biquadratic coupling is inducing

an attractive interaction as the region of type I superconduc-
tivity is enlarged.

In the bottom half of Fig. 8 we show a similar situation
but for λ̂2 = 0.24 and κc

∼= 0.74. The determination of the

criticality of this value was determined as before. As with
the previous case, the value κ = κc > 1/

√
2 is larger than

in a standard superconductor. Then, the biquadratic coupling
induces an attractive interaction regardless of its sign.

We explored how these results are affected by the vari-
ation of the other parameters and we show some results in
Table I. For the range we have explored, κc does not show
a strong dependence on lη. Nevertheless, we can see that for
a fixed λ̂2, κc approaches 1/

√
2 as �4 increases. This seems

reasonable since as �4 becomes larger the backreaction of
superconductivity on nematicity becomes negligible. Thus,
we can expect a fixed and constant nematic order to become
a better approximation, also as we have already seen via the
self-dual equations that κc does not depend on λ̂2 in this limit.

2. C4-symmetry-breaking coupling (λ̂2 = 0, λ̂1 �= 0)

As mentioned before, the terms proportional to λ̂1 in the
free energy act by breaking the symmetry between the x and
y directions. As we have already discussed, one of the main
effects of λ̂1 on the fields is to elongate the vortices in a
direction that depends on the sign of the coupling parameter.
In our simulations, for λ̂1 > 0 the vortices elongate in the x
direction while for λ̂1 < 0 they elongate in the y direction,
as has been shown in Fig. 6. This coupling, contrary to what
happened with λ̂2, has the effect of enhancing the value of the
nematic order parameter in the vortex cores regardless of the
sign of λ̂1.
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FIG. 10. Dependence on λ̂2 of the critical value of the GL param-
eter κc for different values of λ̂1. The (blue, orange, green, red) dots
correspond to λ̂1 = (0, 0.15, 0.25, 0.35). A simple quadratic model
is fitted for each curve, with residuals of order 10−3. The coefficient
multiplying λ̂2

2 is decreasing as a function of λ̂1.

We have seen in Sec. IV B that, in the case of a constant
nematic order parameter, the effect of λ̂1 is to decrease the
value of κc, meaning that it mediates a repulsive interaction.
For a dynamical nematic order parameter, the behavior of
κc needs to be investigated numerically. Remember that the
uncoupled nematic coherence length is defined as l2

η = �2/�3

and that the superconductor coherence length is fixed at ξ =
0.04L. Therefore, we chose values of �2 and �3 that assert
that the ratio l2

η/ξ 2 remains of order 1. Within the (high-order)
accuracy of our numerical method we do not observe a strong
dependence either with the sign of λ̂1, the value of the nematic
coherence length, or �4, involved in the nematic potential. As
hinted by the self-dual case, κc is lower than 1/

√
2 and for

λ̂1 = ±0.5 the self-dual point gives κc = 0.61. This prediction
matches the results obtained by full TDGL dynamics indicat-
ing that, within our numerical precision, there is no apparent
dependence on any of the aforementioned parameters. The
density plots for each relevant variable are shown in Fig. 9.

3. Combined couplings (λ̂2 �= 0, λ̂1 �= 0)

We ran simulations turning on both coupling parame-
ters and studied how the critical value of the GL parameter
changes in these scenarios. In particular, we fixed the value
of �4 = 1 which in turn defines the allowed values of the

biquadratic coupling parameter. Since the dependence on the
ratio of the coherence lengths in the previous cases was
practically negligible, we fixed �2 so that the ratio between
the uncoupled coherence lengths is 0.5. Having made these
choices, we ran simulations for different values of λ̂1 and
studied the value of the critical GL parameter as a function
of λ̂2. The value of κc as a function of λ̂2 is presented in
Fig. 10 for different choices of λ̂1. Within the range of pa-
rameters studied, we can observe that the dependence of κc

is quadratic on λ̂2, and that the main effect of λ̂1 is to lower
the value of κc. We can fit the curves with a simple quadratic
model

κc = κc,0(λ̂1) + a(λ̂1)λ̂2
2. (60)

For the data shown in Fig 10, a(λ̂1) ∼= 0.45 − 0.5λ̂1, and

κc,0(λ̂1) ∼= 1√
2

(
1 − 1

2
λ̂2

1η̃
2
v

)
, (61)

which is consistent with Eq. (56). We thus see clearly from
Fig. 10 the role the two couplings play in the vortex-vortex in-
teraction: while the biquadratic coupling induces an attractive
interaction stabilizing a type I phase, the term proportional to
λ̂1 induces a repulsive interaction favoring the formation of a
type II phase.

V. DISCUSSION AND CONCLUSIONS

In this work we have analyzed some of the consequences
of a nematic coupling on the superconductor vortex structure
as well as on the nature of vortex-vortex interactions, in the
framework of Ginzburg-Landau theories, where nematicity
is taken into account by introducing a real order parameter
which couples to the complex order parameter (and to the
magnetic vector potential) via two terms. As discussed above,
the biquadratic term induces a competition (cooperation) be-
tween superconductivity and nematicity for λ̂2 > 0 (λ̂2 < 0).
When it comes to the vortex-vortex interaction, however, we
have shown that this term conspires against the existence of
the mixed phase irrespective of its sign. It can be said then
that this coupling favors vortex-vortex attraction. On the other
hand, the trilinear term couples the nematic order parameter
to the (covariant) derivatives of the complex superconducting
parameter and favors the stability of the mixed phase. Then,
this coupling favors vortex-vortex repulsion.

A distinctive feature of our work concerns the method used
to study the problem of the vortex-vortex interaction. Unlike
previous works that use different approximation schemes,
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FIG. 11. Density plot of the order parameter |ψ̃ |2 for a configuration starting with four superimposed nv = 1 vortices with couplings
λ̂1 = 0.5 = λ̂2 at different times in the evolution [time increasing from (a) to (d)].
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as perturbative calculations or variational methods, we have
tackled the problem by using a dynamical method based on
the solution of the TDGL equations with very high-order ap-
proximations that converge exponentially fast to the solutions.
In particular, we used a numerical technique based on spec-
tral methods. This class of methods, well known in the area
of fluid dynamics and other areas of research when solving
partial differential equations, are less popular in the study
of superconducting materials. It is also worth remarking that
the method introduces no numerical dispersion or dissipation,
thus allowing for precise determination of, e.g., critical values
from numerical simulations. In particular, it allowed estima-
tion of the critical value of the Ginzburg-Landau parameter κc,
in the case of a superconductor with combined nematic cou-
plings λ̂2 	= 0 and λ̂1 	= 0, a problem that can only be studied
numerically. We show that the numerical solution recovers the
analytical case in the limit of a hard nematic parameter, where
κc can be approximated with a simple quadratic model on the
coupling coefficients.

Because these methods are more stable and much more
resource efficient than the finite-differences method, which
are often applied in the area, it is tempting to explore their
applicability far beyond the particular problem we have ad-
dressed in this work. Having established the bases of the
method, we can envisage many different problems that could
be studied using the same techniques.

An interesting problem that we have already started to
consider is the interaction of vortices with nematic domain
walls or twin boundaries. As we have already mentioned, it
is natural to expect that in real situations the sample will
have twin boundaries, and characterizing this interaction is
obviously an interesting question.

Moreover, the methods discussed here can be trivially ex-
tended to the case of many vortices. Indeed, only by adjusting
the vorticity of the initial configuration, the code is able to
give us the dynamics of an arbitrary number of vortices. As
an example, we show in Fig. 11 the time evolution of a
configuration starting with four superimposed nv = 1 vortices
with both couplings to the nematic order parameter. Large-nv

configurations will be useful in the study of Abrikosov lat-
tice formations [50,67] once appropriate boundary conditions
are implemented [68]. Another interesting issue concerns the
modeling of large systems of nematic vortices in the presence
of disorder. It is well known in many studies of dynamical
phases of vortex matter, especially in cases where frozen dis-
order plays an important role, that vortices can be modeled as
point particles subject to a pairwise potential, the interaction
with disorder, and the influence of an external field [69,70]. To
the best of our knowledge, this type of modeling has not been
developed for the case of nematic superconducting vortices.
In these descriptions, where a set of rods is probably more
adequate than point particles, the properties of the vortex-
vortex interaction and the way it depends with distance and

FIG. 12. Energy as a function of intervortex distance for κ =
0.92. The red dots are values taken from Ref. [5].

relative orientation plays a fundamental role. Our dynamical
method allows to reconstruct and parametrize the involved
force. Indeed, as by solving the TDGL we can easily obtain
the energy as a function of time E (t ), and the vortex-vortex
separation as a functions of time d (t ), we can finally obtain
E (d ) and from there the vortex-vortex force. We illustrate
these ideas with an example for the standard GL theory (no
nematicity). In Fig. 12 our numerical results are compared
with those obtained using variational methods [5]. This cal-
culation can be easily implemented in the extended GL with
nematicity, to then calculate the separation dependence of the
vortex-vortex interactions. Furthermore, as we have access to
the dynamics, we can compare the evolution under TDGL
equations with the simpler rod model to improve the model or
to bound errors. We mention too that relaxing the condition
of z-translation-invariant solution is also trivial within the
method.

Finally, the method is especially suitable to study nonequi-
librium transport phenomena, a very relevant issue in order
to compare with experimental results. Some of these ideas
are part of the work in progress or will be the object of
future work. Moreover, we are confident that, aside from
these problems, the method could be of general interest in the
superconductivity community and beyond.
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