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Solvable model for a charge-4e superconductor
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A charge-4e superconductor forms due to the condensation of quartets of electrons. While in previous works,
the mechanism for the formation of charge-4e superconductivity has been analyzed in terms of the binding of
Cooper pairs in unconventional superconductors, its properties in the fermionic sector have not been studied
systematically due to its inherently interacting nature even at the mean-field level. Here we propose a solvable
model for a charge-4e superconductor—a spinful version of the Sachdev-Ye-Kitaev model with an anomalous
quartic term. We show that the ground state is gapless and resembles a heavy Fermi liquid. We analytically
solve for the superfluid density and show that it is perturbative in the strength of the charge-4e order parameter,
in sharp contrast with a regular (charge-2e) superconductor. Upon lowering the temperature, we show that the
correlation between charge-4e order and regular interaction terms can drive a first-order phase transition to a
charge-2e superconducting state.
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I. INTRODUCTION

As described by the Bardeen-Cooper-Schrieffer (BCS) the-
ory, a metallic system becomes superconducting when Cooper
pairs with charge 2e formed by electrons condense [1]. Go-
ing beyond this paradigm, it has been recently theoretically
proposed that in the presence of strong correlation effects, a
condensate of a quartet of electrons with charge 4e can form
and condense. Such a state is known as a charge-4e super-
conductor, which has been theoretically proposed to exist in
a range of strongly correlated systems [2–12]. The charge-4e
condensate was also proposed to exist in superfluid 3He [13].

Despite its resemblance to a regular charge-2e supercon-
ductor, the theoretical description of a charge-4e supercon-
ductor is much more challenging. First, unlike charge-2e
superconductivity that emerges for weak coupling via a
logrithmically divergent contribution to pairing susceptibility
[14], no such weak-coupling instability of electrons exists
towards charge-4e superconductivity. For this reason, existing
theories of charge-4e superconductivity usually assume some
underlying strong interactions between the electrons, and ad-
dress the formation of charge-4e superconductivity within a
bosonic theory describing the binding of two Cooper pairs
and the condensing of the composite object [4,5,7,11,12].
(See also Ref. [15] for an example in a neutral superfluid
from a composite order parameter.) As an emergent degrees
of freedom, the Cooper pair order parameter breaks particle-
number conservation as well as some other symmetries such
as translational symmetry (known as a pair-density-wave
state) [5,10], rotational symmetry [11,12], or certain inter-
nal symmetries [7]. Upon increasing temperature, charge-4e
condensate emerges as a vestigial order [5,15–18] via partial
melting of the Cooper pair order parameter by restoring cer-
tain spatial or internal symmetries.
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However, the behavior in the fermionic sector in a charge-
4e superconductor, which is outside the scope of these
approaches, remains to be understood. Unlike a charge-2e
superconductor which admits a noninteracting mean-field
description, the mean-field description of a charge-4e super-
conductor is inherently interacting, since the order parameter
couples to four fermion operators [9]. While a charge-2e order
parameter gaps the Fermi surface, it is natural to expect that
the charge-4e order parameter leaves the Fermi surface gap-
less [4] just like a regular interaction term in the Fermi liquid
theory [although such an interaction breaks U(1) symmetry].

Moreover, it is an open question how “good” a supercon-
ductor a charge-4e superconducting state is, i.e., whether it
has a significant superfluid density, which is relevant for the
Meissner effect and for its stability against phase fluctuations
(especially in 2d). It is well-known that for a charge-2e su-
perconductor, due to the gapped Fermi surface, the superfluid
density is equal to the total electron density at low temper-
atures, independent of the magnitude of the order parameter
(see e.g., Ref. [19] and Appendix C 2). As the fermions are
expected to be gapless in a charge-4e superconductor, a natu-
ral question is whether the superfluid density is comparable to
the total electron density.

Upon lowering the temperature, the gapless excitations in
the fermionic sector strongly contribute to the renormalization
of the boson theory, which can potentially lead to the low-
temperature instabilities such as the formation of charge-2e
condensate, consistent with results from the bosonic perspec-
tive. Indeed, in a determinant quantum Monte Carlo study,
it was shown that the gapless fermionic excitations in gen-
eral destroys the charge-4e condensate in the presence of an
attractive interaction at low temperatures [9]. However, an
analytical understanding of such a pairing transition and the
stability of the charge-4e superconductivity is still missing.

The study of properties of a charge-4e superconductor is
also motivated by the theoretical description of a Z4 spin
liquid with an emergent spinon Fermi surface. In terms of

2469-9950/2022/106(9)/094508(22) 094508-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6477-3745
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.094508&domain=pdf&date_stamp=2023-05-10
https://doi.org/10.1103/PhysRevB.106.094508


NIKOLAY V. GNEZDILOV AND YUXUAN WANG PHYSICAL REVIEW B 106, 094508 (2022)

the fermionic spinons f , the system lacks the U(1) symmetry
but instead has a Z4 symmetry, which allows an ∼ f † f † f † f †

term, which is marginal under renormalization group flow.
resembling a charge-4e superconductor. As this interaction is
marginal, it has been speculated [20] that such a Z4 spin liquid
admits a gapless Fermi-liquid like ground state, making it a
promising candidate for gapless spin liquids. From this per-
spective, a detailed description of a charge-4e superconductor,
in particular whether its ground state is indeed gapless and
Fermi-liquid like, is highly desirable.

As we mentioned, an obvious challenge to the theoretical
description of a charge-4e superconductivity in the fermionic
sector is its inherently interacting nature, even at the mean-
field level. If the charge-4e (“quartetting”) order parameter is
weak, one may expect a perturbation theory departing from
free electrons to apply. However, as charge-4e superconduc-
tivity is expected to derive from strong correlation effects,
there is no particular reason to expect the charge-4e order
parameter to be weak compared to other energy scales in the
problem. To this end, we note that there has been remarkable
progress achieved by applying the Sachdev-Ye-Kitaev (SYK)
model [21,22] to describe strongly interacting fermionic sys-
tems without long-living quasiparticle excitations [23,24].
The SYK model is a solvable of strongly interacting random
fermions without quasiparticles in zero spatial dimensions
[25,26]. The generalizations of the SYK model to nonzero
dimension lattice models predict the linear in temperature
resistivity [23,27,28], which is the characteristic property of
a strange metal [29–31]. On the other hand, SYK-like models
have been constructed to analyze the superconducting transi-
tion of non-Fermi liquids [32–41].

In this work, we present a solvable strong-coupling model
for fermion-sector properties of a charge-4e superconductor.
Similar to the SYK model, the model is dominated by interac-
tion effects, which in this case is due to the condensate of the
charge-4e superconducting order parameter. Instead of specu-
lating on the microscopic origin of the charge-4e condensate,
we treat it as a mean field and analyze the properties of the
ground state and its low-temperature stability. Specifically, we
consider a two-dimensional itinerant-fermion system subject
to local four-fermion interactions that are random in the flavor
space but preserves spatial translation. As with all SYK-like
models [27,28,35], we take the limit in which there are a
large number of fermion flavors N → ∞. In our model, there
are two types of interaction terms—a “regular” four-fermion
interaction ∼J that descibes a pair-hopping process in fla-
vor space within a lattice site, and an anomalous charge-4e
interaction ∼�4e that describes a “pair-pairing” process. The
ratio of the strengths of the two interaction terms can be tuned,
and we mainly focus on the nontrivial limit in which these
interactions are much larger than the Fermi energy εF .

By solving the Schwinger-Dyson equations, we first show
that the ground state of the charge-4e superconductor is gap-
less. In fact, despite a nonconserving particle number, for
this particular model there exist a Luttinger-Ward functional
[42] and the Fermi surface encloses a fixed volume equal
to the expectation value of the number density. At lowest
temperatures, the system behaves like a heavy Fermi liquid,
in sharp contrast with a charge-2e superconductor. Just like
a Fermi liquid, the long-lived gapless quasiparticle is due to

kinematic constraints of scattering processes in the vicinity of
the Fermi surface. Nevertheless, we show that the system has
a nonzero superfluid density given by ns/n = β�2

4e/[J 2 +
(β + 1)�2

4e]. Here β ≡ 4∂k�(kF )/vF is a parameter respon-
sible for the Fermi velocity renormalization, where vF is the
Fermi velocity and ∂k�(kF ) is the momentum derivative of
the self-energy at the Fermi level. Within our model, we
find 0 < β = O(1) and its numerical value depends on the
details of the Fermi surface. In the �4e � J limit, similar
to the “weak-pairing” limit for a charge-2e superconductor,
the superfluid density is vanishingly small. In the opposite
limit, the superfluid density is a significant portion of the
total electron density, but is still less than the latter. Similar
to the lattice generalization of the SYK model [27,28], the
heavy-Fermi liquid behavior specifies an intermediate energy
scale, which corresponds to the renormalized Fermi energy
ε∗

F ∝ ε2
F /

√
J 2 + �2

4e . At temperatures ε∗
F � T � (J ,K),

the system behaves as a non-Fermi liquid. In this regime,
the Fermi velocity is suppressed, i.e., β = O(εF /U ). As a
consequence, the superfluid density is parametrically small,
ns/n = O(εF /U ).

We argue that many results above traces back to the break-
ing of U(1) symmetry in the mean-field ground state. This
naturally raises the question of total charge conservation and,
therefore, its relevance to an isolated superconductor with
fixed number of particles [43]. We show that particle-number
conservation can be restored by treating the order parameter,
in particular its phase degree of freedom, as a dynamical field.
The ground state for such a system has strong entanglement
in the Fock spaces of the fermions and bosons. We show that
this makes our results, such as the violation of the Luttinger’s
theorem and superfluid density, valid for a U(1)-symmetric
charge-4e superconductor with fixed particle number.

We also study the low-temperature stablity of the charge-4e
superconducting phase. This instability is akin to the pairing
instability of a regular metal, which lowers its entropy by
gapping out the Fermi surface upon lowering the temperature.
For our model, we show that, through a first-order transition,
the 4e bound state is unstable toward dissociation into equal-
flavor, spin-singlet, and local Cooper pairs if the pair-hopping
interaction J and the charge-4e interaction �4e are correlated.
The transition temperature is determined by the strength of
the correlation between J and �4e. Depending on whether
the transition occurs in the heavy Fermi liquid regime or the
non-Fermi liquid, the effective pairing interaction is either
a constant analogous to the BCS theory, or logarithmically
singular analogous to that in color superconductivity [44,45],
described by the γ -model at γ → 0+ [46]. On the other hand,
if there are no correlations between pair-hopping J and pair-
pairing �4e, the system remains stable and heavy Fermi-liquid
like down to zero temperature.

The model we consider here is rather artificial—in par-
ticular, there are N4 independent order parameters, treated
as static but random variables with a vanishing average and
nonvanishing variance. However, we note that even if the
order parameter is not random, its effect on quantities such as
Green’s functions and superfluid density can still only enter
via the variance |�4e|2 at lowest order. Therefore we expect
our toy model, which can be analytically solved, to be able to
capture certain qualitative properties for a generic charge-4e
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superconductor, despite the complicated structure of the order
parameter. In particular, we argue that the three main results
we obtained—the gaplessness, the smallness of superfluid
density, and the low-temperature pairing tendency are generic
features of a charge-4e superconductor.

The rest of this paper is organized as follows. In Sec. II,
we present the model for a mean-field charge-4e supercon-
ductor, its effective action, and the corresponding saddle-point
equations. In Sec. III, we analyze the properties of the charge-
4e superconductor, including its gaplessness, its behaviors at
different temperature regimes, and its superfluid density. In
Sec. IV, we argue that our findings are valid beyond mean-
field for an isolated charge-4e superconductor preserving total
charge. In Sec. V, we consider the potential instability of
the charge-4e superconudctor toward charge-2e supercon-
ductivity upon lowering temperature. In Sec. VI, we briefly
comment on the implication of our results on the stability of
charge-4e superconductors.

II. THE MODEL

Our Hamiltonian for a charge-4e superconductor reads

H =H0 + Hint, (1)

H0 =
∑

k

N∑
i=1

ξk	
†
ki	ki, (2)

Hint = k−d
F

N3/2

∫
dr

N∑
i< j,k<l,i<k

(Ji j;kl	
†
riiσy(	†

r j )
T 	T

rkiσ T
y 	rl

+ �4e,i j;kl 	
†
riiσy(	†

r j )
T 	

†
rkiσy(	†

rl )
T + H.c.), (3)

where

ξk = k2

2m
− μ (4)

is the fermionic dispersion with the Fermi energy εF =
k2

F /(2m), vF = kF /m is the Fermi velocity, kF is the Fermi
momentum, m is the fermion mass, and d is the spatial
dimension. In Eq. (3) the form of interaction is similar to
that in the translationally invariant complex SYK model [28]
with a charge-4e quartic term [9]. Indeed, the first term in
the Hamiltonian Eq. (1) describes the SYK interaction of N
flavors of spin-1/2 fermions 	ri = (ψri↑ ψri↓)T , while the
second term introduces four-fermion interactions in forms of
pair hopping (J ) and “pair pairing” (�4e). It is implied that
h̄ = kB = e = 1 throughout the paper.

As in the SYK model, we take the large-N limit, in which
the coupling constants Ji j;kl and �4e,i j;kl are constant in space
and real independent Gaussian random variables with respect

to flavor indices with finite variances

J 2
i j;kl = J 2, �2

4e,i j;kl = �2
4e. (5)

In addition, we also assume a finite correlation between J and
�4e, such that

Ji j;kl�4e,i j;kl = ρJ�4e, (6)

where ρ ∈ (−1, 1) sets the correlation between the two en-
sembles. Formally, the correlated sets Ji j;kl and �4ei j;kl of
random variables are described by the bivariate Gaussian dis-
tribution [47]:

P(J ,�4e)∝ exp

[
− 1

2(1− ρ2)

×
(
J 2

i j;kl

J 2
+ �4e,i j;kl

�2
4e

− 2ρ
Ji j;kl�4e,i j;kl

J�4e

)]
.

(7)

For the majority of our work, we will consider the nontrivial
strong-coupling limit, in which (J 2 + �2

4e)  εF . In the op-
posite weak-coupling limit, one expects a more conventional
system behavior that is smoothly connected with the free
Fermi gas. We will briefly comment on this regime when we
discuss the superfluid density in Sec. III C.

Our model preserves spin-rotation symmetry, and thus we
take the fermionic Green’s function to be spin-diagonal:

−N−1
N∑
i

〈	ri(τ )	†
0i(0)〉 = σ0 G(τ, r). (8)

For later purposes, we also introduce an anomalous (pairing)
Green’s function in the equal-flavor, spin-singlet channel

F̂ (τ, r) = −N−1
N∑
i

〈	ri(τ )	T
0i(0)〉 = iσy F (τ, r), (9)

F̂+(τ, r) = −N−1
N∑
i

〈	∗
ri(τ )	†

0i(0)〉 = −iσy F ∗(τ, r). (10)

We emphasize that the anomalous Green’s function is not a
direct consequence of the charge-4e condensate, but rather of
a possible transition toward a charge-2e condensate. We will
address this in Sec. V.

Applying the standard machinery widely used in the
SYK-like models [32–34,38] generalized to include potential
pairing effects discussed in details in Appendix A, we perform
the disorder average and decouple the interactions with the
bilocal fields using Lagrangian multipliers �, �, �∗. We
obtain the large-N effective action in imaginary time for the
Hamiltonian (1)

− S

N
=

∑
ω,k

ln((iω − ξk − �(k))(iω + ξk + �(−k)) − �∗(k)�(k))

+ A

T

∫
x

(
2�(x)G(−x) + �(x)F ∗(x) + �∗(x)F (x) + k−2d

F J 2

2
(G(x)2G(−x)2 + F ∗(x)2F (x)2)

+ k−2d
F �2

4e

4
(G(x)4 + G(−x)4 + F ∗(x)4 + F (x)4) − k−2d

F ρJ�4e

2
(F ∗(x)2 + F (x)2)(G(x)2 + G(−x)2)

)
, (11)
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where T is temperature and A is the system’s size. Here
∑

ω

denotes summation over the Matsubara frequencies and
∫

x =∫
dτ

∫
dr. The fields �, �, �∗ and G, F , F ∗ are bi-local,

e.g., � = �(x, x′) (with x = (τ, r)), and due to translational
invariance it only depends on x − x′. We have thus defined,
e.g., �(x) ≡ �(x, 0) and its Fourier transform �(k) (with k =
(ω, k)), to simplify notations.

The fields � and � enter the effective action (11) as the
self-energy and the pairing vertex. Specifically, the variation
of the effective action with respect to G and F produces the
first pair of the Schwinger-Dyson (SD) equations

k2d
F �(x) = − J 2G(x)2G(−x) − �2

4eG(−x)3

+ ρJ�4e(F ∗(x)2 + F (x)2)G(−x), (12)

k2d
F �∗(x) = − J 2F ∗(x)2F (x) − �2

4eF (x)3

+ ρJ�4e(G(x)2 + G(−x)2)F (x). (13)

The variation of the effective action with respect to � and �

gives the second pair of the SD equations for the full Gor’kov
Green’s function

G(k) = iω + ξk + �(−k)

(iω − ξk − �(k))(iω + ξk + �(−k)) − �∗(k)�(k)
,

(14)

F ∗(k) = �∗(k)

(iω − ξk − �(k))(iω + ξk + �(−k)) − �∗(k)�(k)
.

(15)

III. PROPERTIES OF THE CHARGE-4e
SUPERCONDUCTING STATE

We begin our analysis by considering the charge-4e state
with �∗ = � = 0. As we mentioned, the vertices �, �∗ in the
effective action (11) correspond to the conventional charge-2e
pairing, which may develop via a low-temperature instability
that we consider in Section V. In this regime, the effective
action is structurally similar to the translationally invariant
lattice model studied in Ref. [28]:

− S

N
= 2

∑
ω,k

ln(−iω + ξk + �(k)) + A

T

∫
x

(
2�(x)G(−x) + k−2d

F J 2

2
G(x)2G(−x)2 + k−2d

F �2
4e

2
G(x)4

)
, (16)

with additional U(1)-breaking �4e-terms in the interaction
Hamiltonian (3) contribute to the effective action.

A. Heavy Fermi liquid and non-Fermi liquid behaviors

We derive the Green’s function of the Hamiltonian (1) in
absence of charge-2e pairing. In this case, the Schwinger-
Dyson equations (12) simplify to

�(k) = − T k−d
F

∑
q

(
J 2�(q) + �2

4e�(−q)
)
G(q − k),

(17)

�(q) =T k−d
F

∑
k

G
(q

2
+ k

)
G

(q

2
− k

)
, (18)

G(k) = 1

iω − ξk − �(k)
. (19)

Here �(q) is the particle-particle bubble, and the self-energy
(17) correspond to the melonic diagrams with J and �4e

vertices.
The solution of the Schwinger-Dyson equations (17)–

(19) is quite similar to that for the 2d model considered in
Ref. [28]. In the strong-coupling limit, the bandwidth of the
free fermions ∼εF and the characteristic strength of the SYK-
like interaction

U =
√
J 2 + �2

4e (20)

give rise to an intermediate energy scale ε2
F /U , which corre-

sponds to the renormalized bandwidth.
Within the renormalized bandwidth, that is, ω, T � ε2

F /U ,
the system behaves as a heavy Fermi liquid. The self-energy

is given by

�(ω, k) = −iZ−1ω + β

4
vF · k, (21)

where Z ∼ εF /U � 1 and 0 < β = O(1). Note that different
from the result in Ref. [28], we find that generically β > 0;
this will be important to the result of superfluid density. We
introduce the factor of four in the equation (21) to simplify the
expression for the superfluid density in Sec. III C. The Green’s
function has a quasiparticle form

G(ω, k) = Z

iω − v∗
F · k

, ω, T � ε2
F /U, (22)

where v∗
F ∼ ZvF is the renormalized Fermi velocity. We leave

the detailed derivation of the self-energy and Green’s function
for Appendix B 1.

At higher energies above the renormalized bandwidth,
ε2

F /U � ω, T � U , the system behavior is essentially local
[28]. We thus expect the Green’s function at leading order to
be the same as that for the zero-dimensional SYK model:

�(ω, k) � −iπ−1/4
√

U |ω|sgn(ω). (23)

In this regime, since �  iω − ξk, the Green’s function is
given by

G(ω, k) � −iπ1/4 sgn(ω)√
U |ω| , ε2

F /U � ω, T � U . (24)

Indeed, one can verify that the momentum dependence of
�(ω, k) is parametrically small, suppressed by εF /U , i.e.,

�(ω, k) � −iπ−1/4
√

U |ω|sgn(ω) + β

4
vF · k, (25)
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where β = O(εF /U ). This suppression can be understood
as follows. As pointed out in Ref. [28], for T  ε2

F /U the
k-dependent terms in the Green’s fucntion is small compared
with ω-dependent terms and can be treated perturbatively in
the small parameter εF /U . To obtain the k dependence in
�(ω, k), at leading order, one keeps k dependence in only
one of the Green’s functions. At this order, after integrating
over momentum, the resulting contribution is completely k-
independent. Therefore the leading k-dependent contribution
to �(ω, k) is suppressed by εF /U . We show more details in
Appendix B 2.

Before we end this section, we briefly mention that for
T  U , the system behaves as a weakly interacting Fermi
gas, just like the regular SYK model [21]. We also note that
so far we have focused on the strong-coupling regime with
a nontrivial intermediate energy scale. In the opposite weak-
coupling limit εF � U , we expect the ground state is a Fermi
liquid perturbatively connected to free fermions.

B. Luttinger relation

In a charge-2e superconductor, the order parameter couples
bilinearly to the fermion operators, which scatter an electron
into a hole. Through a Bogoliubov transformation, one explic-
itly obtains the spectrum of gapped excitations, in quanta of
the Bogoliubons that are linear superposition of an electrons
and a hole [19,48]. However, for a charge-4e superconudctor,
the order parameter behaves as an anomalous four-fermion
interaction. As we have seen, the ground state is gapless with
a Fermi surface and in this sense similar to a Fermi liquid.
A natural question is whether the volume enclosed by the
Fermi surface is related to the (average) number density of the
system, which is true for a real Fermi liquid by the celebrated
Luttinger’s theorem.

Historically, for a Fermi liquid, Luttinger’s theorem
was proven perturbatively via the Luttinger-Ward functional
[42,49]. Later, it was proven topologically [50,51] by directly
connecting the ultraviolet (UV) theory with its infrared (IR)
properties with a ’t Hooft anomaly. The proofs in the sec-
ond category explicitly requires a U(1) symmetry, which our
model lacks. Nevertheless, it is still interesting to investigate
the fate of Luttinger’s theorem for a charge-4e superconductor
via the Luttinger-Ward functional.

The Luttinger-Ward (LW) functional �[G] is defined via
the relation [42]

�(ω, k) = δ�[G(ω, k)]

δG(ω, k)
. (26)

For a regular Fermi liquid, the Luttinger-Ward functional was
constructed via summing over two-particle irreducible vac-
uum diagrams order by order [42]. In our SYK-like model,
the random all-to-all nature of the interactions in SYK-like
models [28,52] allows us to explicitly obtain the Luttinger-
Ward functional.

For the SYK-like models, it is straightforward to fulfill
this requirement because of the structure of the self-energy
equation [28,52]. Indeed, from (17) with F = 0, one has

�[G] = −k−2d
F

∫
x
(J 2G(x)2G(−x)2 + �2

4eG(−x)4). (27)

We note that unlike a charge-2e superconductor whose
Luttinger-Ward functional is not single-valued [53], here
�[G] is a well-behaved functional of G.

To check the Luttinger relation, the particle density (per
flavor) reads

n = 2
∑

k

G(τ = 0+, k) = 2
∫

dω

2π

∫
dk

(2π )2
G(ω, k)e−iω0+

(28)

with a factor of two originating from spin. Using the equa-
tion for the Green’s function (14), we substitute

iG(ω, k) = G(ω, k)∂ωG(ω, k)−1 + G(ω, k)∂ω�(ω, k) (29)

to Eq. (28). When integrated over ω, the first term is given by

I1 =2i
∫

dk
(2π )2

∫
dω

2π
∂ω ln G(ω, k)e−iω0+

= − 1

π

∫
dk

(2π )2
(arg(GR(0, k)) − arg(GA(0, k)))

=2
∫

|k|�kF

dk
(2π )2

, (30)

which is the volume of the Fermi liquid. Here we have
deformed the contour to the imaginary axis, and used the
analytic properties of the Green’s functions G(ω → −iω ±
0+) = GR,A(ω) as well as the stability of the ground state
enforcing Im�(0, k) = 0.

When integrated over ω, the second term in Eq. (29) is
given by

I2 = −
∫

ω

�(ω, k)∂ωG(ω, k) = −
∫

ω

δ�

δG
∂ωG, (31)

Here it’s tempting to claim that, using a chain rule the
integrand is a total derivative “∂�(ω)/∂ω”, and thus I2 =∫
ω

∂ω�(ω) = 0. However, this is not true: from the definition
of the functional derivative, we have

I2 = − d

dε
�[G(ω, k) + ε∂ωG(ω, k)]|ε=0

= − d

dε
�[G(ω + ε, k)]|ε=0

=− d

dε
�[G(x)e−iετ ]|ε=0. (32)

For a regular Fermi liquid, this vanishes due to the U(1)
symmetry. However, it is clear that the �2

4e term in Eq. (27) is
not invariant under G(x) → G(x)eiετ , due to the broken U(1)
symmetry of a charge-4e superconductor. Therefore I2 �= 0,
and the usual Luttinger relation between the average number
density and the Fermi surface volume is violated.1

The evaluation of I2 involves UV details of the theory, and
we leave the derivation of a modified Luttinger relation to a
future work.

1Note that this conclusion is contrary to the result in a previous
version of this paper.
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C. Superfluid density

For a system of N fermionic flavors, the superfluid density
ns (per flavor) is given by the photon mass term generated by
integrating out the fermions:

LA = N
ns

2m
A2. (33)

Using the parabolic dispersion ξk = (k − eA)2/2m − μ, there
are two contributions to ns from the fermions, known as dia-
magnetic and paramagnetic terms [19]:

ns = n + m�(0), (34)

where �(0) is the current-current correlator. For an isotropic
system, without loss of generality,

�(0) =
∫

k

k
m

·�(k, k)G(k)2 (35)

where k = (ω, k) and �(k, k) is the renormalized current ver-
tex whose bare value is k/m.

In a normal metal, these two terms exactly cancel, which is
a direct consequence of the Ward identity for p = (0, p)

p · �(k, k + p)G(k)G(k + p) = − G(k) + G(k + p), (36)

or in the p → 0 limit,

�(k, k) = −∂kG−1(k). (37)

Indeed, plugging (37) to (35) and integrating by parts, we find
ns = 0 in (34). For completeness, we prove the Ward identity
in Appendix C 1.

The Ward identity is, in turn, a direct consequence of the
particle number conservation. In a superconductor with no
particle number conservation, the original Ward identity (36)
is violated. Instead, we show in Appendix C 3 for a charge-4e
superconductor, there are two additional terms in the modified
Ward identity, which are Fourier transforms of the six-point
functions

4�4e〈ψ (x1)ψ̄ (x2)ψ̄4(x)〉 − 4�∗
4e〈ψ (x1)ψ̄ (x2)ψ4(x)〉, (38)

where symbolically ψ4(x) represents the quartetting term
for the charge-4e superconductor that is compatible with
fermionic statistics.

For a general interacting model, the six-point functions in
Eq. (38) involves infinite numbers of diagrams and cannot be
expressed in a closed form. However, in our SYK-like model,
we only need to include melonic diagrams to leading order in
1/N , which enables us to obtain analytically

p · �(k, k + p)G(k)G(k + p) = −G(k)+G(k + p) + 4��4e (k)G(k)G(k + p) − 4��4e (k + p)G(k)G(k + p)

+ 4
∫

q
��4e (q)G(q)G(q + p)χ (q, q + p, k, k + p)G(k)G(k + p)

− 4
∫

q
��4e (q + p)G(q)G(q + p)χ (q, q + p, k, k + p)G(k)G(k + p), (39)

as shown in Fig. 1 for the case of p → 0. Here ��4e is a self-
energy-like diagram but with only �4e vertices [see Fig. 1(d)],
which satisfies in our model

��4e (ω, k) = �2
4e

�2
4e + J 2

�(ω, k). (40)

The four-point vertex χ (q, q + p, k, k + p) is a given by the
sum of a series of ladder diagrams. Within our SYK-like
model, at each rung there are four types of diagrams with
J and �4e vertices. The four-point vertex χ and the fully
renormalized current vertex � are related by

�(k, k) = k
m

+
∫

q
χ (k, k, q, q)G2(q)

q
m

. (41)

Taking the p → 0 limit in Eq. (39), we have

�(k, k)G(k)2

= ∂kG(k) − 4∂k��4e (k)G2(k)

− 4k̂
∫

q
k̂ · ∂q��4e (q)G2(q)χ (q, q, k, k)G2(k), (42)

where k̂ is a unit vector in the direction of the internal mo-
mentum k. Compared with (37), the additional two terms here

represent the effect of nonconservation of particle number and
are responsible for the superfluid density ns. We illustrate the
modified Ward identity diagrammatically in Fig. 1.

Multiplying both sides by k and integrating over k we
obtain the paramagnetic contribution to ns in Eq. (34),

m�(0) =
∫

k
k · �(k, k)G2(k)

=
∫

k
k · ∂kG(k) − 4

∫
k

k · ∂k��4e (k)G2(k)

− 4
∫

k

∫
q

k · ∂q��4e (q)G2(q)χ (q, q, k, k)G2(k).

(43)

Next, swapping k and q in the last term, and using the
relation (41) between the four-point vertex χ and the current
vertex �, we obtain∫

k
k · �(k, k)G2(k) =

∫
k

k · ∂kG(k) − 4m

×
∫

k
∂k��4e (k)�(k, k)G2(k), (44)
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(a)

(b)

(c)

(d)

FIG. 1. (a) The diagrammatic representation of the modified
Ward identity for the charge-4e superconductor (42). The gray trian-
gle denotes the current vertex (k/m)�(k, k), while the gray rectangle
designates the four-point vertex χ (q, q, k, k). The solid black lines
are the renormalized Green’s functions and the dashed red lines are
the disorder contractions. (b) Fully renormalized current vertex (41).
(c) The four-point function χ (q, q, k, k) of the charge-4e supercon-
ductor. (d) The self-energy due to the “pair-pairing” interaction.

and thus∫
k

(k + 4m∂k��4e (k))�(k, k)G2(k) =
∫

k
k · ∂kG(k) = −n.

(45)

Assuming the main contribution to the left-hand side of
Eq. (45) comes from the Fermi surface, we have

m�(0) =
∫

k
k · �(k, k)G2(k)

� − n

1 + 4

vF
k̂ · ∂k��4e (k)

∣∣
k=kF

(46)

and the superfluid density is

ns = n + m�(0) = nα

1 + α
, (47)

where

α = 4

vF
k̂ · ∂k��4e (k)

∣∣
k=kF

. (48)

In the present model, using Eqs. (40) and (21), we have

α = β
�2

4e

J 2 + �2
4e

, (49)

where we remind that β ≡ 4 k̂ · ∂k�(k)|k=kF /vF is a nonuni-
versal O(1) constant in the heavy FL regime, and thus

ns = β�2
4e

J 2 + (β + 1)�2
4e

n. (50)

Equation (50) is one of the key results of this work. From
the f -sum rule [54] and the stability conditon of the “Hig-
gsed” gauge field, we expect that 0 � ns � n. As Eq. (50)
remains valid at J = 0, this in turn requires β > 0. Indeed,

this is what we found for the heavy FL regime in Sec. III A,
different from the result in Ref. [28].

It is now straightforward to obtain the superfluid density of
the charge-4e superconductor in various regimes.

(1) In the strong-coupling limit, for T � ε2
F /U , the sys-

tem behaves qualitatively as its heavy Fermi-liquid ground
state. As we have found in Sec. III A, 0 < β ∼ O(1). In this
regime the superfluid ratio ns/n depends on the ratio between
J and �4e. For �4e � J , the superfluid density is pertur-
batively small in its order parameter, ns/n ∼ �2

4e/J 2. In the
opposite limit including the case with J = 0, ns ∼ n but the
superfluid ratio is still in general smaller than one. These
features are in sharp contrast with a charge-2e superconductor.

(2) In the strong-coupling limit, for ε2
F /U � T � U , the

system behaves as a non-Fermi liquid. Strictly speaking, in
this regime T is much greater than the renormalized band-
width ε2

F /U , so the contribution to the momentum integral is
not concentrated near the Fermi surface but is rather smeared
across the entire Fermi sea. However, we expect ∂k��4e in
Eq. (45) in the entire Fermi sea to be suppressed by εF /U ,
for the same reason why β is so. We expect (50) to remain
qualitatively correct. From Sec. III A, β = O(εF /U ), and the
superfluid density ratio is also suppressed, i.e., ns/n ∼ εF /U .

We note in passing that in a 2d model, going beyond the
mean-field theory, the charge-4e order can be destroyed via a
Berezinskii-Kosterlitz-Thousless transition [19,55,56] due to
phase fluctuations, as it was shown in the earlier studies of
charge-4e superconductivity [4]. In our model the transition
occurs for Nns/n � T/εF . The factor of N comes from N
flavors of fermions, since we have assumed phase coherence
of all the charge-4e order parameters. Thus even though ns is
small in εF /U , the quasi-long-range order remains robust in
the large-N limit.

(3) Equation (50) remains valid for the weak coupling
limit U � εF , in which the system is a perturbative Fermi
liquid at low temperatures. In this regime, both the self-energy
and β are of the order of (U/εF )2. Therefore ns/n ∼ (U/εF )2.

We end this section by contrasting the superfluid density in
a charge-4e superconductor with that in a charge-2e (BCS) su-
perconductor. For completeness, we evaluated the superfluid
density for a charge-2e superconductor in Appendix C 2 by
the modified Ward identity method. Shown in Eq. (C11), the
modified Ward identity for the charge-2e superconductor is
quite similar to that for the charge-4e case. In both cases,
the modification to the Ward identity comes from the self-
energy �� due to the superconducting order parameter. The
key difference, however, is that for the charge-2e order, ��

is singular even for a small � [see Eq. (C12)], leading to a
much larger superfluid density ns = n. We note that the same
singularity in self-energy is responsible for the gapping of the
Fermi surface in a charge-2e superconductor.

In this sense, the smallness of superfluid density for a
charge-4e superconductor can be viewed as a consequence
of the gaplessness of the Fermi surface. As we expect the
gaplessness of the Fermi surface to be a robust feature for
a generic charge-4e superconudctor, we expect its superfluid
density ratio ns/n is generally small just like in our model
(unless �4e is much larger than any other energy scale in the
problem, in which case ns/n can be a significant fraction like
our case).
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IV. FIXED PARTICLE NUMBER: BEYOND MEAN-FIELD
THEORY

In the previous section, many of our results are associated
with the spontaneous breaking of the U(1) symmetry in the
mean-field theory. For an isolated system that becomes su-
perconducting, the total particle number N remains a good
quantum number and the U(1) symmetry is intact. An inter-
esting question is whether our previous conclusions remain
valid. In this Section we answer this question in the positive
by going beyond mean-field theory and explicitly constructing
a U(1)-symmetric wave function for the charge-4e supercon-
ductor.

In a conventional charge-2e superconductor, there is a
well-known procedure [43,57] to restore particle number
conservation, which we briefly describe before moving to
charge-4e superconductors. This can be done by treating
the Cooper pair wave function � as a dynamical Hubbard-
Stratonovich auxillary field, and single out its phase degree
of freedom � = |�|e2iθ as a quantum variable. With this
modification, the action is given by

S[ψ, θ ] =
∫

x

∑
σ=↑↓

ψ̄σ (x)

(
∂τ − ∂2

r

2m
− μ

)
ψσ (x)

−
∫

x
(|�|e2iθ ψ̄↑(x)ψ̄↓(x) + H.c.), (51)

and the conserved particle number should be regarded as

N̂ = N̂fermion + 2N̂Cooper, (52)

where N̂fermion = ∫
dr

∑
σ ψ†

σ (r)ψσ (r) is the number of elec-
trons, and N̂Cooper is the number of Cooper pairs. The phase
factor e2iθ̂ can be viewed as a Cooper pair annihilation opera-
tor and satisfies the commutation relation

[N̂Cooper, e2iθ̂ ] = −e2iθ̂ . (53)

Neither N̂fermion nor 2N̂Cooper is a good quantum number,
only their sum is. Moreover, since S[ψ, θ ] is introduced
via a Hubbard-Stratonovich auxillary field that derives
from a fermion-only model S f [	], we have 〈N̂fermion〉S =
〈N̂fermion〉S f = N and 〈N̂Cooper〉 = 0. The fact that 〈N̂Cooper〉 = 0
can also be seen from adding a small kinetic term ∝ (∂τ θ )2 to
the action and canonically quantizing the action.

After integrating out the fermions in Eq. (51), one ends up
with a XY -model action for θ

S[θ ] = χ

2
(∂τ θ )2 + ns

2m
(∂rθ )2, (54)

where due to U(1) gauge invariance, χ is the compressibility
of the system, and ns is the superfluid density.

With a fixed N , θ is not a good quantum number. Rather,
the ordered state of θ should be thought of as exhibiting off-
diagonal long-range order (ODLRO) [58], in which

lim
x→∞〈e2iθ (x) e−2iθ (0)〉 = 1. (55)

With ODLRO one can neglect the fluctuation effects of θ , at
least in the long-distance limit.

Accordingly, the ground state wave function of a conven-
tional superconductor described by Eq. (51) can be modified

to a number-conserving one with N particles, in which θ has
long range correlation but is not a good quantum number.
Since N and θ are conjugate variables, this can be done via
a Fourier transform

|N〉 =
∫

dθe−iNθ |BCSθ 〉 ⊗ |θ〉, (56)

where

|BCSθ 〉 =
∏

k

[uk + vke2iθψ
†
↑(k)ψ†

↓(−k)]|0〉. (57)

In the above |0〉 is the empty state for the electrons, |θ〉 is
an eigenstate for θ satisfying 〈θ |θ ′〉 = δ(θ − θ ′).2 Similar to
the coupled superfluid setup considered in Ref. [43], here |N〉
can be thought of as a mean-field BCS state coupled with a
superfluid of Cooper pairs.

The important insight is that, apart from particle-number
conservation, all fermionic spectral properties of the states |N〉
and |BCSθ 〉 are identical. Indeed, the anomalous self-energy
and energy gap of a conventional self-energy only depends on
|�|2, insensitive to averaging over θ in |N〉.

We argue that a similar prescription can be directly
extended to an isolated, number-conserving charge-4e super-
conductor. Namely, the action is given by

S[	, θ ]=
∫

x

(
N∑

i=1

	
†
ix

(
∂τ − ∂2

r

2m
− μ

)
	ix + Hint (θ )

)
,

(58)

where the interaction Hamiltonian (3) is replaced by Hint (θ ) :
�4e,i j;kl → �4e,i j;kl e4iθ . In the above, we assumed phase co-
herence in the flavour space. The conserved particle number
can be written as

N̂ = N̂fermion + 4N̂quartet, (59)

with [N̂quartet, e4iθ̂ ] = −e4iθ̂ .
We are similarly led to a quantum XY model for θ , whose

action is of the same form as Eq. (54). Instead of acquiring a
mean-field value for θ , an isolated charge-4e superconductor
exhibits ODLRO in e4iθ . With ODLRO, the ground state wave
function can then be written as

|N〉 =
∫

dθ |MFθ 〉 ⊗ e−iNθ |θ〉. (60)

Here |MFθ 〉 is the mean-field wave function with an order
parameter at a fixed phase θ . Unlike the charge-2e case, the
charge-4e SC is an interacting system and its mean-field wave
function cannot be analytically expressed. However, due to the
auxillary nature of |�|e4iθ , we do know that

N = 〈N |N̂fermion|N〉 = 〈MFθ |N̂fermion|MFθ 〉, (61)

where the second equality follows from direct evaluation on
Eq. (60).

2Alternatively the wave function can be written as |N〉 =
P̂N |0〉 ⊗ ∫

dθ |θ〉, where P̂N = ∏
k[uk + vke2iθ̂ψ†

↑(k)ψ†
↓(−k)]e−iN θ̂ ,

with θ̂ |θ〉 = θ |θ〉. Here
∫

dθ |θ〉 is the vacuum for Cooper pairs, and
P̂N creates N particles distributed among fermions and Cooper pairs.
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In two spatial dimensions and above, at T = 0 the ODLRO
in an XY -model is guaranteed as long as the superfluid den-
sity ns > 0, which can be self-consistently verified from the
fermionic sector. Remarkably, the superfluid density for an
isolated charge-4e superconductor is the same as that in the
mean-field theory. For every |MFθ 〉, the superfluid density
is a good quantum number and is independent of θ . Indeed,
as we showed in Sec. III C, ns for a mean-field state is ex-
pressed via the anomalous self-energy ��4e , which in turn
only depends on |�4e|2. Thus the averaging over |θ〉 in the
number-conserving state |N〉 leads to the same value of ns

obtained using a mean-field theory, which is indeed positive.
We see that this property obtained from mean-field theory
ensures long-range order even when fluctuation effects are
included.

The superfluid density we obtained in the previous sec-
tion is expressed in terms of 〈n〉MF in a mean-field state, and
using Eq. (61), for a number-conserving system it can be
equally expressed via the conserved number density n = N/V .

The same argument can be straightforwardly applied to
show that our conclusion on the Luttinger relation extends to
a number-conserving system.

Our conclusion that the charge-4e SC is gapless can also
be extended beyond mean-field theory. To this end, one can
construct a number-conserving excited state |N, ex〉 via the
same strategy as |N〉:

|N, ex〉 =
∫

dθ |MFθ , ex〉 ⊗ e−iNθ |θ〉. (62)

Since neither the energy of |MFθ 〉 nor that of |MFθ , ex〉 de-
pends on the value of θ , the energy gap of a system with a
fixed particle number is the same as that in the mean-field
theory, which vanishes in the thermodynamic limit.

V. PAIRING INSTABILITY

In this section, we analyze the low-temperature in-
stability against charge-2e superconductivity. Through this
low-temperature instability the system enters a low-entropy
state by gapping out the Fermi surface, similar to the pairing
instability in a regular Fermi liquid. The specific channel of
the pairing order depends on the microscopic model; however,
a similar transition may be expected for a generic charge-4e
superconductor [9] as long as there is an attractive interaction
in certain pairing channels.

To analyze the pairing instability, we reinstate and cross-
correlation ρ between J and �4e, and the pairing vertex �

in the Schwinger-Dyson equations, Eqs. (12)–(15). The SD
equations for the self-energy and for the pairing vertex are
nonlinear and, thus, complicated to solve in general case. Yet,
to examine the onset of pairing instability one can analyze the
pairing susceptibility in the normal state, with

G0(k) = 1

iω − ξk − �0(k)
, (63)

k2d
F �0(x) = − J 2G0(x)2G0(−x) − �2

4eG0(−x)3. (64)

The self-consistent equation (13) for the pairing vertex � is
given by, up to cubic order in �

F (k) � − G0(k)�(k)G0(−k), (65)

FIG. 2. Diagrammatic representation of the equation for the par-
ing vertex (68).

k2d
F �∗(x) � ρJ�4e(G0(x)2 + G0(−x)2)F (x)

− J 2F ∗(x)2F (x) − �2
4eF (x)3. (66)

Note that in the presence of a nonzero �, the Green’s function
G in Eq. (14) gets renormalized by O(|�|2), which also leads
to contribution to the pairing equation that is cubic in �

and proportional to ρJ�4e. As the pairing problem is only
analytically tractable at ρ � 1, we neglect this contribution.

From the linear term in Eq. (66) we see that effectively,
the attractive pairing interaction is formed by a combination
of a �4e interaction and a J interaction vertices, which we
show in Fig. (2) Since both �4e and J are random variables
within the flavor sector, cross correlations between the two are
needed. Indeed, we have verified that up to leading orders of
1/N , the effective interactions with only J and �4e vertices
do not contribute to the pairing channel we consider.

The signs of the cubic terms in Eq. (66) indicate that
the pairing transition is first-order [32,38]. To see this more
clearly, we note that (66) can be thought of as a varia-
tion of the Ginzburg-Landau (GL) functional [19,59] SGL =
−(NA/T )

∫
x LGL[�,�∗] with the Lagrangian density

LGL[�,�∗]

= −�(x)F ∗(x) − �∗(x)F (x)

+ k−2d
F ρJ�4e

2
(G0(x)2 + G0(−x)2)(F ∗(x)2 + F (x)2)

− k−2d
F J 2

2
|F (x)|4 − k−2d

F �2
4e

4
(F ∗(x)4 + F (x)4), (67)

where F (k) = −G0(k)�(k)G0(−k). The GL functional (67)
is a perturbative expression where the higher order terms,
F 6, F 8 and so on, originate from the expansion of the log-
arithm in the effective action (11). In absence of correlation
(ρ = 0) between the pair hopping and pair pairing terms
in the Hamiltonian (1), the GL functional (67) has a form
LGL ∼ a�2 − b�4 + c�6, with a, b, c > 0. We found that
the pairing problem is quite similar to that of the orig-
inal spinless/spin-polarized complex SYK model [32,60],
which is known to not host a pairing transition [38]. How-
ever, turning on weak positive cross correlations |ρ| � 1

094508-9



NIKOLAY V. GNEZDILOV AND YUXUAN WANG PHYSICAL REVIEW B 106, 094508 (2022)

changes the GL functional in the quadratic term to LGL =
[a − |ρ|J�4ea′(T )]�2 − b�4 + c�6, which always has two
local minima for a − |ρ|J�4ea′(T ) → 0+, one at � = 0 and
the other at � �= 0, with the latter being the global mini-
mum. The fact that two local mininum develops before the
quadratic term becomes negative indicates that the system
has gone through a first-order phase transition. Therefore, at
the transition temperature T2e, we expect ρJ�4ea′(T2e) to be
smaller than, but of the same order as a. In other words, at the
first-order transition toward a charge-2e superconductor, the
eigenvalue λ of the linearized version of Eqs. (65) and (66):

λ�∗(k) = −ρJ�4eT k−d
F

∑
q

(�(q − k) + �(k − q))

× G0(q)�(q)G0(−q) (68)

becomes of O(1) (but smaller than one). Here the effective
interaction is given by the particle-particle bubble

�(q) = T k−d
F

∑
k

G0(k)G0(q − k). (69)

We note that unlike conventional linearized gap equation, the
phase of � affects λ. This is because in a charge-4e super-
conudctor, the U(1) symmetry is broken.

We now analyze the eigenvalue problem (68) for the pair-
ing vertex in the NFL regime and in the heavy FL regime
respectively. We first start from the NFL regime at high
temperatures, and study the charge-2e instability. If the T2e

we obtain is higher than the characteristic NFL temperature
ε2

F /U , then the pairing phase develops below this temperature,
preempting the heavy Fermi liquid phase. In this case, the
charge-2e phase can be viewed as emerging from a (charge-
4e) non-Fermi liquid. On the other hand, if the T2e obtained
using NFL Green’s functions is lower than ε2

F /U , it means that
our calculation is not self-consistent—one needs to consider
contributions from both NFL and heavy FL fermions in the
pairing problem.

In the NFL regime, the particle-particle bubble � in
Eq. (69) is logarithmic in frequency transfer, similar to that
in color superconductivity [44,45]. Assuming the momentum
cutoff is O(kF ), up to a nonuniversal constant we have

�(�) = − 1

2
√

πU

∫ U

−U
dω

sgn(ω)sgn(� − ω)√|ω|√|� − ω|
� 1√

πU
ln

U

|�| , (70)

where we have used the Green’s functions in the NFL regime,
as the typical frequency transfer is of the order of T2e, which
we assume for now to be much larger than ε2

F /U .
The eigenvalue problem for the pairing vertex is then sim-

plified to

λ�∗(ω) = −ρJ�4e

πU 2

∫ U

T
d�

�(�)

�
ln

U 2

|�2 − ω2| , (71)

where the temperature T appears as the IR cutoff. The gap
equation (71) can be resolved with logarithmic accuracy
[44–46]. Splitting the frequency integral into two regions:
T2e � � � |ω| and |ω| � � � U , and introducing the loga-
rithmic coordinates x = ln �

|ω| and y = ln �
�

, we approximate

Eq. (71) with

�∗(x) = −g

( ∫ x

0
dy y �(y) + x

∫ ln �
T2e

x
dy �(y)

)
, (72)

where we defined the coupling constant

g = ρJ�4e

πλU 2
= ρJ�4e

πλ
(
J 2 + �2

4e

) . (73)

The equation (72) is equivalent to the second-order differen-
tial equation

d2�∗(x)

dx2
− g�(x) = 0 (74)

with the boundary conditions �∗(0) = 0 and �∗
x (ln U

T2e
) = 0.

A similar equation can be derived for the conjugated pairing
vertex starting from Eq. (68). From here we deduce that the
pairing vertex is imaginary (real) for ρ > 0 (ρ < 0), and

�(ω) ∝ sin

(√
g ln

U

|ω|
)

, (75)

while the superconducting transition temperature can be
found from the temperature onset satisfying cos(

√
g ln U

T2e
) =

0:

T2e ∼ Ue− π
2
√

g ∼ U exp

(
− U√|ρ|J�4e

#

)
, (76)

where # stands for a nonuniversal O(1) number. The uncer-
tainty here comes from the fact that the phase transition is
first-order, which occurs when λ is O(1) but smaller than one.

The solution for T2e above is only self-consistent if it is
larger than ε2

F /U . Otherwise, potential pairing can only occur
in the heavy Fermi liquid regime, which requires a separate
analysis. In this case, the typical frequency transfer � is
much smaller than the ε2

F /U , and there are two contributions
to the particle-particle bubble, one from the NFL regime,
and the other from the heavy FL regime. The contribution
from the NFL regime is similar to the previous case, except
that here the effective lower cutoff of the integral is instead
ε2

F /U :

�NFL(�) � 1

2
√

πU
ln

U 2

ε2
F

. (77)

The contribution from the heavy FL regime, on the other
hand, is evaluated in Appendix B 1 [denoted as �̃(ω, q); see
discussions therein]:

�FL ∼ 1

U

(
sinh−1 2ε∗

F

v∗
F q

− sinh−1 |�|
v∗

F q

)
. (78)

For typical momentum transfer q ∼ kF and typical frequency
transfer � ∼ T2e, we see that �FL ∼ 1/U � �NFL, and thus

�(�) � 1

2
√

πU
ln

U 2

ε2
F

. (79)

In other words, the pairing of fermions in the heavy FL regime
is actually mediated by the particle-particle fluctuations in the
NFL regime.
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In the heavy FL regime, the eigenvalue problem for pairing
is thus given by

λ�∗(k) = − ρJ�4eZ2

√
πU

ln

(
U 2

ε2
F

)
T k−d

F

×
∑
�

∫
dq

(2π )2

�(q)

�2 + Z2ξ 2
q
, (80)

where Z ∼ 1/(k−d
F ν0U ). The pairing temperature has the fa-

miliar BCS form [19]:

T2e ∼ ε2
F

U
exp

(
− U 2

|ρ|J�4e ln
(
U 2/ε2

F

)#

)
, (81)

where again # stands for a nonuniversal O(1) number. In con-
trast with the conventional BCS theory, the phase transition is
first-order.

VI. DISCUSSION

In quest of the basic properties of a charge-4e supercon-
ductor, in this work, we constructed a mean-field toy model
describing a Fermi surface coupled to strong four-fermion
interactions and charge-4e superconducting order parameters.
It is analytically tractable in the large-N limit beyond pertur-
bation theory.

We obtained several key results. First, in contrast with a
charge-2e superconductor, the Fermi surface remains gapless
and hosts long-lived quasiparticles in its vicinity at low-
energies. Despite that, unlike the Fermi liquid, the volume
enclosed by the Fermi surface does not obey the Luttinger
theorem. At higher energies, we found that strong interaction
effects make the system behave as a non-Fermi liquid.

Second, in sharp contrast to a charge-2e superconductor,
we found that the superfluid density for a charge-4e super-
conductor is in general smaller than the electron density, i.e.,
ns < n, and is perturbatively small if �4e is small compared
to the strength of regular interactions.

Third, we found that in the presence of correlation between
J and �4e, the system admits a low-temperature pairing
instability toward charge-2e pairing phase via a first-order
transition. The phase transition can either occur in the Fermi
liquid regime or non-Fermi liquid regime, in the latter of
which the pairing problem bears remarkable similarity to
color superconductivity.

Furthermore, we extended our analysis beyond the mean-
field approach and demonstrate the validity of our results for
an isolated charge-4e superconductor that preserves its total
charge.

While the quantitative results inevitably depend on the
microscopic model, we argued that the results above at a
qualitative level are rather general for charge-4e superconduc-
tors. Indeed, we showed that the smallness of the superfluid
density and the low-temperature instability are directly con-
nected with the gaplessness of the Fermi surface, which is an
expected feature of a generic charge-4e superconductor.

We note that recently charge-4e superconducting states
have been proposed to exist in twisted bilayer graphene [11],
the pair-density-wave state of cuprate superconductors [4],
and in the putative Z4 spin liquids [20]. Also, experimental
evidence of the charge-4e superconductivity in the kagome
metal was reported in the recent preprint [61]. It will be
interesting to extend our results to these contexts, either
perturbatively or using numerical methods such as quantum
Monte Carlo in the Majorana basis.
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APPENDIX A: EFFECTIVE ACTION AND SADDLE-POINT ANALYSIS

In this Appendix, we derive the saddle-point equations for the Hamiltonian (1) in the main text. To simplify the presentation,
we ignore the spatial dimensions of the problem since the procedure of the disorder averaging remains intact. The results of this
section are straightforward to generalize for the finite dimensional model.

We begin with a zero-dimensional version of the symmetrized interaction Hamiltonian (3) in the main text

Hint =
N∑

i< j;k<l;i<k

Vi j;kl , (A1)

Vi j;kl = Ji j;kl

N3/2
(	†

i iσy(	†
j )T 	T

k iσ T
y 	l + H.c.) + �4e,i j;kl

N3/2
(	†

i iσy(	†
j )T 	

†
k iσy(	†

l )T + H.c.) (A2)

= 1

N3/2
(Ji j;kl (ϕ

†
i j ϕkl + H.c.) + �4e,i j;kl (ϕ

†
i j ϕ

†
kl + H.c.)), (A3)

where we introduce the bilinear operators ϕ, ϕ†:

ϕ
†
i j =	

†
i iσy(	†

j )T = ψ
†
i↑ψ

†
j↓ − ψ

†
i↓ψ

†
j↑ = ϕ

†
ji, (A4)

ϕkl =	T
k iσ T

y 	l = ψk↓ψl↑ − ψk↑ψl↓ = ϕlk . (A5)
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The coupling constants are given by the two sets {J} and {�4e} of real independent random Gaussian variables. Both {J} and
{�4e} are drawn from the bivariate distribution (7) in the main text with a correlation parameter −1 < ρ < 1 between the two
sets of random variables.

We evaluate the disorder average of the partition function straightaway since the effects of the replica symmetry breaking are
negligible in the SYK model [62]. To do so, we integrate over each independent coupling coefficient with the bivariate Gaussian
distribution (7):

zi j;kl ≡ exp

{
−

∫
dτ Vi j;kl (τ )

}
=

∫
dJi j;kl d�4e,i j;kl P(Ji j;kl ,�4ei j;kl )

× exp

{
− Ji j;kl

∫
dτ (ϕ†

i j (τ )ϕkl (τ ) + H.c.) − �4e,i j;kl

∫
dτ (ϕ†

i j (τ )ϕ†
kl (τ ) + H.c.)

}
= exp

{ J 2

2N3

∫
dτdτ ′(ϕ†

i j (τ )ϕ ji(τ
′)ϕ†

lk (τ ′)ϕkl (τ ) + ϕ
†
i j (τ )ϕ†

ji(τ
′)ϕkl (τ )ϕlk (τ ′) + H.c.)

+ �2
4e

2N3

∫
dτdτ ′t (ϕ†

i j (τ )ϕ†
ji(τ

′)ϕ†
kl (τ )ϕ†

lk (τ ′) + ϕ
†
i j (τ )ϕ ji(τ

′)ϕ†
kl (τ )ϕlk (τ ′) + H.c.)

+ ρ
J�4e

N3

∫
dτdτ ′(ϕ†

i j (τ )ϕ†
ji(τ

′)ϕkl (τ )ϕ†
lk (τ ′) + ϕ

†
i j (τ )ϕ ji(τ

′)ϕkl (τ )ϕlk (τ ′) + H.c.)

}
, (A6)

where (. . . ) denotes the disorder average. The interacting part of the effective action can be found from

Sint = −
N∑

i< j;k<l;i<k

Vi j;kl ln zi j;kl � −1

8

N∑
i, j,k,l=1

ln zi j;kl , (A7)

where the z̄ terms with the coinciding indices are neglected in the large-N limit.
To decouple the eight-fermion interactions in Eqs. (A6) and (A7), we introduce the self-energies and Green’s functions via

the following identities:

1 =
∫

D�DG exp

{ ∑
σ=↑↓

∫
dτdτ ′ �σσ (τ, τ ′)

(
NGσσ (τ ′, τ ) −

N∑
i=1

ψ̄iσ (τ )ψiσ (τ ′)

)}
, (A8)

1 =
∫

D�DF+ exp

{∫
dτdτ ′ �↑↓(τ, τ ′)

(
NF+

↓↑(τ ′, τ ) −
N∑

i=1

ψ̄i↑(τ )ψ̄i↓(τ ′)

)}
, (A9)

1 =
∫

D�+DF exp

{∫
dτdτ ′ �+

↓↑(τ, τ ′)

(
NF↑↓(τ ′, τ ) −

N∑
i=1

ψi↓(τ )ψi↑(τ ′)

)}
, (A10)

where we assume G↑↓ = G↓↑ = 0 and F↑↑ = F↓↓ = F+
↑↑ = F+

↓↓ = 0. The anomalous contributions ((A9), (A10)) to the effective
action are introduced in accordance with definition of the anomalous blocks of the Gor’kov’s Greens’s function [(9) and (10)] in
the main text. Using the identities (A8)–(A10), we compute the effective action (A7). Indeed, the contributions to the effective
action after the disorder average (A6) can be expressed in terms of four-fermion products:

N∑
i, j=1

ϕ
†
i j (τ )ϕ ji(τ

′) =
N∑

i, j=1

	
†
i (τ )iσy(	†

j (τ ))T 	T
j (τ ′)iσ T

y 	i(τ
′)

= N
N∑

i=1

(ψ̄i↑ ψ̄i↓)
τ

(
G↓↓(τ ′, τ ) 0

0 G↑↑(τ ′, τ )

)(
ψi↑
ψi↓

)
τ ′

= 2N2G↑↑(τ ′, τ )G↓↓(τ ′, τ ), (A11)

N∑
i, j=1

ϕ
†
i j (τ )ϕ†

ji(τ
′) =

N∑
i, j=1

	
†
i (τ )iσy(	†

j (τ ))T 	
†
j (τ ′)iσy(	†

i (τ ′))T

= N
N∑

i=1

(ψ̄i↑ ψ̄i↓)
τ

(
0 −F+

↓↑(τ, τ ′)
F+

↓↑(τ ′, τ ) 0

)(
ψ̄i↑
ψ̄i↓

)
τ ′

= −2N2F+
↓↑(τ ′, τ )F+

↓↑(τ, τ ′), (A12)

N∑
i, j=1

ϕi j (τ )ϕ ji(τ
′) =

N∑
i, j=1

	T
i (τ )iσ T

y 	 j (τ )	T
j (τ ′)iσ T

y 	i(τ
′)

= N
N∑

i=1

(ψi↑ ψi↓)
τ

(
0 F↑↓(τ ′, τ )

−F↑↓(τ, τ ′) 0

)(
ψi↑
ψi↓

)
τ ′

= −2N2F↑↓(τ ′, τ )F↑↓(τ, τ ′). (A13)
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Substituting Eqs. (A11)–(A13) into Eqs. (A6) and (A7), we derive the effective action for the Hamiltonian (A1):

S =
N∑

i=1

∫
dτdτ ′(ψ̄i↑ ψi↓)

τ

(
δττ ′∂τ + �↑↑(τ, τ ′) �↑↓(τ, τ ′)

�+
↓↑(τ, τ ′) δττ ′∂τ − �↓↓(τ ′, τ )

)(
ψi↑
ψ̄i↓

)
τ ′

− N
∫

dτdτ ′
( ∑

σ=↑↓
�σσ (τ, τ ′)Gσσ (τ ′, τ ) + �↑↓(τ, τ ′)F+

↓↑(τ ′, τ ) + �+
↓↑(τ, τ ′)F↑↓(τ ′, τ )

+ J 2

2
(G↑↑(τ, τ ′)G↑↑(τ ′, τ )G↓↓(τ, τ ′)G↓↓(τ ′, τ ) + F+

↓↑(τ, τ ′)F+
↓↑(τ ′, τ )F↑↓(τ, τ ′)F↑↓(τ ′, τ ))

+ �2
4e

4
(G↑↑(τ, τ ′)2G↓↓(τ, τ ′)2 + G↑↑(τ ′, τ )2G↓↓(τ ′, τ )2 + F+

↓↑(τ, τ ′)2F+
↓↑(τ ′, τ )2

+ F↑↓(τ, τ ′)2F↑↓(τ ′, τ )2) − ρ
J�4e

2
(G↑↑(τ, τ ′)G↓↓(τ, τ ′) + G↑↑(τ ′, τ )G↓↓(τ ′, τ ))

× (F+
↓↑(τ, τ ′)F+

↓↑(τ ′, τ ) + F↑↓(τ, τ ′)F↑↓(τ ′, τ ))

)
. (A14)

Integrating over fermions, we get

S = − N
∑

ω

ln((iω − �↑↑(ω))(iω + �↓↓(−ω)) − �↑↓(ω)�+
↓↑(ω))

− N
∫

dτdτ ′
( ∑

σ=↑↓
�σσ (τ, τ ′)Gσσ (τ ′, τ ) + �↑↓(τ, τ ′)F+

↓↑(τ ′, τ ) + �+
↓↑(τ, τ ′)F↑↓(τ ′, τ )

+ J 2

2
(G↑↑(τ, τ ′)G↑↑(τ ′, τ )G↓↓(τ, τ ′)G↓↓(τ ′, τ ) + F+

↓↑(τ, τ ′)F+
↓↑(τ ′, τ )F↑↓(τ, τ ′)F↑↓(τ ′, τ ))

+ �2
4e

4
(G↑↑(τ, τ ′)2G↓↓(τ, τ ′)2 + G↑↑(τ ′, τ )2G↓↓(τ ′, τ )2 + F+

↓↑(τ, τ ′)2F+
↓↑(τ ′, τ )2

+ F↑↓(τ, τ ′)2F↑↓(τ ′, τ )2) − ρ
J�4e

2
(G↑↑(τ, τ ′)G↓↓(τ, τ ′) + G↑↑(τ ′, τ )G↓↓(τ ′, τ ))

× (F+
↓↑(τ, τ ′)F+

↓↑(τ ′, τ ) + F↑↓(τ, τ ′)F↑↓(τ ′, τ ))

)
, (A15)

where
∑

ω denotes the summation over the Matsubara frequencies.
The effective action (A15) has a saddle point in the large-N limit, therefore, we take the variation of the effective action with

respect to the bilocal fields G, F , and F ∗ that leads to the first set of the Schwinger-Dyson equations:

δS

δG↑↑
= 0 ⇒ �↑↑(τ ) = − J 2G↑↑(τ )G↓↓(τ )G↓↓(−τ ) − �2

4eG↓↓(−τ )2G↑↑(−τ )

+ ρ J�4e
(
F+

↓↑(τ )F+
↓↑(−τ ) + F↑↓(τ )F↑↓(−τ )

)
G↓↓(−τ ), (A16)

δS

δG↓↓
= 0 ⇒ �↓↓(τ ) = − J 2G↓↓(τ )G↑↑(τ )G↑↑(−τ ) − �2

4eG↑↑(−τ )2G↓↓(−τ )

+ ρ J�4e
(
F+

↓↑(τ )F+
↓↑(−τ ) + F↑↓(τ )F↑↓(−τ )

)
G↑↑(−τ ), (A17)

δS

δF+
↓↑

= 0 ⇒ �↑↓(τ ) = − J 2F+
↓↑(τ )F↑↓(τ )F↑↓(−τ ) − �2

4eF+
↓↑(τ )2F+

↓↑(−τ )

+ ρ J�4e(G↑↑(τ )G↓↓(τ ) + G↑↑(−τ )G↓↓(−τ ))F+
↓↑(τ ), (A18)

δS

δF↑↓
= 0 ⇒ �+

↓↑(τ ) = − J 2F↑↓(τ )F+
↓↑(τ )F+

↓↑(−τ ) − �2
4eF↑↓(τ )2F↑↓(−τ )

+ ρ J�4e(G↑↑(τ )G↓↓(τ ) + G↑↑(−τ )G↓↓(−τ ))F↑↓(τ ), (A19)
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where we have used translational invariance in the arguments of the bilocal fields τ, τ ′ → τ − τ ′ → τ . The second set of the
Schwinger-Dyson equations is

δS

δ�↑↑
= 0 ⇒ G↑↑(ω) = iω + �↓↓(−ω)

(iω − �↑↑(ω))(iω + �↓↓(−ω)) − �↑↓(ω)�+
↓↑(ω)

, (A20)

δS

δ�↓↓
= 0 ⇒ G↓↓(−ω) = −iω + �↑↑(ω)

(iω − �↑↑(ω))(iω + �↓↓(−ω)) − �↑↓(ω)�+
↓↑(ω)

, (A21)

δS

δF↑↓
= 0 ⇒ F+

↓↑(ω) = �+
↓↑(ω)

(iω − �↑↑(ω))(iω + �↓↓(−ω)) − �↑↓(ω)�+
↓↑(ω)

, (A22)

δS

δF+
↓↑

= 0 ⇒ F↑↓(ω) = �↑↓(ω)

(iω − �↑↑(ω))(iω + �↓↓(−ω)) − �↑↓(ω)�+
↓↑(ω)

. (A23)

For the self-energies we imply �↑↑ = �↓↓ = � under spin-rotation symmetry as stated in Eq. (8) in the main text. Here �↑↓
and �+

↓↑ are the pairing vertexes in the spin-singlet channel. Assuming that the energetically favorable pairing vertex is even in
frequency, we have �↑↓ = −�↓↑ = � and �+

↓↑ = −�+
↑↓ = �∗. The same relations hold for the Green’s functions which are

introduced in Eqs. (9) and (10) in the main text. As such, we simplify the Schwinger-Dyson equations to

�(τ ) = − J 2G(τ )2G(−τ ) − �2
4eG(−τ )3 + ρ J�4e(F ∗(τ )2 + F (τ )2)G(−τ ), (A24)

�∗(τ ) = − J 2F ∗(τ )2F (τ ) − �2
4eF (τ )3 + ρ J�4e(G(τ )2 + G(−τ )2)F (τ ), (A25)

and

G(ω) = iω + �(−ω)

(iω − �(ω))(iω + �(−ω)) − �∗(ω)�(ω)
, (A26)

F ∗(ω) = �∗(ω)

(iω − �(ω))(iω + �(−ω)) − �∗(ω)�(ω)
. (A27)

It is straightforward to generalize these saddle point equations to Eqs. (12)–(15) in the main text for the finite-dimensional model.
One can also derive the Schwinger-Dyson equations by variation of the effective action (11) in the main text, where the pairing
and spin symmetries of the considered saddle-point have been already accounted.

APPENDIX B: DERIVATION OF THE NORMAL-STATE GREEN’S FUNCTION IN 2D

In this Appendix, we derive the normal-state self-energy and Green’s function. We self-consistently show that there is an
emergent energy scale ε∗

F = ε2
F /U . At frequencies and temperatures below this scale, i.e., ω, T � ε∗

F , the system is a heavy
Fermi liquid, and for ε∗

F � ω, T � U , the system behaves as a non-Fermi liquid.
For simplicity of presentation, our derivation below is performed for the 2d case. It is however straightforward to generalize

our derivation to a d > 2 case, by including additional angular directions for the momentum integral.

1. Heavy Fermi liquid at T � ε2
F/U

At low temperatures, we take the ansatz that the low-energy form of the Green’s function takes the form of (19) in the main
text:

G(ω, k) = Z

iω − ξ ∗
k

, ω, T � ε∗
F . (B1)

Here Z is the quasiparticle residue, ξ ∗
k ≈ v∗

F · k is the renormalized dispersion, v∗
F is the renormalized Fermi velocity, and ε∗

F is
the renormalized Fermi energy.

We begin with evaluation of the particle-particle bubble (18) with the ansatz (B1):

�(�, q) = �0 + �̃(�, q)

= �0 + Z2k−2
F

∫ ε∗
F

−ε∗
F

dω

2π

∫
dk

(2π )2

1
i�
2 + iω − ξ ∗

q
2 +k

1
i�
2 − iω − ξ ∗

q
2 −k

. (B2)

The first term �0 here comes from fermions with higher energies, e.g., in the NFL regime. For our purposes here the relevant
�, v∗

F q � ε2
F /U , and thus these high-energy contributions are constant in �, v∗

F q.
We consider low-lying excitations and, hence, expand the dispersion ξ ∗

q
2 ±k � ξ ∗

k ± v∗
F ·q
2 in the excitation momentum q.

Furthermore, we introduce the density of states ν∗, which is constant ν∗ = kF /(πv∗
F ) in two dimensions, and replace the integral
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over fermion momentum k with the energy ε integral:

�̃(�, q) � ν∗Z2k−2
F

∫ ε∗
F

−ε∗
F

dω

2π

∫ 2π

0

dθ

2π

∫ +∞

−∞
dε

1
i�
2 + iω − ε − v∗

F q
2 cos θ

1
i�
2 − iω − ε + v∗

F q
2 cos θ

= ν∗Z2k−2
F

∫ ε∗
F

|�|
2

dω

∫ 2π

0

dθ

2π

4ω

4ω2 + v∗
F

2q2 cos2 θ
= 2ν∗Z2k−2

F

∫ ε∗
F

|�|
2

dω√
4ω2 + v∗

F
2q2

= ν∗Z2k−2
F

(
sinh−1 2ε∗

F

v∗
F q

− sinh−1 |�|
v∗

F q

)
. (B3)

Here θ is the angle between q and k, q = |q|, and v∗
F is the renormalized Fermi velocity. We close the contour in the upper half

complex plane when evaluating the integral over energy ε. For the frequencies −|�|/2 < ω < |�|/2, there are two contributing
poles that cancel each other, while both −ε∗

F � ω � −|�|/2 and |�|/2 � ω � ε∗
F regions contribute one pole each.

The particle-particle bubble (B3) is an even function of frequency and momenta �̃(�, q) = �̃(−�,−q). Furthermore, the
constant piece �0 leads to a constant real piece after the integral, contributing to the renormalization of the chemical potential.
Therefore, for the frequency and momentum dependence of the self-energy �, we only need �̃(�, q) in the particle-particle
bubble. From Eq. (17), we get

�(ω, k) = − ZU 2k−2
F

∫ ε∗
F

−ε∗
F

d�

2π

∫
dq

(2π )2

�̃(�, q)

i� − iω − ξ ∗
q−k−kF

, (B4)

where k is the deviation from the Fermi surface.
In order to self-consistently solve for Z and v∗

F , we separately consider the frequency and momentum dependence of the
self-energy � at leading order. For the frequency dependence, we get

�(ω, k = 0) = −iU 2Z3ν∗k−4
F

∫
qdq d�

4π2

sgn(ω − �)√
(ω − �)2 + v∗2q2

(
sinh−1 2ε∗

F

v∗
F q

− sinh−1 |�|
v∗

F q

)
. (B5)

The leading, linear in ω, contribution comes from small internal frequency � � v∗
F q:

�(ω, k = 0) ≈ −iω × 2U 2Z3ν∗

v∗
F k4

F

∫
dq

4π2
sinh−1 2ε∗

F

v∗
F q

∼ iω × U 2Z3ν∗

v∗
F k3

F

, (B6)

while the opposite limit v∗
F q � � yields a frequency dependence ω2 ln ω [28].

In the strong coupling limit, the self-energy effects dominate the fermion Green’s function:

Z−1 ∼ U 2Z3ν∗

v∗
F k3

F

. (B7)

As we shall see later, the renormalized Fermi velocity and density of states are given by v∗
F ∼ ZvF and ν∗ ∼ k2

F /(ZεF ) ∼
kF /(ZvF ), which leads to

Z ∼ εF

U
� 1, (B8)

where we have used εF ∼ vF kF .
Let us now evaluate the k-dependence of � near the Fermi surface:

�(ω = 0, k) = U 2Z3ν∗k−4
F

∫
dq d�

8π3

v∗
F (qx − kx )

�2 + v∗2
F (qx − kx )2

(
sinh−1 2ε∗

F

v∗
F q

− sinh−1 |�|
v∗

F q

)
, (B9)

where qx and kx refer to the momentum components in the direction perpendicular to the local patch of the Fermi surface. This
is justified for q2

y � kF (qx − kx ), which is the dominant regime that contributes to the integral.
The first term in the parenthesis, after � integration becomes ∝ sgn(qx − kx ). Aside from a constant term, to leading order in

k (defined as the deviation from the Fermi surface), it is

∼
∫ k

−k
dqx

∫ √
kF k

0
dqy ln

4ε∗
F

v∗
F q

, (B10)

By a simple dimensional analysis, this contribution to � comes as a higher-order term ∼sgn(kx )|kx|3/2 ln |kx|.
The frequency integral with the second term in the parenthesis yields a logarithm, cut by v∗

F q above and vF |qx − kx| below.
We have

�(ω = 0, kx ) ≈ const−U 2Z3ν∗k−4
F

∫
dq
4π3

qx − kx

q
ln

q

|qx − kx| , (B11)
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FIG. 3. The self-energy (B4) in the Fermi liquid regime for a circular Fermi surface. (Left) Frequency dependence of the self-energy.
(Right) Momentum dependence of the self-energy. The red lines shows the fit with α1 = 13.1 for frequency and α2 ≈ 4 for the momentum
dependencies of the self-energy. The momentum dependence of the self-energy is shifted by a constant in Eq. (B13), so that it originates from
kx = 0.

which agrees with Eq. (D14) of Ref. [28] using a slightly different method. However, as we show below the evaluation of the
integral in Eq. (B11) leads to a result with an opposite sign. Interestingly, the correct sign is crucial for our purposes as it ensures
the superfluid density is positive and consistent with the f -sum rule [54].

The leading contribution to Eq. (B11) comes from the region in which qy  qx such that the logarithm in the integrand is
large, and in which |qx − kx|  q2

y/kF such that the dispersion is linear. Keeping terms up to linear-in-k order

�(ω = 0, kx ) ≈const − kx × U 2Z3ν∗

π3k4
F

∫ kF

0

dqy

qy

∫ qy

q2
y /kF

dqx

[
ln

qx

qy
+ 1

]

=const + kx × U 2Z3ν∗

π3k4
F

∫ kF

0
dqy

qy

kF
ln

kF

qy
. (B12)

While the last integral is only accurate up to a nonuniversal factor, it is clear that it is positive, contrary to the result in Ref. [28].
We thus obtain

�(ω = 0, kx ) ≈ const+β kx
U 2Z3ν∗

k3
F

≡ const + β vF kx, (B13)

where we use Eq. (B8) and the fact that ν∗ = ν0/Z . The nonuniversal coefficient 0 < β = O(1) may depend on the geometry of
the specific Fermi surface. The result that β = O(1) also confirms the expression for the renormalized Fermi velocity v∗

F = ZvF

we previously used in deriving Z .
From the above results on Z and β, we see that the renormalized Fermi energy is given by

ε∗
F = ZεF ∼ ε2

F

U
. (B14)

Similar to the standard case, the Fermi-liquid solution is only valid if

T � ε∗
F ∼ ε2

F

U
. (B15)

To confirm the analytical estimates for the quasiparticle renormalization, we use the result (B3) and numerically evaluate the
self-energy (B4) for a 2d circular Fermi surface for arbitrary excitation momentum q. Computing numerically the frequency
and momentum integrals in Eq. (B4) for electrons with the quadratic dispersion and Fermi energy εF = k2

F /(2m), we derive the
self-energy in the leading order in frequency and momentum:

�(ω, kx ) � const − iω
α1

(2π )2
Zk−4

F (ν0U )2 + vF

2
kx

α2

(2π )2
Z2k−4

F (ν0U )2, (B16)

where we use that ν∗ = k2
F /(2πε∗

F ) and express it in terms of the density of states of the free fermions ν∗ = ν0/Z . Here we
have chosen the Fermi momentum kF aligned with the kx component of the electron’s momentum k = {kx, ky}. The numerical
coefficients α1 ≈ 13.1 and α2 ≈ 4 are found from the frequency and momentum dependence of the self-energy (B4) shown in
Fig. 3 in the low frequency (ω � 0.1ε∗

F with 11 points) and small momentum (kx � 0.05kF with 11 points) Comparison of the
imaginary part of the self-energy (B16) in a strong coupling limit (k−2

F ν0U  1) with the quasiparticle ansatz (B1) fixes the
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quasiparticle residue Z:

Z = 2π√
α1

1

k−2
F ν0U

≈ 10.9
εF

U
. (B17)

Substituting the quasiparticle residue (B17) into Eq. (B16), we obtain

�(ω, kx ) � const − i Z−1ω + α2

2α1
vF kx, (B18)

which gives us the self-energy expression (21) in the main text with

β = 2α2/(α1) ≈ 0.6.

2. Non-Fermi liquid at ε2
F/U � T � U

At higher temperatures than the renormalized Fermi energy, one expects that the kinetic energy of the fermions becomes
negligible. In this section, we show that the system is a local NFL.

We assume and then verify that in area ∼k2
F around the Fermi surface, at higher temperatures, the Green’s function to zeroth

order takes a k-independent form

G(ω, k) � G(0)(ω) + G(1)(ω, k) + · · · , G(1) � G(0). (B19)

The derivation of G(0) is quite similar to that in the 0d SYK model, the only difference being an momentum integral that cancels
the k−2

F in the coupling constant in our case. Therefore, at leading order, the fermion Green’s function is

G(0)(ω) � −iπ1/4 sgn(ω)√
U |ω| (B20)

with the fermionic self-energy given by

�(0)(ω) � −iπ−1/4
√

U |ω|sgn(ω). (B21)

This solution is valid when ω, εF � �(ω), which is satisfied in the temperature range

ε2
F

U
� T � U, (B22)

which is complementary to the temperature regime for heavy Fermi liquid behavior.
The momentum dependence of the self-energy in this regime can be evaluated perturbatively:

�(x) ��(0)(x) + �(1)(x), (B23)

k4
F �(0)(x) = − U 2G(0)(x)2G(0)(−x), (B24)

k4
F �(1)(x) = − J 2G(0)(x)2G(1)(−x) − 2J 2G(0)(x)G(0)(−x)G(1)(x) − 3�2

4eG(0)(−x)2G(1)(−x). (B25)

The corresponding Green’s function is [28]

G(ω, k) �G(0)(ω) + G(1)(ω, k), (B26)

G(0)(ω) = − 1

�(0)(ω)
, (B27)

G(1)(ω, k) =G(0)(ω)2(ξk + �(1)(ω, k)). (B28)

The perturbation series is controlled by the small parameter εF /U .
Applying the Fourier transform to the self-energy correction (B25), we notice that only G(1) among the product of three

Green’s functions explicitly depends on momenta. As such,

�(1)(ω, k) ∼
∫

dq d� f (�)G(1)(� − ω, k − q), (B29)

where f (�) is defined by G(0)(�) which is momenta independent. The key observation here is, since the external momentum k
can be absorbed into the internal momentum Q, the mometum integral is independent on k. Therefore we have

�(1)(ω, k) = �(1)(ω), (B30)
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and the k dependence of �(ω, k) comes in the perturbative expansion at the next order. Thus by dimensional analysis,

�(0, k) ∼ εF

U
vF · k. (B31)

APPENDIX C: WARD IDENTITY AND SUPERFLUID DENSITY

In this Appendix, we derive the modified Ward identity for superconductors.

1. Ward identity in a metal

For completeness, we first derive the Ward identity from the path integral formalism for a metal with free-electron dispersion.
This derivation is well-known and presented in detail in quantum field theory books, e.g., Ref. [63].

The Ward identity, introduced in the main text in Eq. (37), directly relates the quasiparticle current vertex � to the quasiparticle
velocity −∂kG−1:

�(k, k) = −∂kG−1(k). (C1)

This is a direct consequence of minimal coupling to the electromagnetic field, which in turn comes from gauge invariance as we
show below.

We begin with the path integral for two-point functions

〈ψ (x1)ψ̄ (x2)〉 ∼
∫

DψDψ̄ ψ (x1)ψ̄ (x2)e−S[ψ,ψ̄]

=
∫

Dψ ′Dψ̄ ′ ψ ′(x1)ψ̄ ′(x2)e−S[ψ ′,ψ̄ ′], (C2)

where in the second line we have performed a change of variable ψ → ψ ′ = eiα(x)ψ , where α(x) is an arbitrary function of
x = (τ, r).

Expanding the bottom line in Eq. (C2) to linear order in α(x) and subtracting it from the top line in the same equation, we get

0 =
∫

DψDψ̄

∫
x

iα(x)ψ (x1)ψ̄ (x2)[δ(x − x1) − δ(x − x2) − i∂μ jμ(x)]e−S[ψ,ψ̄], (C3)

where ∂μ = (∂τ , ∂r ) and jμ = (iψ̄ψ,−i(ψ̄∂rψ − (∂rψ̄ )ψ )/(2m)). Here we have used the conservation law due to U(1)
symmetry of the action. Namely, the change in the action due to ψ → ψ ′ can only be proportional to the gradient term ∂μα(x),
with the coefficient being the conserved current as stated by the Noether’s theorem.

We then obtain the following relation between correlation functions:

−i∂μ〈 jμ(x)ψ (x1)ψ̄ (x2)〉 = −[δ(x − x1) − δ(x − x2)]〈ψ (x1)ψ̄ (x2)〉. (C4)

We apply the Fourier operator F̂◦ = ∫
x,x1,x2

e+ipxe+ikx1 e−i(k+p)x2◦ to both sides of Eq. (C4) and take the limit of zero frequency
ω → 0 in the Fourier components of the particle current jμ(ω, p). Then using the Wick’s theorem for the left side of Eq. (C4),
we obtain the equation (36) from the main text

p · �(k, k + p)G(k)G(k + p) = −G(k)+G(k + p), (C5)

where we introduced the current vertex function �(k, k + p) = (k + p/2)/m for a free fermion system. The Green’s function is
defined as G(k) = −〈ψkψ̄k〉. Taking the limit p → 0 in Eq. (C5), we derive the current vertex to quasiparticle velocity relation
(37) used in the main text.

2. Modified Ward identity and superfluid density in a charge-2e superconductor

For a superconductor (charge-2e or charge-4e), U(1) symmetry is broken, and Ward identity can be modified accordingly. For
completeness, here we derive the modified Ward identity in a mean-field BCS superconductor.

In a BCS superconductor, the action contains the anomalous term

S ⊃ −
∫

x
�ψ̄↑(x)ψ̄↓(x) + H.c., (C6)

which does not remain invariant under ψ↑,↓ → ψ ′
↑,↓ = eiα(x)ψ↑,↓.

To account for the change of the action due to the anomalous term, Eq. (C3) should be modified to

0 =
∫

DψDψ̄

∫
x

iα(x)ψ↑(x1)ψ̄↑(x2)[δ(x − x1) − δ(x − x2) − i∂μ jμ(x) − 2�ψ̄↑(x)ψ̄↓(x) + 2�ψ↑(x)ψ̄↓(x)]e−S[ψ,ψ̄],

(C7)
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Similar to the previous section, Eq. (C7) translates to momentum representation as

p · �(k, k + p)G(k)G(k + p)

= −G(k) + G(k + p) + F̂ ◦ 2�〈ψ̄↑(x)ψ̄↓(x)ψ↑(x1)ψ†
↑(x2)〉 − F̂ ◦ 2�〈ψ↓(x)ψ↑(x)ψ↑(x1)ψ†

↑(x2)〉, (C8)

Applying the Wick’s theorem and assuming the s-wave real constant pairing, we have

F̂ ◦ 2�〈ψ̄↑(x)ψ̄↓(x)ψ↑(x1)ψ†
↑(x2)〉 = 2G(k)��(k)G(k + p), (C9)

where ��(k) is the self-energy due to the pairing vertex. For a BCS superconductor, we have

G(k) = − iω + ξk

ω2 + ξ 2
k + �2

, ��(k) = �2

iω + ξk
. (C10)

where ξk = (k − eA)2/2m − μ is the dispersion relation. Taking the p → 0 limit, we have the modified Ward identity (36) for
a superconductor

�(k, k)G2(k) = ∂kG(k) − 2G2(k)∂k��(k). (C11)

The first term in Eq. (C11) again cancels the diamagnetic contribution discussed in Sec. III C in the main text, and the second
term yields

ns = 4
∫

k

k2

m

�2
0

(ω2 + ξ 2
k + �2)2

, (C12)

where the additional factor of 2 accounts for both spin species. Introducing the density of states for a two-dimensional case
ν0 = k2

F /(2πεF ) at zero temperature, we have

ns = 4
∫

k

k2

m

�2
0

(ω2 + ξ 2
k + �2)2

= 4ν0εF

π

∫ +∞

−∞
dω

∫ +∞

−∞
dξ

�2
0

(ω2 + ξ 2 + �2)2
= 2 × k2

F

π
= n. (C13)

The fact that ns is independent of � is related to the superfluid density being a Fermi surface effect. No matter how small �

is, pairing always equally mixes electrons and holes at the Fermi surface. Therefore ns is significant even if � is small.

3. Modified Ward identity in a charge-4e superconductor

Now, we shall derive the Ward identity for a charge-4e superconductor from the main text (38). The imaginary time action
for a charge-4e superconductor reads

S ⊃
∫

x

⎛⎝ N∑
i=1

	
†
xiσ0

(
∂τ − ∂2

r

2m
− μ

)
	xi + k−d

F

N3/2

N∑
i< j,k<l,i<k

(�4e,i j;kl 	
†
xiiσy(	†

x j )
T 	

†
xkiσy(	†

xl )
T + H.c.)

⎞⎠, (C14)

where we use the fermionic spinor 	
†
xi = (ψ̄i↑(x) ψ̄i↓(x)) (not to be confused with the Nambu spinor in Appendix C 2).

Similar to Appendix C 1, we define the two-point function for a given spin and flavour

〈ψ1↑(x1)ψ̄1↑(x2)〉 ∼
∫

DψDψ̄ e−S[ψ,ψ̄]ψ1↑(x1)ψ̄1↑(x2), (C15)

which remains invariant under the change of variables ψns → ψ ′
ns = eiα(x)ψns. Accordingly, the Ward identity is modified as

−i∂μ〈 jμ(x)ψ1↑(x1)ψ̄1↑(x2)〉 = −[δ(x − x1) − δ(x − x2)]〈ψ1↑(x1)ψ̄1↑(x2)〉

− 4k−d
F

N3/2

N∑
i< j,k<l,i<k

�4e,i j;kl 〈ψ1↑(x1)ψ̄1↑(x2)	†
xiiσy(	†

x j )
T 	

†
xkiσy(	†

xl )
T 〉

+ 4k−d
F

N3/2

N∑
i< j,k<l,i<k

�4e,i j;kl 〈ψ1↑(x1)ψ̄1↑(x2)	T
xl iσ

T
y 	xk 	T

x j iσ
T
y 	xi〉, (C16)

where the current is

jμ(x) =
N∑

i=1

∑
σ=↑,↓

(iψ̄iσψiσ ,− i

2m
(ψ̄iσ ∂rψiσ − (∂rψ̄iσ )ψiσ )). (C17)
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Let’s evaluate the 6-fermion correlation function in Eq. (C16) using that under disorder average 〈�4e,i j;kl�4e,i′ j′;k′l ′ 〉 =
�2

4eδii′δ j j′δkk′δll ′ :

− 4k−d
F

N3/2

N∑
i< j,k<l,i<k

�4e,i j;kl 〈ψ1↑(x1)ψ̄1↑(x2)	†
xiiσy(	†

x j )
T 	

†
xkiσy(	†

xl )
T 〉

= 4k−2d
F

N3
�2

4e

N∑
i< j,k<l,i<k

〈
ψ1↑(x1)ψ̄1↑(x2)	†

xiiσy(	†
x j )

T 	
†
xkiσy(	†

xl )
T

∫
x′

	T
x′l iσ

T
y 	x′k 	T

x′ j iσ
T
y 	x′i

〉
. (C18)

Applying the Wick’s theorem to the equation above, we notice that in the ith spinor the flavour is fixed to i = 1 and only the ↑
component of it contributes to the Ward identity. Therefore the six-fermion function (C18) becomes

4k−2d
F

N3
�2

4e

N∑
j,k,l=1

∫
x′
〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x′)ψ̄1↑(x)〉〈ψ j↓(x′)ψ̄ j↓(x)〉〈ψk↓(x′)ψ̄k↓(x)〉〈ψl↑(x′)ψ̄l↑(x)〉

= 4�2
4e

∫
x′

��↑↑(x, x′)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x′)ψ̄1↑(x)〉. (C19)

Thus the Ward identity for our charge-4e superconductor reads

−i∂μ〈 jμ(x)ψ1↑(x1)ψ̄1↑(x2)〉 = − [δ(x − x1) − δ(x − x2)]〈ψ1↑(x1)ψ̄1↑(x2)〉

+ 4�2
4e

∫
x′

��↑↑(x, x′)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x′)ψ̄1↑(x)〉

− 4�2
4e

∫
x′

��↑↑(x′, x)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x)ψ̄1↑(x′)〉. (C20)

We apply the Fourier transform F̂◦ = ∫
x,x1,x2

e+ipxe+ikx1 e−i(k+p)x2◦ to the both sides of Eq. (C20) and take ω → 0 limit:∫
q

p · (q + p/2)

m
〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉

= −〈ψ1↑(k + p)ψ̄1↑(k + p)〉 + 〈ψ1↑(k)ψ̄1↑(k)〉 − 4�2
4e

∫
q
��↑↑(q + p)〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉

+ 4�2
4e

∫
q
��↑↑(q)〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉. (C21)

Using the diagrammatic technique in Matsubara time with G(k) = −〈ψ1↑(k)ψ̄1↑(k)〉 and ��4e ≡ ��↑↑, we obtain Eq. (39) and
Fig. 1 in the main text.
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