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Motivated by the observation of nematic superconductivity in several systems, we revisit the problem of the
leading pairing instability of two-component unconventional superconductors on the triangular lattice—such as
(x> py)-wave and (d,2_,2, d,,)-wave superconductors. Such a system has two possible superconducting states:
the chiral state (e.g., p + ip or d + id), which breaks time-reversal symmetry, and the nematic state (e.g., p + p
or d 4+ d), which breaks the threefold rotational symmetry of the lattice. Weak-coupling calculations generally
favor the chiral over the nematic superconducting state, raising the question of what mechanism can stabilize the
latter. Here, we show that the electromagnetic field fluctuations can play a crucial role in selecting between these
two states. Specifically, we derive and analyze the effective free energy for the two-component superconducting
order parameter after integrating out the gauge-field fluctuations, which is formally justified if the spatial order
parameter fluctuations can be neglected. A nonanalytic cubic term arises, as in the case of a conventional s-wave
superconductor. However, unlike the latter, the cubic term depends on the relative phase and on the relative
amplitudes between the two order parameter components, in such a way that it generally favors the nematic
state. This result is a direct consequence of the fact that the stiffness of the superconducting order parameter
is not isotropic. Competition with the quartic term, which favors the chiral state, leads to a renormalized phase
diagram in which the nematic state displaces the chiral state over a wide region in the parameter space. We
analyze the stability of the fluctuation-induced nematic phase, generalize our results to tetragonal lattices, and

discuss their applicability to candidate nematic superconductors, including twisted bilayer graphene.
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I. INTRODUCTION

A nematic superconductor spontaneously breaks not only
the U(1) gauge symmetry, but also a discrete rotational sym-
metry of the system, thus lowering the symmetry of the
point group that characterizes the underlying lattice. Recent
experiments have reported evidence of rotational-symmetry-
breaking superconducting states in different quantum materi-
als, such as doped Bi,Se; [1-4], few-layer NbSe, [5,6], the
topological semimetal CaSnjs [7], and the iron-based super-
conductors Ba;_,K,Fe,As, [8] and LiFeAs [9]. There is a
longer list of materials in which superconductivity can coexist
with nematic order, such as the iron chalcogenide FeSe [10] or
the nickel arsenide BaNi,As, [11], but in these cases the su-
perconducting state emerges in the presence of a nematically
ordered state that has its onset at much higher temper-
atures [12]. Interestingly, the recently discovered twisted
bilayer graphene [13—16] has also been reported to display a
nematic superconducting state in the “hole-doped” side of the
phase diagram, as indicated by the in-plane anisotropy of the
critical magnetic field and of the critical current [17].

Theoretically, a nematic pairing state requires the simul-
taneous existence of (at least) two superconducting order
parameters whose relative phase is not 7 /2. Generally, there
are two different scenarios in which this can happen. In the
first case, two independent order parameters, v; and v,
condense at similar temperatures due to some fine-tuning of
the microscopic parameters involved [18]. One example is
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the s + d state proposed in Ba;_,K,Fe;As; [19,20]. In the
second scenario, the superconducting order parameter has two
symmetry-related components ¢ = (i, ¥), i.e., it trans-
forms as a two-dimensional irreducible representation (irrep)
of the lattice point group. Examples of such order parameters
include the (py, p,) wave and (d,>_y2, d,,) wave in triangular
lattices or the (py, p,) wave and (dy, d,.) wave in tetragonal
lattices [21]. Since this case does not require fine-tuning, we
will focus on it in the remainder of this paper.

It is convenient to parametrize ¥ in terms of three an-
gles,p € [0,27),8 € [-7/2, w/2],and o € [0, 27), as ¢ =
[ |e% (cos a, e sin ) [22]. Below the transition temperature
T., the global phase ¢ acquires a definite value, and the U(1)
gauge symmetry is broken. As for «, which describes the
relative amplitudes between the two superconducting order
parameters, and 8, which describes the relative phase between
Y1 and vy, their allowed values are not continuous, but re-
stricted to discrete sets by the symmetries of the system. In
the particular case of the triangular (or honeycomb) lattice,
there are two different possible sets of values [23]. The first
oneis B =0and o = % (withevenn =0, 2, ..., 10 or odd
n=1,3,...,11), which corresponds to a nematic supercon-
ducting state. Figure 1(a) shows the absolute value square
of the gap (||?) in the nematic phase, which clearly breaks
the threefold rotational symmetry Cs, of the lattice. Note that
there are points in which |/|> = 0, corresponding to gap
nodes. The different values of o correspond to the different
ways of breaking the Cs, symmetry. The second set of allowed
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FIG. 1. Plots of the superconducting gap function along a generic Fermi surface on the triangular lattice. The order parameter is
parametrized in terms of three angles as ¥ = |{|e’(cos a, e sin ). In this figure, the two components of v transform as dya_y and d,,
waves (E, irrep of Dg). (a) The gap function in the nematic state, which lowers the Cg, rotational symmetry of the lattice to C,,, is obtained
when o = % [withevenn = 0,2, ..., 10 (solid arrows) orodd n = 1, 3, ..., 11 (dashed arrows)] and 8 = 0. To produce this plot, we chose
a = 0. (b) The gap function in the chiral state is obtained when o = 7 and 8 = +7.. It does not break any lattice symmetry. However, this

state breaks time-reversal symmetry.

values corresponds to & = 7 and f = £7. Because ¥* # ¥,
time-reversal symmetry is broken, and the superconducting
state is chiral. In this situation, |y|> respects the threefold
rotational symmetry of the lattice and is never zero, as shown
in Fig. 1(b).

The key question is which microscopic mechanisms are
responsible for the selection between the two possible pair-
ing states—nematic or chiral. An argument usually invoked
is that the chiral state should be favored, since it com-
pletely gaps out the Fermi surface [Fig. 1(b)], which would
presumably maximize the condensation energy. In agree-
ment with this expectation, weak-coupling calculations find
that the chiral state is generally preferred [24-28]—unless
spin-orbit coupling is significant [29]. Moreover, in non-
centrosymmetric systems, time-reversal symmetry must be
broken [30]. These results raise the interesting question of
which mechanism stabilizes the nematic superconducting
states that appear to be realized in the materials discussed
above. Besides the aforementioned possibility of nearly de-
generate single-component pairing states [31-34], it has been
pointed out that, in the case of a two-component supercon-
ductor, coupling to strong normal-state nematic or density-

wave fluctuations can tip the balance in favor of nematic
superconductivity [19,24].

In this paper, we discuss another possible mechanism that
does not require additional degrees of freedom or fine-tuning.
The key point is that, because the superconducting order pa-
rameter is charged, it couples to electromagnetic fluctuations.
The effect of the gauge-field fluctuations on conventional s-
wave superconductors has been widely investigated [35—40].
The seminal work of Ref. [35] showed that, upon integrating
out the gauge-field fluctuations, the superconducting transi-
tion becomes weakly first order due to the emergence of a
nonanalytic negative cubic term in the free-energy expansion.
Such an effect would be very small and therefore difficult to
detect due to the narrow window in which fluctuations are
important in s-wave superconductors. Because this procedure
of integrating out the electromagnetic fields is formally jus-
tified only when the spatial order parameter fluctuations can
be neglected, this conclusion is robust for type-I supercon-
ductors. For type-II superconductors, duality mappings and
Monte Carlo simulations indicate that the transition remains
second order [36,37,39].

The role of gauge-field fluctuations in layered unconven-
tional superconductors, where fluctuations generally can play
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a more prominent role than in conventional superconductors,
has been less studied. Reference [41] considered the case of a
general multiband superconductor with isotropic stiffness and
found, like in the s-wave case, a fluctuation-induced first-order
transition via a renormalization-group calculation. A similar
result was found in Ref. [42] for a p-wave superconductor,
and Ref. [43] reported the same outcome in the case of
color superconductivity, where the gauge field is non-Abelian.
(See also Ref [44].) A first-order transition was also found
in multiband superconductors in the London limit [45,46].
Here, we extend this kind of perturbative analysis to the
case of two-component superconductors in triangular and
tetragonal lattices, taking into account the anisotropy of the
superconducting stiffness introduced by the crystal lattice.
Specifically, we integrate out the gauge-field fluctuations to
obtain a renormalized Landau free energy, which is then
minimized.

Similarly to the s-wave [35] and isotropic unconventional
superconductor cases [41,42], we find a nonanalytic cubic
term with an overall negative sign, indicative of a first-order
transition. However, the main difference is that this nonan-
alytic term is dependent not only on ||, but also on the
angles o and § that distinguish between the chiral and nematic
states. This happens because the superconducting stiffness is
not isotropic, as in the s-wave case. Interestingly, by com-
bining numerical and analytical calculations, we find that the
cubic contribution to the free energy is always minimized
for the nematic state. Consequently, because the chiral state
arises from the minimization of quartic terms of the free
energy, the nematic state becomes the global minimum of the
renormalized free energy in a wide region of the parameter
space where the chiral state was the global minimum of the
mean-field free energy. We further analyze the stability of
this gauge-field-fluctuations-induced nematic state as temper-
ature is lowered below T,. Finally, we discuss the limitations
of our approach and the possible application of our results
to twisted bilayer graphene and nematic superconductors in
general.

The paper is organized as follows: We derive and solve the
superconducting free energy renormalized by electromagnetic
field fluctuations in the case of a two-component supercon-
ductor on a triangular lattice in Sec. II. In Sec. III, we repeat
the same procedure for the case of a tetragonal lattice. In
Sec. IV, we summarize and discuss our results, presenting our
concluding remarks. The Appendix presents additional details
of the derivation of the renormalized free energy.

II. TWO-COMPONENT SUPERCONDUCTOR ON THE
TRIANGULAR LATTICE

We first consider a two-component unconventional super-
conductor on a lattice with threefold rotational symmetry in
the presence of electromagnetic field fluctuations. This applies
to the cases of twisted bilayer graphene, with a triangular
moiré lattice and point group Dg, and doped Bi,Ses, with a
trigonal lattice and point group D3,. Both of these groups ad-
mit two two-dimensional irreps corresponding to py/p,-wave
or dy>_y» /d,y-wave superconducting states—respectively, £
and E; in the case of Dg and E, and E, in the case of D3,4. In
all these cases, we parametrize the two-component supercon-

ducting order parameter i as [22]
VU = |Y|e¥(cosa, e sina), (1)

where @ € [0, 27r) and B € [—7, 7]. The global phase ¢ can
take any values in [0, 27).

A. Renormalized free-energy functional

We now generalize the approach of Ref. [35] of integrat-
ing out the electromagnetic field fluctuations for the case of
a two-component superconductor in a lattice with threefold
rotational symmetry. Denoting by A the electromagnetic vec-
tor potential, and using the same notation as Ref. [35], the
Ginzburg-Landau free-energy density has the form

1
FIy, Al = Foly/] + Fral ¥, Al + e——(V x A?, ()
T Lo

where JFy[y] does not contain gradients of the supercon-
ducting order parameter and Fgna[t, A] contains all the
symmetry-allowed couplings between v and A. The last term
is the free massless action of the gauge field. Here, 1 is the
magnetic permeability. The first term on the right-hand side of
Eq. (2) is given by [21,23,47]

Folyl = gw + §|w|“ + §[(zﬁw>2 +@ny)’l, 3

where t; refers to the Pauli matrices acting on the two-
dimensional space of v (with i=1,2,3) and ¥ is the
transposed complex conjugate of 1. The parameter r changes
sign at the bare transition temperature Ty as r = ro(T —
1y)/ Ty, with ry > 0. Moreover, the conditions u# > 0 and
g+ u > 0 must hold for Fy[¥] to be bounded from below.
In terms of the parametrization (1), we have
F e M4 8 4 2 2 2

oYl = ZIWI™+ 21+ 1Y [ (sin” 20 cos™ f + cos™ 2av).

“)

To set the stage, we first review the mean-field results
for the case in which gradient terms are absent—see, e.g.,
Ref. [21]. Minimizing Fy[v], the leading superconducting
instabilities of Eq. (4) are either the nematic or the chiral
state, both of which have their onset at r < 0. Specifically,
when g < 0, the leading superconducting state is nematic,
and the order parameter has the form ¥ o (cos «, sin ) with
a € [0, 2r). When g > 0, the leading superconducting state
is chiral, and ¢ o (1, 7). The mean-field phase diagram
obtained from minimizing the free energy in Eq. (4) is shown
in Fig. 2. To this order in v, the Landau free energy does
not fix « to any particular value when the nematic state is the
minimum. As we will discuss later, this continuous symmetry
is lifted by sixth-order terms in the free energy. For simplicity,
here we neglect such sixth-order terms, since the quartic terms
are enough to select between the nematic and the chiral state.
In Sec. IIC we discuss the role of the sixth-order terms in
Foly].

The second term on the right-hand side of Eq. (2) consists
of a sum of all symmetry-allowed gradient terms that couple
Y and A [21]:

]:gradh[/v Al =K, |Dx1/fl + Dyllf2|2 + K2|wa2 - Dywl |2
+ K3(IDxyr1 — Dya|* + IDyry + Dy [*)
+ Ka(IDY1 |* + ID 2|, S
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FIG. 2. Mean-field phase diagram, in the (u, g) parameter space,
for a two-component superconductor on a triangular lattice, based
on the Landau free-energy expansion to quartic order in ¥y shown
in Eq. (4). The white area in this plot corresponds to the regions in
parameter space where the free energy in Eq. (4) is unbounded.

where D, = 0, — iqoA,, etc., are the covariant derivatives and
qo = 2e/hc. The above K; parameters, known as stiffness
coefficients, penalize spatial variations of the field in dif-
ferent directions. Importantly, the in-plane stiffness of the
order parameter is not isotropic. We consider the situation in
which the order parameter varies weakly in space whereas
the electromagnetic fields vary more strongly. In this case,
we can set V¢ = 0 in the expression above. This step is for-
mally only justified for type-I superconductors, as explained
in Ref. [35]. We will revisit this assumption in Sec. IV. Note
that, in the ordered chiral state, it has been argued that the
superconducting gap excitations and the magnetic excitations
become mixed [48]. Here, we approach the transition from
the disordered phase. With this assumption, the gradient terms
simplify to

Feradl V. Al = gonol¥ P (A7 + AY) + g0 vs (Ut ) (A7 — A7)

+ 24, A,q53 (T + Alqgv: | |, (6)
where we have defined the effective stiffness coefficients
K1+K2~|—2K3 KI_KZ
v, =Ky, pp=——"——/—¥—, and y; = ———.
2 2
@)

J

(My)pe = c0s29<1 _ Y
Yoo Y

k
(My)ss = 1 — 22 (cos 20 cos 2¢ + cos 8 sin 2a sin 2¢) + —
Yo

In a layered quasi-two-dimensional system, the magnitude of
y, should be much smaller than that of ;. However, as will be
clear later on, our result is not too sensitive to variations in ;.
To define the effective free-energy density of the single
variable ¥, Fe¢[1], we take the trace over the physically
allowed dynamic degrees of freedom of A. In other words,
the functional integral that defines Fg[¢/] is done over all the
purely transverse configurations of the vector potential, AL,

s

®)
where B = 1/(kgT ) and F; denotes the integrated free-energy
density F;. It is convenient to proceed in the Coulomb gauge,
V - A = 0, where the Fourier component of the vector poten-
tial that is parallel to the wave vector k vanishes,

e BFalV) _ =PRIV / DAL ¢ B AV Fural Al iz (VxA)?)

A

A -k=0. ©))

To impose the above condition, we move to the spherical
coordinate system Kk = k(sin6 cos ¢, sinf sin ¢, cosf) and
consider the spherical basis formed by the unit vectors

k= (sin @ cos ¢, sin O sin ¢, cos ),
0 = (cos 0 cos ¢, cos O sin¢, —sin ),

¢ = (—sing, cos ¢, 0). (10)

In this new basis, the Fourier components Ay are denoted as
Ak = Auk + Agd + Ay, (11)

in terms of which the transverse component of the electro-
magnetic field becomes simply Af{ = (Apk, Agk). Thus, in the
Cartesian basis, the Fourier components Ay are given by

Ak cos 6 cos pAgk — sin PpAgxk
Ay | = | cos 0 sin pAgk + cos Ay |. (12)
Azk — sin B A

As aresult, Eq. (8) can be written in terms of Agy and Ay
as

’

pv
o PEalV] _ p—BRIY] / DAL ¢ [RAMAT g

where we have defined ¥? = 87 ypqduoly|* and M is a 2 x
2 matrix with components

3 V3 . . Vz k*
— + —cos2acos2¢ + —cos Bsin2asin2¢ | + — + —

Y0 Yo v

2

b
Ve

(Mk)pg = Mk)gg = e} cos O (cos B sin 2a cos 2¢p — cos 2 sin 2¢). (14)
Yo
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Thus %Mk is the “mass matrix” of the gauge field.
Above the superconducting transition, where the supercon-
ducting order parameter v is zero, the mass matrix has zero
determinant, indicative of a massless field. For a nonzero
Ys, the functional integral in Eq. (13) only converges if both
eigenvalues of the matrix Mk are positive, i.e., if the gauge
field becomes massive. The conditions for this to happen are
that both y, and y, should be positive and |y3| < p.

The result of the functional integration over all physical
configurations of A gives the effective free-energy density
functional for v, which is a sum of two terms:

Fee[¥] = Fol¥ ]+ Femlv ] as)

The first term, Fo[y ], was defined in Eqs. (3) or (4), whereas
the second term, Fgm[v], is given by the result of the Gaus-
sian integration over the electromagnetic fields:

3

3(2m)?

+ A /Zﬂd¢/1d /V/A:d 2In(c + bg” + ¢*)
X n(c .

2277 Jy L), a1 7T
(16)

Femly] = In (¥5)

In Eq. (16), we performed a change of variables to x = cos 6
and g = k/v,. Here, A is the momentum cutoff, and the poly-
nomial ¢ + bg* + ¢* = det M. The dimensionless quantities
b and c are given by

b=&+1+<1—&>x2
Yo Yo
— E(1 — x?)(cos 20 cos 2¢ + cos f sin 2a sin 2¢),
Yo
c= = Ve + |:1 Yo _ ()/3) (cos ﬂsm 2a + cos? 2(x)i|
Yo Yo Yo
REE

5 (1—x 2)(cos 2a cos 2¢ + cos B sin 2a sin 2¢).
(17)

In order to extract from Fgpm[v] the leading terms in the or-
der parameter, it is necessary to Taylor-expand the logarithm
before integrating. After defining

0

b b? —4c
2
_ 2 yr - (18)
=3 2
we rewrite the integral Fgm[¥] as an infinite sum (see the

Appendix for details)

Tlﬂg 2 1 3 3
Femlv] = T 82 J, d¢o 3 dX(a+ +al)
o Tlﬂgn 2 (_ )n IA —2n+3 "
+;2(2n)3/ ¢/ EETE R
(19)
The series that contains even powers of ¥, i.e., wSZ", simply

renormalizes the existing analytic terms in the bare Landau
free energy. For n > 1, these corrections are small due to the
cutoff prefactor A~2"+3, For n = 1, the correction is indepen-
dent of the angles « and 8 and results in a renormalization of

() (b)

us
-1.3 2
T
-1.5 B0

INJE
|
MJE]

T 3 T
%W 4 2 4
a + 7 «

W

FIG. 3. (a) Plot off“)(%, %, a, p) for fixed 2 = 0.8 and % =
0.1 as a function of & and B. (b) Location of the minima on the («, 8)
plane. The minima correspond to a nematic state with order parame-
ter ¥ o (cos«, sin«), where « is not fixed to be any particular value.

the bare transition temperature 7y. Therefore, hereinafter, we
ignore the infinite series and focus only on the cubic term of
Eq. (19):

Ty, [* ] 3 3
Femly] = T /0 d¢/71 dx(ai +a’). (20)

The above cubic term is a nonanalytic function of .
Nonanalytic contributions to the Ginzburg-Landau free en-
ergy are generally expected to arise when a massless field is
integrated out—see, for instance, the case of nematic order
parameters coupling to acoustic phonon modes [49-52]. If
we set y3 = 0 and yy = y,, it follows that b =2 and ¢ =1,
such that a; =a_ = 1. In this case, Eq. (20) gives a cu-
bic term with a negative coefficient, as in the case of an
s-wave superconductor [35]. What makes our case different
from the s-wave case is the additional stiffness coefficient
y3, which is absent for a single-component superconductor,
and which makes Fgv[v¥] depend on the relative angles o
and 8.

We first analyze numerically the dependence of the cubic
term Fem[¥] on @ and B. It is convenient to express the cubic
term in terms of the dimensionless integral £ that depends
only on the ratios between the stiffness coefficients % and %
and on the angles « and 8:

Ty f(3><ﬁ, Y o, ﬁ)_ Q1)

Femlv] =
MLy 127 Y Y

with
3 1 2 1 3 3
f=—— do dx(ai +a’). (22)
47 0 -1

We analyzed f©® by plotting it as a function of « and
B for varying y./yp € [0, 1] and y3/yp € [—1, 1]. In all the
cases we studied, we found f® < 0, like the simpler case
of the s-wave superconductor treated in Ref. [35]. More im-
portantly, the minima of f occurred for 8 = 0, with an
undefined value of «. This corresponds to a nematic state
parametrized by ¥ o (cosc, sina). In Fig. 3, we illustrate
this behavior by showing a plot of f® for the particular
case % = 0.1 and % = 0.8. For simplicity, we restrict & to
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FIG. 4. Plots of the functions 4, (x) and &, (x) defined in Eq. (24).
Note that both functions are positive and vary weakly in the interval
O0<x<I.

the range [0, ) since the free energy is invariant under the
shifta — 7 + «.

To gain further insight into these numerical results, we
perform an analytic expansion of Fgy[v] to second order in
V3 / Yo- We find

Ty3 :
.&MWJw——ﬂ{m(ﬁ>
Yo

127
v\, (7
+(—3> hy (—”) (sin® 2a cos® B + cos® 2a) },
Yo Yo
(23)

where Ay (x) and hy(x) are given by
2

3x
V1 —x

hi(x) = %[10+3x+ arctanh (v/1 —x)],

o (x) = —5x—6+16(1 —x)Inx

3 2
— 8
128(1 — x)?

19x2 —48x+32 (/T —x+1
1o X+ ln( x+ >:| (24)
NI e
Both h;(x) and hy(x) are plotted in Fig. 4. We note that
the changes in h;(x) and h,(x) in the range 0 < x < 1 are
relatively small, implying that our results should not depend
significantly on the value of y,/yp. More importantly, both
functions are positive for 0 < x < 1, which implies that the

overall coefficient of the cubic term is negative. For later
convenience, we reexpress Eq. (23) as

A A
Femlv] = —?Oll//|3|:1 + A_3(COSZ 2a + sin® 2« cos? ,3)1|,
0
(25)

where the positive parameters Ao and A3 are defined as

32
327 (Yogqg o) / Th1<$),
0

2
Ay = (ﬁ) V327 (voqiuo) T hz(ﬁ). (26)

Yo Yo

As we pointed out above, while such a negative nonanalytic
cubic term also appears in the s-wave case and in the isotropic
p-wave case [35,42], the novelty here is that the nonanalytic
contribution also depends on « and S due to the in-plane
anisotropy of the superconducting stiffness. From Eq. (25),
since A3 > 0, it is clear that the term Fgp[v] is minimized
for B =0 and arbitrary «, which corresponds to a nematic
superconducting instability, in agreement with our numerical
analysis.

B. Leading instability of the renormalized free energy

Having derived an approximate analytical expression for
Feml¥], we are now in position to minimize the full free
energy Fei[1] given by Eq. (15) to find the leading instability
immediately below the superconducting transition tempera-
ture. Using Eqgs. (4) and (25), we obtain

A
Aﬂngwﬁ—fwﬁ+§w4

A
+ (§|¢|4 - ?3|1//|3> (cos® 2a + sin® 2« cos? B).
(27)

The key point is that the leading superconducting instabil-
ity of the system—chiral or nematic—is determined by the
competition between the quartic and cubic terms, which share
the same functional dependence on « and 8. While the cubic
term always favors the nematic phase, the quartic term may
favor either the nematic or the chiral state depending on the
sign of g, as shown in Fig. 2 above.

The presence of a negative cubic term renders the su-
perconducting transition a first-order transition. As a result,
one has to compare the free energies of the two possible
solutions—nematic (8 = 0) and chiral (8 = £7, a = 7).
Note that, because the functional dependence of the renor-
malized free-energy density Fei[/] on « and S is the same
as the dependence displayed by the bare free-energy density
Folv], no additional solutions besides the chiral and nematic
ones are expected to arise from the minimization of the free
energy. In either case, after substituting the appropriate values
for the angles, the free energy acquires the same general form:

T ST S A S T
Feir (W] = 2|1/f| 3 vl” + n I (28)

where p denotes the nematic (1 = nem) or the chiral (u =
ch) solution. We have
Anem = Ao + A3,  Ach = Ao, Upem = U+ &  Uch = U.
(29)
It is straightforward to minimize Eq. (28) with respect to
|| and find the condition on the reduced temperature r for
which the minimized free energy becomes smaller than that
of the nonsuperconducting phase. We find that the first-order
transition for the  solution takes place at the reduced temper-

ature r = r,, given by

_

9w,

(30)

m
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FIG. 5. Phase diagram, in the (u, g) parameter space, of the lead-
ing superconducting instability obtained by minimizing the effective
free energy in Eq. (27), which is renormalized by the electromagnetic
field fluctuations. The dotted line represents the phase boundary of
the bare free energy; see Fig. 2. The phase boundary separating the
nematic and chiral solutions is a straight line given by Eq. (32). For
this plot, we set g—z =0.2.

At this transition, the superconducting order parameter jumps
according to

21,
3u,

Ay, = (€29}

Therefore the leading (first-order) superconducting insta-
bility is that whose free energy becomes negative first, i.e., the
solution with the largest r,, value. Using Eqgs. (29) and (30),
the phase boundary g*(u) between the chiral and nematic
phases in the (u, g) parameter space is given implicitly by the
condition ¢, = Fpem, from which we derive

gw=(1+2) -1 (32)
Ao

Note that the chiral solution is the leading instability for g >
g, whereas the nematic solution is the leading one for g < g*.

The phase diagram of the renormalized free energy is
shown in Fig. 5. Compared with the mean-field phase diagram
of the bare free energy in Fig. 2, the main difference is that the
nematic solution becomes the leading instability in a region
of the parameter space where g > 0, thus displacing the chiral
solution. Indeed, because A3, Ag > 0, it follows that g* > 0.
This implies that the nematic-chiral phase boundary of the
renormalized free energy moves to the region of the parameter
space where the chiral solution used to be the leading instabil-
ity. As a result, the nematic solution is favored over a wider
range of parameters as compared with the bare free-energy
case.

Another difference between the phase diagrams of Figs. 2
(bare free energy) and 5 (free energy renormalized by elec-
tromagnetic fluctuations) is that, in the former, the leading
instability is second order and occurs always at the reduced

(a)

1.5 °
- I
: Chiral
: o
X 8
g 0 A
Nematic

~15 .
0 15 3

u
(b) 15
1

T
05
0
P Q R

FIG. 6. (a) Definition of the path P — Q — R in the phase di-
agram of Fig. 5. (b) Evolution of the reduced temperature » where
either the nematic (purple line) or the chiral (cyan line) transition
takes place, i.e., max(¥pem, 7ch), along the path P — Q — R. For
these plots, we used Ao = 1 and A3 = 0.2. We also set u = 1 along
the path P - Q — R.

temperature r = 0. In the latter, the transition is first order
and occurs for a positive r,, given by Eq. (30), which changes
across the phase diagram. This is illustrated in Fig. 6(b),
where we plot max(#pem, 7ch) along the P-Q-R path shown
in Fig. 6(a).

Based on the quantitative estimates of Ref. [35], one gen-
erally expects the cubic coefficients Ay and A3 to be small,
rendering the first-order transition very weak—in other words,
one expects the jump Ay, in Eq. (31) to be very small,
A < u. It is important to note, however, that this does not
imply that the effect of the electromagnetic field fluctuations
on the selection between the chiral and the nematic phase is
negligible. Instead, from the condition (32), we conclude that
this effect is significant when the ratio between the quartic
coefficients g/u is comparable to the ratio between the cubic
coefficients A3/Ag. As a result, even though A; < u, this does
not preclude g/u ~ A3/A¢.
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Going back to the effective free energy in Eq. (27), it is
interesting to analyze in more depth the interplay between the
cubic and quartic terms. Naively, one might have expected that
the nematic instability should always be the leading one, since
the cubic term favors the nematic phase, whereas the chiral
phase is only favored by the higher-order quartic term (for
g > 0, of course). The reason why the quartic term can out-
compete the cubic one is because of the first-order character
of the transition. This can be seen by noting that, immediately
below the first-order transition, the combination g = (f —
32%) acts as an effective coefficient of the angular-dependent
term in Eq. (27), where A[y| is the jump in the supercon-
ducting order parameter. Plugging in the value for Ay |
obtained from Eq. (31), we find that g > 0 in the regime
g > g*. Clearly, a positive g favors 8 = £7 /2 and o = 7 /4,
consistent with a chiral phase. Conversely, substituting the
value for A|Y |nem, We find that g < O in the regime g < g*. A
negative effective coefficient g favors 8 = 0, consistent with a
nematic phase.

That the nematic phase can be stabilized in a regime where
the bare parameters of the free energy would predict a chiral
phase is the main result of this paper. Thus electromagnetic
field fluctuations tilt the balance between the chiral and ne-
matic states in favor of the latter. Formally, this effect is
enabled by the finite stiffness coefficient y3 in Eq. (6). Indeed,
y3 = 0 gives A3 = 0, which in turn implies g*(«) = 0, recov-
ering the nematic-chiral phase boundary obtained from the
bare free energy. Note that, as long as the gradient coefficients
K and K; in Eq. (5) are different, y; will be nonzero. There-
fore the microscopic origin of this effect is the fact that the
stiffness of a two-component superconductor is not isotropic
in momentum space.

C. Stability of the superconducting nematic state below 7,

The phase diagram obtained in Fig. 5 refers to the leading
instability immediately below the first-order transition tem-
perature T, set by rpem O 7cp. In this section, we investigate the
stability of the nematic solution below the superconducting
transition in the region 0 < g < g*. Of course, since we are
employing a Ginzburg-Landau approach, this analysis is only
formally valid near 7. As such, our calculations cannot be
used to establish what the zero-temperature superconducting
ground state is.

To assess the nematic phase below ryep, it is important to
also include the sixth-order terms of the Landau free energy
Foly] that we have neglected so far. This is because, as dis-
cussed above, minimization of the quartic-order free energy
does not fix the value of the angle o that characterizes the
relative amplitude of the two components of the gap function
in the nematic superconducting state, Y¥nem o (cos o, sin ). A
sixth-order term lowers this artificial U(1) symmetry to a Z3
symmetry, as expected for a lattice with threefold rotational
symmetry [23,47]. We thus include in our analysis the three
sixth-order terms that are allowed by the threefold rotational
symmetry of the lattice [21]:

Folyl = %W + %anr‘ — ()]
+ %(&mﬁ)[(lﬁwﬁ —3@ny)’l,  (33)

where new Landau coefficients vy, v,, and v3 were introduced.
To ensure that the free energy remains bounded, they must
satisfy v; > 0, v; + v, > 0, and v; + v, — |v3| > 0. The first
sixth-order term above, with coefficient v;, does not distin-
guish between the chiral and the nematic states. The second
sixth-order term, with coefficient v,, can be rewritten in terms
of the angles « and § as

FOW = R - sint2a s ). G4)

Thus, if v, > 0, the chiral state is favored by this term,
whereas if v, < 0, the nematic state is favored. As for the third
sixth-order term, with coefficient v3, it can be rewritten as

FOwl = %|w|6cos 2a(cos? 2a — 3 sin® 2a cos® B). (35)

This term not only favors the nematic phase (8 = 0), regard-
less of the sign of v, but also restricts the allowed values of «
to a discrete set of six values. Indeed, setting 8 = 0, we obtain

]3(53)[1,0] = %|1//|6cos 6c. As a result, if v3 > 0, this term is

minimized by « = (2”%

with n =0, 1,...,5; conversely,
if v3 < 0, minimization gives o = Z"T” withn=0,1,...,5.

To investigate the stability of the nematic phase below the
superconducting transition, we numerically minimize the full
free energy Foir = Fer + Fo, as given by Egs. (27) and (33),
in both the nematic and chiral channels for r < ryey,. Our
interest is in the region 0 < g < g*, where the electromagnetic
field fluctuations change the leading instability from chiral to
nematic. For concreteness, we consider the point s in the phase
diagram of Fig. 6(a), which is close to the nematic-chiral
phase boundary. The evolution of the free-energy minimum,

_e(;?l"), as a function of r is shown in Figs. 7(a), 7(c), and 7(e),
accompanied by the evolution of the absolute value of the su-
perconducting order parameter || [Figs. 7(b), 7(d), and 7(f)].
Without the sixth-order terms [Figs. 7(a) and 7(b)], the ne-
matic state undergoes a first-order transition to the chiral state
relatively close to 7pem-

However, upon inclusion of the sixth-order contributions—
particularly the fé”[vﬁ] term that is responsible for enforcing
the discreteness of the o values—we find that the nematic
solution remains the global energy minimum over a signifi-
cantly wider range of reduced temperatures r [Figs. 7(c)-7(f)].
Interestingly, this effect is apparent even for |v;| < v;. A
finite v, can either extend the nematic solution to an even
larger range of reduced temperatures, if v, < 0, or compress it
to a narrower range, if v, > 0. Therefore we conclude that the
sixth-order term (35) is important not only to lift the acciden-
tal U(1) symmetry of «, but also to stabilize the nematic phase
promoted by the electromagnetic field fluctuations below the
superconducting transition.

Another effect caused by the the sixth-order terms is a
change in the nematic-chiral phase boundary of Fig. 5. As
shown in Fig. 8, upon increasing the coefficient v; (while
keeping v; and v, fixed), the phase boundary acquires a cur-
vature and is no longer linear. Importantly, this effect is only
significant close to the origin of the (u, g) parameter space. As
one moves away from the origin, all the boundaries become
asymptotically close to the linear boundary whose slope is
determined solely by the cubic coefficients A and A3.
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FIG. 7. (a) and (b) Evolution of the free-energy minimum and of the magnitude of the order parameter, as functions of the reduced
temperature r. Both plots correspond to the point s in the phase diagram of Fig. 6(a). This means that we set u = 1, g = 0.35, Ao = 1, and
X3 = 0.2. (c)—(f) Same as (a) and (b), but in these cases, the sixth-order terms in Eq. (33) are included. We set v; = 1, v, = 0, and either

v3 = 0.10 [(c) and (d)] or v3 = 0.15 [(e) and (f)]. SC, superconducting.

III. TWO-COMPONENT SUPERCONDUCTOR ON THE
TETRAGONAL LATTICE

The main result derived in Sec. [I—that electromagnetic
gauge-field fluctuations favor a nematic over a chiral su-
perconducting state—is not unique to the triangular lattice.
In this section, we extend the analysis to the case of a
two-component superconductor on a tetragonal lattice. For
concreteness, we consider the point group Dy, such that
Y = (Y1, ¥») can transform as either the E, irrep—which
corresponds to a (d.;, dy;)-wave superconductor—or the E,
irrep—corresponding to a (p,, py)-wave superconductor. To
start, we review the known results for the mean-field phase
diagram (which can be found, e.g., in Refs. [21,53]), following
the notation of Ref. [22]. The superconducting order parame-
ter can still be parametrized as in Eq. (1). However, instead of

two, there are three possible superconducting ground states:
the B, nematic state ¥ = (1, 0)/(0, 1), corresponding to

o= 2”7” and B8 =0, withn =0, ..., 3; the By, nematic state
¥ = (1, £1), corresponding to o = (2"# and B8 = 0, with

n=0,...,3;and the chiral state ¥ = (1, %i), corresponding
toa = 7, and B = £7. The corresponding absolute values of
the gap function are shown in Fig. 9 for the particular case
of a (py, py)-wave state—see also Ref. [22], where a similar
analysis was presented. Both Bjg and B, nematic supercon-
ducting states break the fourfold (Cy,) rotational symmetry
of the system, lowering it to twofold (C,;). However, they
are not symmetry equivalent, as the B, state preserves the
o, mirror reflections, whereas the By, state preserves the oy
mirror reflections.

To proceed, we write the full Ginzburg-Landau free-energy
density as in Eq. (2). The nongradient terms are given
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U3

FIG. 8. Nematic-chiral phase boundary in the (u, g) parameter
space. The dashed line is the phase boundary in the absence of the
sixth-order terms, as shown in Fig. 5. Each solid curve represents the
phase boundary for different values of v3, as shown by the color-scale
bar. In all cases, we set % =02,vy=1,and v, =0.

by [21,53]
Foly] = gw + Zw + f(xﬁwf + %oﬁnw
= Sl P+ Sl
= S+

+ Z%Il//l4 cos® 2u + %Ig[/|4 sin® 2a cos®> . (36)

In order for Fy[¢/] to be bounded, the Landau parameters
must satisfy the conditions 4 > 0, w +u > 0, and g+ u > 0.
Minimization of the free energy leads to the three possible
superconducting solutions mentioned above. As shown in the
mean-field phase diagram of Fig. 10, when g < min{0, w}, the
leading instability below r < 0 is the Bjg nematic supercon-
ducting state. When g > w and w < 0, the selected state is
the B, nematic, whereas for g > 0 and w > 0, it is the chiral
State.
The gradient terms are given by [21]

Feraal¥] = Ki[IDcy1 1 + Dy |°]
+ K [IDc2 ) + 1Dy I°]
+ K3[(Dyr1 )" (Dyy) + c.c.]
+ K4[(Dx )" (Dy¥ry) + c.c.]
+ Ks[ID.y1* + D], 37)

where, as in Sec. II, D, = 9, — igoA,, etc., are the covariant
derivatives and K; are the stiffness coefficients. Assuming that
the order parameter is spatially uniform in the regime where
the gauge-field fluctuations are strong, the equation above is
simplified to

Ferad W] = q5v0l ¥ (A7 + A7) + g3 (T 1y ) (AT — A7)
+ 2AA,@5n (FTy) + A2qdy v 2, (38)

where we have defined the effective stiffness coefficients as
Y: = KS’

Kz + Ky K -K
= —-——— '}/’4} =

K+ K
2 9 ; 2 9 .

Vi and  yy =
(39
Note that, as compared with the triangular-lattice case, there is
an additional stiffness coefficient in the case of the tetragonal
lattice, since y; # y3. If these two coefficients were fine-tuned
to acquire the same value, one would recover the results for
the triangular lattice.
We now repeat the same steps as in Sec. II to integrate out
the electromagnetic field fluctuations and obtain the effective
free-energy density

Fee[¥] = Fol¥ ]+ Femlv], (40)

with Fy[y] defined in Eq. (36). The term Fgm[v/], resulting
from the gauge-field fluctuations, acquires the same form as
in Eq. (20), with c12i still defined by Eq. (18), but with the new
dimensionless quantities b and ¢ given by

b=ﬁ+1+<1—ﬁ)x2
Yo Yo

— (1 - x2)<E cos 2¢ cos 2¢ + n cos B sin 2« sin 24))
Yo

Yo
41)
and
y. v. (7 Py ?
c=24+ |:1 -z (—3003201) - (—]COS,BsinZa) ]x2
Yo Yo Yo Yo
— ﬁ(l — )cz)(y3 cos 2 cos 2¢ + n cos B sin 2« sin 2¢).
Yo Yo Yo

(42)

We first study numerically the dependence of the cubic
term Fpm[¥] on o and B. As in the preceding section, it is
convenient to express it in terms of the dimensionless integral
f® given by Eq. (22), such that

Ty} :
Femlv] = ﬂf“)(ﬁ, 5 L,a,ﬂ) (43)
127 Yo Yo Yo

We systematically analyzed f® (a, ) numerically for var-
ious values of the stiffness coefficients. Because f© only
depends on cos2« and sin2«, we restricted the range of
o values to [0, w]. The stiffness coefficients were varied
systematically in the ranges % e [0, 1], % e [-1,1], and
% € [—1,1]. In all cases, we found f®(a, B) < 0. More

importantly, the values of  and B that minimize f®(a, B)
were found to always correspond to one of the two ne-
matic superconducting states. In particular, in the cases where
|vil < |y3|, the minima are located at o = 2nm /4 with in-
teger n, corresponding to the B, nematic superconducting
state ¥ o< (1, 0)/(0, 1). This is illustrated in Fig. 11, where
we show f®(a, B) for the particular case n=02=08,
and % = 0.1. Conversely, in all the cases where |y;| > |y3|,
the minima are at § =0 and o = (2n + 1) /4 with integer
n, corresponding to the By, nematic superconducting state
Y o (1, £1). Such a behavior is illustrated in Fig. 12 for the
particular case % =0.8, % =0, and % =0.1.
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FIG. 9. Absolute value squared of the gap function along a circular Fermi surface for a (p,, p,)-wave superconductor on a tetragonal
lattice. Three ground states are possible. A similar analysis was shown previously in Ref. [22]. (a) The B, nematic superconducting state,
which reduces the Cj; rotational symmetry of the lattice to a C,, symmetry. In this plot, we set o = 0. (b) The By, nematic superconducting
state breaks the Cy; rotational symmetry of the lattice as well; in this plot, we used « = %. (c) The chiral superconducting state is characterized
by a = % and B = £7. It does not break any lattice symmetry, but it breaks time-reversal symmetry.

Following the same steps as in Sec. II, we perform an
analytical expansion of f (3)(%, %, %, o, B) to second order
in y;/yp and y3/yy. We obtain

Ty .
Femly] ~ — v, [hl(y>
Yo

127
v\[ (7 > [y ?
+ hg(—z> |:<1 sin 2« cos ,3) +<—3 cos 2a> } },
Yo Yo Yo
(44)
-1 0
Nematic Bag Chiral
¥ o (1,£1) P o (1, %1)
4 0
U
Nematic Big
¥ o (1,0) or (0,1)
1
w
U

FIG. 10. Mean-field phase diagram in the (%, £) parameter
space for a two-component superconductor on a tetragonal lattice,
obtained by minimizing the free energy in Eq. (36). The white area
in this plot corresponds to the parameter-space region where the free

energy is unbounded from below.

where h;(x) and hy(x) were previously defined in Eq. (24)
and plotted in Fig. 4. Minimization of Fgy[v] leads to o =
(2n+ 1) /4 and B = 0 when |y;| > |y3| and to o = 2nr /4
when |y3| > |y, in agreement with the numerical analysis.
For convenience, we define the coefficients

32
Ao = /327 (yogg o) T h (%),
0

2
3/2
A= V327T(V0f1(2),u0) / T(%) hz(&)
0

Yo

2
A=A (ﬁ) 45)
Y1

(a) (b)

us
-1.3 2
-14
1.5 B0
us
2 _z
0 2()7r7r37r
T T 3m
T s @ 3 4 2 7
a *m? a

FIG. 11. (a) Dimensionless coefficient of the cubic term
F®(a, B) as a function of « and B for fixed % =0, ;—g = 0.8, and
:—0 = 0.1. (b) Location of the minima of f®(a, 8) on the (a, B)
plane. The minima correspond to the B, nematic superconducting
state with order parameter ¢ o (1, 0) or ¥ o< (0, 1).
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FIG. 12. (a) Dimensionless coefficient of the cubic term
Ff®(a, B) as a function of « and B for fixed B =08, 2 =0,and
% = 0.1. (b) Location of the minima of f®(«, 8) on the («, B)
plane. The minima correspond to the B, nematic superconducting

state with order parameter ¢ o (1, £1).

and rewrite the cubic term as

A A A
Femly] = —?0|W|3<1 + )\—1 sin? 2a cos” B + )\—’%cos2 2oe>.
0

" do
Since Fpm[¥] has the same functional dependence on «
and B as the bare free-energy density JFo[v], minimization
of the total free-energy density Fg[1] should yield the same
solutions as Fo[¥]. As we did in Sec. II, to find the leading
instability, we compare the free energies of the three solu-
tions, since the cubic term renders the transition a first-order
transition. In all cases, after substituting the values for «
and B corresponding to each solution, the free-energy density
acquires the same form:

r A u
FRWI = 21wl = Lyl + Ly, @)
2 3 4
where u labels the type of solution (1 = Big, Bag, ch) and
)"B]g = )\‘0 + )"37 )\’BZg e )\-O + )\41, )\‘Ch = )\.O,
Up,, = u + 8 Up,, = u + w, Uch = U. (48)

As we showed in Sec. II, the first-order transition associated
with the free energy in Eq. (47) takes place at the reduced

222 . e
temperature r, = 5. Thus the leading instability is the one
i
with the largest transition temperature:

2(ho + )\3)2 2(Ao + )\1)2 2)»(2)
rBlg = T < rBzg VR Yech = —.
Nu+g) 9(u + w) 9u
(49)

It is now straightforward to determine the phase boundaries
in the (£, £) parameter space. The chiral solution is the lead-
ing instability in the region bounded by w > w* and g > g*,
where

w* i )\1 2 g* i )»3 2
el (G R I (R
(50)

The fact that w*, g > 0 implies that the region of the
phase diagram where the chiral solution is realized shrinks

-1 0o =
Chiral
Nematic Bag Poc (L4 |
Yo (1,£1) / T
g 10
U
Nematic By,
¥ x (1,0) or (0, 1)
1

S

FIG. 13. Phase diagram, in the (%, £) parameter space, for a
two-component superconductor on a tetragonal lattice obtained from
minimization of the free energy renormalized by electromagnetic
field fluctuations. The dotted lines represent the phase boundaries
of the mean-field phase diagram (see Fig. 10). For this plot, we
set i—(‘) =0.2 and ';—3 = 0.3. The quantities w* and g* are defined in
Eq. (50) and, in this plot, are given by w* = 0.44u and g* = 0.69u.

with respect to the region occupied by the chiral solution in
the mean-field phase diagram. This is illustrated in Fig. 13,
where the renormalized phase boundaries are shown by the
solid lines, whereas the bare phase boundaries are given by
the dotted lines. Therefore, after renormalization by the elec-
tromagnetic field fluctuations, the nematic state becomes the
leading superconducting instability over a significant range of
parameters for which the mean-field analysis would predict
a chiral state. This result is analogous to the case of the
two-component superconductor on the triangular lattice.
There is, however, one important difference, as there are
two symmetry-distinct nematic superconducting states on the
tetragonal lattice, namely, the Bg and By, nematic solutions.
Comparing I, and IB,,» WE find that, for w < w* and g < g*,
the phase boundary g(w) separating the two nematic phases is

given by
~ A A 2
Ew) =_1+(E+1)( 3t °> , 51)
u u

AL+ A

such that the B, state is realized for g < g(w) and the
By, state is realized for g > g(w). Compared with the phase
boundary of the mean-field phase diagram, gyr(w) = w, we
conclude that, for A3 > A, the Bj, nematic solution occupies
a region of the parameter space that was occupied by the B,
nematic solution in the mean-field case. This case is illustrated
in Fig. 13. Conversely, for A; > A3, it is the By, solution that
occupies an expanded region of the parameter space.

IV. CONCLUSIONS

In this paper, we showed that electromagnetic fluctua-
tions play an important role in the selection between nematic
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versus chiral superconductivity for two-component supercon-
ductors, such as (py, py)-wave and (d,>_2, dxy)-wave states.
Upon integrating out these gauge-field fluctuations, they gen-
erate nonanalytic cubic terms in the free energy that induce
a first-order transition, similarly to the cases of the s-wave
and multicomponent superconductors with isotropic stiffness
analyzed elsewhere [35,41,42], as well as of color super-
conductivity involving quarks and gluons [43]. The crucial
difference is that, for the two-component superconductors
studied here, the superconducting stiffness—or, equivalently,
the correlation length—is not isotropic in the (x, y) plane due
to the crystalline lattice. This makes the nonanalytic term
in the free-energy sensitive to whether the superconducting
state is nematic or chiral, favoring the former over the latter.
The relevance of this result stems from the fact that weak-
coupling microscopic calculations generally place the system
in a region of the parameter space where minimization of
the mean-field free energy predicts a chiral state. However,
as shown here, the nonanalytic free-energy term arising from
the gauge-field fluctuations changes the nature of the lead-
ing instability in a significant portion of this parameter-space
region from chiral to nematic. As a result, the effect of the
electromagnetic field fluctuations on the superconducting free
energy provides a mechanism by which a nematic state can be
stabilized over the chiral one, without requiring fine-tuning or
coupling to nonsuperconducting degrees of freedom.

We emphasize that the size of the effect uncovered here is
not necessarily small, even if the induced transition is very
weakly first order, as is the case for s-wave superconduc-
tors. Indeed, a weak first-order transition generally implies
that the coefficients of the cubic terms (¢ and A3 in our
notation for the triangular-lattice case) are much smaller than
the coefficients of the quartic terms (x and g in our nota-
tion). However, the change in the leading superconducting
instability from chiral to nematic promoted by the gauge-field
fluctuations takes place when g/u < A3/A, i.e., it depends on
how the ratio between the quartic terms compares with the
ratio between the cubic terms. Importantly, both ratios may be
comparable even if Ao, A3 < u, g. This analysis reveals that
the role of the electromagnetic fluctuations in multicomponent
superconductors is potentially much more significant than in
the case of single-component superconductors.

It is important to discuss the limitations of our approach.
In order to integrate out the electromagnetic field fluctua-
tions, we assumed that, in the temperature range where these
fluctuations are significant, the spatial variation of the super-
conducting order parameter can be neglected. Formally, this
can only be justified in type-I superconductors, for which the
correlation length is smaller than the coherence length [35].
Other methods that do not require this approximation of a
uniform superconducting order parameter were also employed
for the cases of the s-wave and isotropic multicomponent su-
perconductors to study the stability of the predicted first-order
transition. Perturbative 4 — ¢ renormalization-group calcu-
lations and large-N expansions found the same first-order
transition as in the approach where the gauge-field fluctu-
ations are integrated out [35,41,42]. However, Monte Carlo
simulations and duality mappings revealed a second-order
transition for type-II superconductors [36,37,39], indicating
that a tricritical point should take place as the ratio between

the penetration depth and coherence length is continuously
changed. This was also seen in the d = 3 renormalization-
group calculations of Refs. [38,40]. The implications of these
other results for our findings deserve further investigation.
As discussed above, the central point in this paper is not the
first-order nature of the transition in two-component super-
conductors, but the fact that the gauge-field fluctuations affect
differently the nematic and the chiral states. Since this result
is rooted in the anisotropy of the superconducting stiffness, it
is reasonable to expect that it will play a role in the selection
of the leading instability regardless of the ratio between the
penetration depth and the coherence length. This expectation
can be verified directly by appropriate Monte Carlo simula-
tions [39]. Interestingly, Ref. [54] presented large-scale Monte
Carlo simulations of a model related to that of Egs. (36)
and (37) in the London limit, finding a a first-order transition
to a chiral p-wave superconducting state. It would be interest-
ing to probe the behavior of this model in parameter ranges
for which our calculations expect a first-order transition to a
nematic state.

Notwithstanding these caveats, it is useful to discuss pos-
sible nematic superconductors for which our results may be
relevant. In the case of the tetragonal iron-based supercon-
ductors Ba;_,K,Fe;As; [8] and LiFeAs [9], which have been
proposed to display a spontaneous nematic superconducting
state, the scenario put forward involves nearly degenerate
s-wave and d-wave states, for which our analysis is not appli-
cable. Similarly, for few-layer NbSe,, the twofold anisotropy
observed experimentally in the superconducting state has
been associated with a strain and magnetic-field-promoted
admixture between s-wave and d-wave or p-wave states [5,6],
although a spontaneous condensation of a two-component
superconducting order parameter cannot be completely ruled
out [55]. On the other hand, doped Bi,Se; [1-4], which
has a trigonal crystal structure, has been proposed to be a
nematic two-component superconductor. In this case, based
on our results from Sec. II, gauge-field fluctuations could
provide a mechanism to stabilize a nematic superconducting
state—in addition to the previously discussed mechanism en-
abled by the spin-orbit coupling [29]. As for CaSnj, little
is known about the mechanism behind the possible nematic
superconducting state reported in Ref. [7]. Although its crystal
structure is cubic, which was not explicitly analyzed in this
paper, we expect that the same effects uncovered for the tri-
angular and tetragonal lattices should emerge in this case as
well.

Finally, twisted bilayer graphene was also recently shown
to display a nematic superconducting state [17] (for an alter-
native perspective, see Ref. [56]). One proposed scenario is
that it arises from nearly degenerate superconducting states
which, in turn, are expected from pairing either promoted by
interactions involving the van Hove points [32] or mediated
by the exchange of SU(4) spin-valley fluctuations [34]. Be-
low the degeneracy point, e.g., between i-wave and d-wave
instabilities or between p-wave and f-wave instabilities, the
coexistence state spontaneously breaks threefold rotational
symmetry under certain conditions on the system parameters
(see also Refs. [31,33]). Alternatively, a two-component su-
perconductor yielding a nematic superconducting state has
also been proposed [47,57]. In this context, it has been shown
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that coupling to strong normal-state density-wave fluctuations
can promote the nematic over the chiral state [24]. While
the effect of gauge-field fluctuations may be relevant, a di-
rect application of our results to twisted bilayer graphene is
complicated by the fact that this is a two-dimensional (2D)
superconductor with rather unique properties. Indeed, as dis-
cussed in Refs. [17,58,59], unlike most 2D superconductors,
orbital effects are significant even when in-plane magnetic
fields are applied, as the Fermi surfaces associated with op-
posite valleys are strongly distorted by the in-plane fields
due to interlayer electronic tunneling. Interestingly, in twisted
multilayer graphene with alternating twist angles, this orbital
effect is suppressed, and the nematic superconducting state
is replaced by an isotropic state [58]. While it is tempting
to speculate that this behavior may be attributed to a transi-
tion from nematic to chiral superconductivity as the number
of layers increases, which should affect the impact of the
gauge-field fluctuations, further investigations are needed both
theoretically and experimentally.
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APPENDIX: SERIES EXPANSION OF Fgulv]

We start by repeating the expression in Eq. (16) for
Femlv]:

ATAY o
Pl = 37 0 () + 50 / d¢ / dx
x/%dqqzln(c+bq2+q4). (A1)

0

We rewrite the argument of the logarithm in terms of a;
and a_ given by Eq. (18). We have

In(c + bg* + ¢*) = In(¢* + a>) +In(¢* + a*).  (A2)
Moreover, since
lim ¢"In(g) =0 and
q—0
t
lim ¢" In (—2 + l) =0 (A3)
q¢—0 q

fort € C and n € N, we can further rewrite the integrand as

Clz 612
In(c+bg* +q') =4In(g)+ In (—§+ 1) +1n (—2+ 1).
q q

(A4)

Therefore the original integral of Eq. (Al) becomes the
sum of three terms, [}, I, and I3, given by

At ;
h= s <ws>+(2 )2/ dqg*In (g),

Ty [ 2 (4
L = S d d d In{ —=+1), d
2 2(27T)3/0 d’L x/o G\ p )

TwS 2 1 % 5 aZ_
L= $ d d dgd*In = +1). (A5
3 2(2n)3f0 ¢/,1 x/o 14 n<q2+ ) A

The integral in the first term, /;, can be evaluated in a straight-
forward way; we obtain

4T A3
9(2m)?

Therefore the term I; does not depend on the order parameter
and as such can be neglected. As for the second and third
terms, I, and I3, we first focus on the integral

i 2
JE/v dqq21n(a—2+1>,
0 q

where a could be either a or a_. We split J into three parts:

a az a q2
=/ dqq21n<—2>+/ dqq2ln<—2+l)
0 q 0 a

[3In(A) —1]. (A6)

1=

(A7)

A

o, (d®
+/ dgq”In ?—i-l . (A8)
The first term in J gives
a 2 2 3
/ dgq¢®In (a_z) = i, (A9)
0 q 9

whereas the second and third terms can be expressed as an
infinite series using the logarithm Taylor expansion:

5 [l £

/ w2 (5

Performing the integrals order by order, we find

4= 1)"1 e (g
S R=a e

(A10)

(A1)
Using the result
4(— 1)" ! T
-=, Al2
+ Z 4n* — 3 (A12)
the expression for J can be further simplified to
[} — 2n-3
T (_ 1 )n la2n 1/fs
J=-=d —_—| — . Al
3¢ +;n(—2n+3) A (AL3)
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Substituting this expression for J in the definitions of I, and /5, we obtain

L+5=—

which gives Eq. (19) in the main text.

TwSS 2 1 3 3 e wan 27
48n2/0 d¢/1dx(a++a)+n2=;2(2n)3/ ¢/

( 1)11 lA —2n+3

2n 2n
Tncant3) @ Tao):

(Al4)
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