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Quality factor for zero-bias conductance peaks in Majorana nanowire
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Despite recent experimental progress toward observing large zero-bias conductance peaks (ZBCPs) as signa-
tures of Majorana modes, confusion remains about whether Majorana modes have been observed. This is in part
due to the theoretical prediction of fine-tuned trivial (i.e., nontopological) zero-bias peaks that occur because of
uncontrolled quantum dots or disorder potentials. While many aspects of the topological phase can be somewhat
fine-tuned because the topological phase space is often small, the quantized height of the ZBCP associated with a
Majorana mode is known to be robust at sufficiently low temperatures even as the tunnel barrier is pinched off to
vanishingly small normal-state conductance. The key shortcoming of the existing experimental works is an acute
lack of stability of the putative Majorana mode features, indicating the probable absence of a topological phase,
and the current paper suggests specific experimentally accessible measures for a careful quantitative analysis of
the measured ZBCP stability. In this paper, we study how the counterintuitive robustness of the ZBCP height
to the tunnel barrier strength can be used to distinguish Majorana modes from nontopological ZBCPs. To this
end, we introduce a dimensionless quality factor F to quantify the robustness of the ZBCP height based on the
range of normal-state (i.e. above-gap) conductance (which depends crucially on the tunnel barrier height) over
which the ZBCP height remains within a prespecified range of quantization. By computing this quality factor F
together with the topological characteristics for a wide range of models and parameters, we find that Majoranas
are significantly more robust (i.e., have a higher value of F ) compared with nontopological ZBCPs in the ideal
low-temperature limit. Even at a temperature as high as the experimentally used 20 mK, we find that we can
set a threshold value of F ∼ 2.5 (for ε = 0.1) so ZBCPs associated with a quality factor F > 2.5 are likely
topological and F � 2.5 are topologically trivial. More precisely, the value of F is operationally related to the
degree of separation of the Majorana modes in the system, although F uses only the experimentally measured
tunnel conductance properties. Finally, we discuss how the quality factor F measured in a transport setup can help
estimate the quality of topological qubits made from Majorana modes. In particular, we show that if the induced
gap can be enhanced somehow beyond the currently available ∼30 μeV in InAs/Al samples, large (small) values
of F could easily distinguish between stable topological (unstable trivial) ZBCPs with the quantum dot induced
quasi-Majorana bound states occasionally behaving similar to topological Majorana modes in short wires.

DOI: 10.1103/PhysRevB.106.094504

I. INTRODUCTION

Since the model of a Majorana nanowire [one-dimensional
superconductor-semiconductor (SC-SM) heterostructure with
the s-wave superconducting proximity effect, spin-orbit cou-
pling, and spin-splitting by Zeeman field] was proposed in
2010 [1–4], Majorana zero modes (MZMs), which are the
non-Abelian topological quantum computing qubits [5–9],
have been broadly studied in the experiments over the past
decade [10–30]. Especially, the observations of zero-bias
conductance peaks (ZBCPs), one of the most important sig-
natures of MZMs, have been widely reported in the tunneling
spectroscopy of InAs or InSb nanowires [10–17,21–24,26–
28,30,31]. In fact, ZBCPs with heights near the theoreti-
cally predicted quantized value of 2e2/h have been seen in
experiments [16,30,31], leading to optimism regarding the
observation of Majoranas.

Unfortunately, several mechanisms for ZBCPs whose con-
ductance height may be tuned to be near the quantized
value have also been identified theoretically since the original

observation of ZBCPs in Majorana nanowire systems. For
instance, Andreev bound states (ABSs) induced by quantum
dots or inhomogeneous chemical potential can determinis-
tically produce quantized ZBCPs [32–39] (“bad” ZBCPs
in the terminology introduced in Ref. [32]). Alternatively,
disorder-induced random potential can with sufficient fine-
tuning create the trivial ZBCPs quantized near 2e2/h [32,40–
43] (“ugly” ZBCPs as called in Ref. [32]) as well. Sometimes,
these topologically trivial subgap bound states can even ac-
cidentally display the stable quantized conductance [44–48]
to some extent when the system is fine-tuned, leading to the
possibility of misconstruing such trivial zero-energy bound
states in experiments as MZMs, as has been done repeatedly
in the literature. This leads to the central challenge in the
field, i.e., distinguishing topological MZMs from such trivial
zero-energy fermionic bound states based on the currently
feasible experimental techniques. The claimed quantization
in this experiment [31] is now understood to be an un-
fortunate confirmation-biased outcome of fine-tuning and
postselection [30]. This has led to a justified retraction of the
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original Ref. [31], but we believe that all existing local tunnel
spectroscopic experimental ZBCP-based claims of Majorana
observations in the literature most likely are untenable be-
cause the robustness of the ZBCP (the subject matter of the
current paper) and their generic nonlocal nature has never
been established. Clearly, just observing ZBCPs with tunnel
conductance ∼2e2/h is insufficient evidence for MZMs. The
importance of the stability of quantized ZBCPs motivates us
to come up with a quantity that can measure the robustness of
quantization.

It is indeed true that one of the most striking necessary
properties that has been predicted for MZMs is the quan-
tization of the ZBCP at zero temperature. Unlike the mere
presence or absence of a zero-energy state, which turns out to
be determined even in the nontopological case by fine-tuning
[32–43,49], the quantization of the peak height is a quan-
titative signature that can allow us to associate a Majorana
with a qualitative property as opposed to a mere presence or
absence of a tunneling peak. We introduce a quality factor
to characterize this property, which should be measurable in
experiments. This quality factor that can be assessed from a
transport measurement, ideally, is connected with the deco-
herence time of a topological qubit that would be constructed
from this Majorana device [50]. The quantization of the peak
height is striking because it is robust, in principle, to the tunnel
barrier height even when it is very large where the barrier has
a negligible transmission probability for electrons. While this
Majorana quantization independent of the barrier height has
some similarity to resonant transmission through a symmetric
double barrier potential, the quantization in the Majorana case
is protected by particle-hole symmetry of the superconductor,
which cannot be lifted by an external perturbation, making the
quantization exact. This motivates the question of whether the
quantization of the ZBCP height can be used to separate out
topological Majorana states from other nontopological ZBCPs
in some indirect manner going beyond just measuring the
ZBCP magnitude. While recent experiments have seen large
ZBCPs, very few have seen heights close to the quantized
value. Even in the few reported quantized cases, the parameter
range for the robustness is quite small. The robustness with
respect to most parameters such as magnetic field or gate volt-
ages, which are dimensionful, are hard to quantify as stable
because the comparison standard is not obvious while varying
a dimensionful parameter with a unit. Also, variations in these
experimental parameters may affect the topological phase of
the system, particularly if the topological phase is fragile in
parameter space as is often the case. In contrast, variations
in the tunnel barrier can be quantified by the dimensionless
normal-state conductance (i.e., relative to the conductance
quantum), which cannot affect the bulk topological proper-
ties. Thus, the ZBCP height in the topological case should
remain quantized as long as the normal-state conductance
exceeds a limit proportional to the temperature. This motivates
our introduction of the quality factor concept to characterize
Majorana modes through tunneling spectroscopy. The basic
idea is that not all experimentally tunable parameters are
equivalent: While the applied magnetic field and gate voltages
directly affect the topological phase diagram by controlling
the spin splitting and the chemical potential, the tunnel barrier
and the temperature are fundamentally different in controlling

the quantitative aspects of the Majorana quantization without
affecting the topological phase itself.

The above discussion of the quantization of the ZBCP
height in the case of the ideal Majorana raises the central
question asked in this paper, i.e., how does the fine-tuned
apparent robustness of the ZBCP height in nontopological
ZBCPs compare to the intrinsic protected robustness of the
topological Majorana. Given that the tunnel barrier robustness
of the Majorana ZBCP depends on temperature, we expect
the comparison to depend on temperature as well since it
is well-established that the Majorana ZBCP quantization de-
pends on tunnel barrier and temperature in an intrinsically
coupled manner [51,52]. While we will present results for a
range of temperature, we will focus our discussion at 20 mK
as the lowest practical temperature based on measurement
reports so far. It will become clear later in this paper how
crucial it is to carry out measurements at the lowest possible
temperatures by virtue of the fact that the realistic topo-
logical superconducting gap in currently available nanowires
is very small. One of the key results we will discuss are
plots of the ZBCP height versus the normal-state conduc-
tance through the tunnel barrier. While these plots are the
regular way to present the measured conductance in the ex-
periments [30,31], no earlier theoretical work systematically
calculates the ZBCP versus the normal-state conductance in
detail. We use these plots to quantify a measure of the robust-
ness, i.e., a dimensionless quality factor, which enables us to
assign a single precisely defined number F to the ZBCP at
a particular temperature. We will find that the quality factor
F associated with robustness to the tunnel barrier tuning can
distinguish between topological and nontopological ZBCPs
using a threshold value for F . To draw this conclusion, we
study the spatial separation of the Majorana components of
the lowest wave function to determine if a particular set
of model parameters is in the topological superconducting
phase. While transport experiments do not have access to
the Majorana wave-function profiles and bulk gap closing
and reopening phenomenon near topological quantum phase
transition (TQPT) is likely to be too weak for realistic long
topological wires to experimentally identify [53], we should
use the defined quality factor F , which is determined by the
measured conductance, to assess whether a particular ZBCP
in experiment is topologically nontrivial. An experimental
determination of F would, therefore, provide strong support
for the existence or not of topological MZMs in a given
sample.

We note that our current paper may in some sense be
construed as a quantitative data analysis tool for future Ma-
jorana tunneling measurements observing ZBCPs. The key
advantage of our theoretical proposal is that it requires
only measured quantities, namely, the ZBCP itself and the
above-gap normal conductance as a function of the tunnel
gate voltage. Since we focus quantitatively on the currently
used InAs/Al semiconductor-superconductor hybrid systems
(with its rather small induced gap), our results are appli-
cable directly to the ongoing local tunneling spectroscopy
experiments in many laboratories without requiring more
complex three-terminal setups for nonlocal conductance mea-
surements. In fact, nonlocal measurements (and then braiding
measurements) should only be carried out on those samples
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which satisfy the stability protocol worked out in the current
paper, saving a great deal of time and effort in future experi-
ments. We emphasize that the lack of stability of the ZBCP
quantization has been the key issue preventing progress in
the field, and our suggested precise and quantitative proto-
col based only on local tunneling measurements should help
future measurements to determine a zeroth order distinction
between topological and trivial ZBCPs without resorting to
extensive (and always somewhat unreliable, since the sam-
ple parameters and the level of disorder are never known
accurately) simulations as our quality factor is determined
uniquely by measured quantities with no need for any theo-
retical simulations.

The rest of this paper is organized as follows. In Sec. II,
we describe our theoretical model by introducing the Hamil-
tonion of the SC-SM nanowire, various potentials for the
scenarios we study in this paper, Majorana-composed wave
functions, and the formalism for the quality factors. In Sec. III,
we show our numerical results for the cases of “good”, “bad”,
and “ugly” ZBCPs [32]. We show conductance color plots
and conductance line cuts as a function of magnetic field and
tunneling barrier height, Majorana-composed wave functions,
ZBCP as a function of normal-metal conductance, and quality
factors as a function of temperature in each panel. In Sec. IV,
we discuss some generic features from our numerical results
using a panoramic angle. Finally, we make a conclusion in
Sec. V with a summary.

II. MODEL

In this section, we will describe the 1D SC-SM
nanowire [1–4] as in Fig. 1, which gives rise to “good”, “bad”,
and “ugly” ZBCPs, depending on the form of the potential in
the real space [32].

We use the minimal single-band model to describe the 1D
superconductor-proximitized semiconductor nanowire with
intrinsic Rashba spin-orbit coupling and external Zeeman-
field-induced spin splitting in the form of a Bogoliubov-de
Gennes (BdG) Hamiltonian

Ĥ = 1

2

∫ L

0
dx�̂†(x)HNW�̂(x), (1)

with

HNW(ω) =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ + V (x)

)
τz

+ Vzσx + 	(ω,Vz ) − i
, (2)

where m∗ = 0.015me is the effective mass of an elec-
tron (me is the rest mass of an electron), μ is the
chemical potential, and 
 is an infinitesimal dissipation
parameter included to avoid singularities in G0(E ) from
resonant transmission. The wave function in Eq. (1) is
�̂(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†

↓(x),−ψ̂
†
↑(x))T in Nambu space,

with σx,y,z(τx,y,z ) being Pauli matrices in spin (particle-hole)
space. The Rashba spin-orbit coupling with strength αR is
perpendicular to the wire [54] and the magnetic field B is ap-
plied along the nanowire longitudinally such that the Zeeman
term Vz = 1

2 gμBB, where μB is Bohr magneton. 	(ω,Vz ) is a
superconducting self-energy (see Appendix A for details). We

FIG. 1. Schematic plots of the hybrid structures of a 1D
superconductor-semiconductor nanowire and an attached lead, with
different potentials. (a) Pristine nanowire: V (x) = 0. (b) Nanowire
with a SC-uncovered quantum dot V (x) = VD exp(−x2/σ 2

D ) with
length σD. (c) Nanowire with an inhomogeneous potential V (x) =
VD exp ( − x2/(2σ 2

D )). (d) Nanowire with random disorder V (x)

use the minimal model to simulate the nanowire instead of a
more complex 3D model because it is found that the minimal
model gives results very similar to complex models [47,55].
In addition, a more complex model will have many more
unknown parameters, making it less useful.

Besides the SC-SM nanowire itself, the normal lead at-
tached to the end of the nanowire (as the left green block
in Fig. 1) is where the tunneling conductance is measured.
A tunnel barrier induced at the interface of the normal-
superconductor (NS) junction can be described by replacing
V (x) in Eq. (2) with a boxlike potential Vbarrier(x) (as the
blue barrier potential at the left end of the nanowire in
Fig. 1) with the barrier potential height Ebarrier along with
λ(x) = 0, i.e., uncovered by the SC. Check Appendix C for
details.

We numerically compute the local differential tunneling
conductance G0 = dIL/dVL from the normal lead at the left
end through the NS junction by the scattering matrix (S ma-
trix) method [Eq. (3)]. Specifically, we use Python package
KWANT [56] to compute the differential conductance with
the in-built scattering matrix derived from the known Hamil-
tonian. The conductance at zero temperature can be expressed
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and computed by the scattering matrix elements as follows:

G0 = N − Tr(reer†
ee − rehr†

eh) (3)

in the unit of e2/h, where N is the number of the conduct-
ing channels in the lead, ree is the normal reflection matrix,
and reh is the normal reflection matrix. In our system with
only one-subband lead, N = 2 counts the two spin modes.
The conductance at finite temperature G(V ) can be further
calculated by the convolution of the zero-temperature conduc-
tance G0(E ) and the derivative of the Fermi-Dirac distribution
∂ f (E , T )/∂E , i.e.,

G(V ) = −
∫ ∞

−∞
G0(E )

∂ f (E − V, T )

∂E
dE

= −
∫ ∞

−∞
G0(E )

[
1

4T
sech2

(V − E

2T

)]
dE . (4)

The above is the formalism for simulating the differential
tunneling conductance in our results.

A. Potential of “good”/“bad”/“ugly” ZBCPs

The potential V (x) in Eq. (2) determines whether the ZBCP
belongs to the “good”, “bad”, or “ugly” type [32]. There are
four kinds of potentials we set up for numerical simulations to
discuss the quality factor of quantization for different types of
ZBCPs. First, Eq. (2) displays as a pristine nanowire that can
produce “good” ZBCPs above TQPT field when V (x) = 0,
as in Fig. 1(a). This Hamiltonian can definitely generate the
genuine MZMs in the topological regime [1–4]. However, in
the realistic experimental system, the unintentional potentials
can produce “bad” and “ugly” ZBCPs.

The “bad” ZBCPs are defined as those ZBCPs appearing
in the topologically trivial regime, resulting from the deter-
ministic spatially varying potential. These “bad” ZBCPs are
asscociated with so-called ABSs [33–43]. Such ABSs result
from unintended quantum dots created when the lead is at-
tached to the end of the nanowire. Such a quantum dot can
arise either from mismatch of Fermi energies between the
normal lead, semiconductor, and the superconductor or from
screened charged impurities or their combination [36,38]. In
our model, the quantum dot hosts a Gaussian potential at the
end of the nanowire, part of which is not covered by the parent
SC, as in Fig. 1(b). That is to say, the quantum dot potential is

V (x) = VD exp

(
− x2

σ 2
D

)
θ (σD − x), (5)

where VD is the dot barrier height and σD is the dot length.
Also, the parent SC is mathematically expressed as

�SC(x,Vz ) = �(Vz ) · θ (x − σD), (6)

where �(Vz ) has the same definition as Eq. (A2). The Heav-
iside step function θ (x) describes that the SC only covers
the nanowire outside of the quantum dot. A variation of the
quantum dot model with σ ′

D = √
2σD to replace σD in Eq. (5)

can occur where the quantum dot potential extends into the su-
perconductor as shown in Fig. 1(c). This can be accomplished
by dropping the factor �(x − σD) in both Eqs. (5) and (6).
Results for the case of a “bad” potential that do not specify an

σD should be understood as being obtained from calculations
which use this variant of the “bad” potential.

The ugly ZBCPs are defined as those ZBCPs showing up
in the trivial regime, induced by random strong disorder. The
typical potential that accounts for ugly ZBCPs is the on-site
disorder-induced random potential which follows an uncor-
related Gaussian distribution statistically with zero mean and
standard deviation σμ, i.e.,

V (x) = Vimp(x), 〈Vimp(x)〉 = 0,

〈Vimp(x)Vimp(x′)〉 = σ 2
μδ(x − x′), (7)

as in Fig. 1(d). Each set of ugly results in Sec. III C is based
on just one particular configuration of Vimp(x), which is unpre-
dictable contrary to the deterministic quantum dot potential in
Eq. (5). This random impurity potential can induce trivial ugly
ZBCPs which mimic “good” ZBCPs.

B. Wave functions

To determine the topological superconducting characteris-
tic of a one dimensional system, it is necessary to look at the
structure of the Majorana modes. Specifically, a topological
superconductor is characterized by spatially well-separated
Majorana wave functions [39,57,58]. On the other hand, the
ABSs display two overlapping wave functions at one end of
the nanowire [59], even we construct their wave functions
in the Majorana mode. The 4N component Nambu wave
function �(x) for an N-site system, corresponding to any
eigenenergy ω0 obtained from peaks of ρ(ω) in Eq. (A3),
can be obtained as the eigenstate of HNW(ω0) with eigen-
value ω0. In a clean or weakly disordered system, one
could determine the topological characteristic of the system
by a straightforward calculation of the topological invari-
ant [5,60,61]. However, this approach is not well-defined for
systems without a spectral or transmission gap, e.g., short
strongly disordered nanowires. The systems of interest here,
shown in Fig. 1, are systems with a few subgap states. In
this case, it is simpler to directly determine the topological
character of the system by analyzing the lo- energy wave
functions directly as we describe below.

Majorana mode wave functions, even for a topological
superconducting system of finite size, split into nonzero en-
ergy (ω0 = ±ε) eigenstates �ε (x) and �−ε (x) that are not
themselves Majorana (i.e., particle-hole symmetric). For a
low-energy eigenwave function �ε (x) corresponding to a
positive energy ε, one can use the particle-hole symmetry
to define an orthogonal wave function �−ε (x) = σyτy�

∗
ε (x),

which can be checked to be an eigenstate of HNW(−ε) with
eigenvalue −ε. Then we can reconstruct the particle-hole
symmetric Majorana wave functions as

�A(x) = 1√
2

[�ε (x) + �−ε (x)],

�B(x) = − i√
2

[�ε (x) − �−ε (x)], (8)

where �A,B(x) = (φ↑(x), φ↓(x), φ∗
↓(x),−φ∗

↑(x))T are mani-
festly particle-hole symmetric. Note that this recipe suffers
from a phase ambiguity of the eigenstate �ε (x) in the case
of a general class D Hamiltonian, where it needs to be refined.
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This is not a problem for our case where the BdG Hamiltonian
is real, which allows �ε (x) to be real. In general, �A,B(x) are
not the eigenfunctions of the BdG Hamiltonian, except when
ε = 0, they represent the MZMs. However, when ε is much
smaller than the superconducting gap, the off-diagonal matrix
element of the Hamiltonian HNW(ω = 0) between �A,B(x) is
suppressed by a factor proportional to ε. The matrix elements
of HNW(ω = 0) between these states and any other excited
states vanish as well. A system would be characterized as
topological if the densities |�α (x)|2 corresponding to the state
�α (x) are spatially separated.

If |�A(x)|2 and |�B(x)|2 are localized on both ends of the
nanowire without overlapping, then we have a pair of MZMs.
On the contrary, if |�A(x)|2 and |�B(x)|2 are clearly over-
lapped with each other, then the system hosts ABSs. When
one of |�A,B(x)|2 is localized on one end of the wire, while the
other one is localized in the middle of the wire, then this pair
can be quasi-Majorana bound states when they are partially
overlapped with each other [39,58,62].

C. Quality factors

In this subsection, we define the quality factors to quantify
the stability of the quantized conductance plateau, which is the
main focus of this paper. One of the most characteristic fea-
tures of an MZM is quantized tunneling conductance [51,63–
65]. Specifically, the zero-bias (i.e., Vbias = 0) conductance
from a tunneling contact with one or two open channels into
an MZM is predicted to be precisely quantized at T = 0 for
a sufficiently long topological wire even as the transmission
of the tunnel contact becomes vanishingly small [51,63–65].
This is counterintuitive because the junction resistance, which
can be estimated from the “normal”-state conductance GN , for
Vbias � �, diverges as the transmission of the tunnel contact
is reduced. We use quotation marks over “normal” here to
emphasize that this quantity is close to the actual normal-
state conductance only in the limit that the superconducting
gap is the smallest energy scale in the problem. However,
since this is the most convenient quantity to measure, we
will refer to this quantity as the normal-state conductance
in the rest of the draft. This large-series resistance should
decrease the conductance of the MZM, which contradicts the
theoretical quantization. Insight into this apparent counterin-
tuitive behavior is obtained by considering the analytic form
for conductance into a Majorana γ , which is weakly coupled
to the Majorana γ ′ at the other end [64]. One finds that the
conductance is given by

G0(V ) = 2e2

h

(2V 
)2

(V 2 − 4t2)2 + (2V 
)2
, (9)

where t is the splitting of the Majorana modes and 
 is the
tunnel broadening [64], which vanishes with the normal-state
conductance, i.e., GN ∼ (2e2/h)
/�. As the Majorana split-
ting t vanishes, the above conductance takes the form of a
Lorentzian with quantized height (2e2/h), but with a width

. This result is changed at finite temperature according to
Eq. (4), so the quantized height is reduced as T � 
 such that
it approaches G(V = 0) ∼ (2e2/h)
/T . The latter form is
more consistent with an expectation of a conductance limited
by the normal-state conductance GN .

FIG. 2. The tolerance factor for quantized conductance is ε =
0.05. (a) Black curve is the zero-bias conductance peak Gz versus
normal-metal conductance (above SC gap) GN . The quality factor
F ≡ GN,2/GN,1, where GN,1 and GN,2 are defined by the consecutive
normal-metal range for which the corresponding zero-bias peak is
quantized within [1 − ε, 1 + ε] in the unit of 2e2/h. (b) Black curve
is the zero-bias conductance peak Gz versus Zeeman field Vz. The
quality factor J ≡ VZ,2/VZ,1, where VZ,1 and VZ,2 are defined by the
consecutive Zeeman field range for which the corresponding zero-
bias peak is quantized within [1 − ε, 1 + ε] in the unit of 2e2/h

The theoretically expected behavior for the zero-bias
conductance into an MZM that was described in the last
paragraph is confirmed by the conductance Gz versus GN

plot for an ideal Majorana wire (similar to that described in
Sec. II A) shown in Fig. 2(a) . The so-called normal-state
conductance GN is ideally defined as the conductance with-
out superconductivity. Since it is often nontrivial to remove
superconductivity from a device without changing other fac-
tors, GN is practically measured (or calculated in theory) by
taking an average of the conductance at Vbias = ±Vlarge, where
Vlarge is a large bias voltage larger than the gap. It should
be pointed out that Vlarge should ideally be small compared
to the Fermi energy, so as not to affect the transmission
significantly. Unfortunately, the difference in the conductance
at positive and negative voltages confirms that this critierion
is often not satisfied leading to some (but not significant)
ambiguity in GN . The variation of GN in Fig. 2(a) is ob-
tained by varying the barrier height, which in the experiment
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FIG. 3. Numerical results for the “good” ZBCP. Parameters: α = 3.0 meV, �0 = 0.2 meV, Vc = 2.5 meV, L = 3.0 μm, μ = 0.5 meV,
λ = 1.0 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.118 meV. (a) Conductance false-color plot as a function of

bias voltage V and Zeeman field Vz, with the fixed tunneling barrier height at Ebarrier = 10 meV. (b) Conductance false-color plot as a function
of bias voltage V and tunneling barrier height Ebarrier, with the fixed Zeeman field at Vz = 1.5 meV. (c) Lowest-lying wave-function probability
density |�|2 as a function of nanowire position x, with fixed Vz = 1.5 meV and Ebarrier = 10 meV. (d) Quality factor F as a function of
temperature T for three different tolerance factors ε, with the fixed Vz = 1.5 meV. The inset figure gives an overall trend starting from T = 0.
At T = 10 mK, F = 3.25 for ε = 0.05. At T = 20 mK, F = 2.74 for ε = 0.1. (e) Conductance line cuts as a function of Zeeman field Vz for
three different bias voltages Vbias, with the fixed Ebarrier = 10 meV. The black dashed line marks Vz = 1.5 meV. (f) Conductance line cuts as a
function of tunneling barrier height Ebarrier for three different bias voltages Vbias, with the fixed Vz = 1.5 meV. (g) Zero-bias conductance Gz as
a function of normal-metal conductance GN for five different temperatures T , with the fixed Vz = 1.5 meV. (h) Quality factor J as a function
of temperature T for three different tolerance factors ε, with the fixed Ebarrier = 10 meV.

can be done by tuning a tunnel gate voltage [30,31] in
semiconductor setups or changing the tip-sample distance in
scanning tunneling microscopy (STM) [66]. Because of the
finite temperature used in the calculation, the conductance
Gz shown in Fig. 2(a) shows a nearly quantized plateau at
high values of the normal-state conductance GN , which then
decreases to zero linearly as GN is reduced to zero as ex-
pected based on the fundamental theory discussed in the last
paragraph.

The GN -independent quantized plateau is a signature of
MZMs. While the conductance into a superconductor without
an MZM can be tuned to quantization by varying GN and
other parameters, we do not expect the quantization to be ro-
bust. However, the conductance into an MZM is not precisely
quantized because of finite-temperature and finite-size effects.
In this paper, we propose to distinguish MZMs from other
superconducting bound states by quantifying the robustness
of the conductance plateau seen in Fig. 2(a). To do this, we
first identify the largest continuous interval [GN,1, GN,2] on
the x axis over which the zero-bias conductance Gz is within
a tolerance ε of quantization, i.e., |Gz − 1| < ε (in units of
2e2/h). We then assign a quality factor

F = GN,2

GN,1
(10)

as a degree to which the conductance into the MZM is quan-
tized. In Fig. 2(a), we set ε = 0.05 as an example, meaning as
long as the ZBCP is above 95% of 2e2/h and below 105% of
2e2/h [within pink region in Fig. 2(a)], then we take the ZBCP
as a well-quantized ZBCP. In this paper, we also demonstrate
the numerical results for ε = 0.10 and ε = 0.20 for compar-

ison. In some special cases, where the ZBCP over the visible
range is sectioned into several parts [e.g., Fig. 4(f)], we take
the largest consecutive normal-metal range to define GN,1 and
GN,2.

The conductance into an MZM should be similar to other
parameters as well because of the robustness of the topo-
logical phase. The Zeeman splitting Vz that is controlled by
tuning the applied magnetic field is one such parameter. While
there is no fundamental bound on the extent of the topological
phase in Vz, an MZM system associated with a reasonably
large topological gap is expected to be robust to changes of
Vz as long as the topological gap is not destroyed. Here, we
will quantify the robustness of the MZM to changes in the
Zeeman field using a quality factor J , which is defined in an
analogous way to the tunnel gate quality factor F defined in
the last paragraph. Figure 2(b) is the plot of ZBCP Gz versus
Zeeman field. This is the conductance line cut as in Fig. 3(e),
which can be extracted from Fig. 3(a) with only Vbias = 0. The
definition of quality factor J is similar to F as illustrated in the
previous paragraph, except that we change the normal-metal
conductance GN part to Zeeman field Vz for the quality factor
J . Formally, it is defined as J ≡ VZ,2/VZ,1, where [VZ,1,VZ,2]
is the range over which |Gz − 1| < ε in the unit of 2e2/h and
the tolerance factor for quantized conductance ε is a small
number. Same as Fig. 2(a), we set ε = 0.05, 5% difference
from quantized value 2e2/h as highlighted in the pink region
in Fig. 2(b), as an example. All the explanations for F can
also be applied to J as long as we replace GN,1 and GN,2 by
VZ,1 and VZ,2, respectively.

The definitions of F and J as presented so far in this
subsection are not defined in cases where the zero-bias
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FIG. 4. Numerical results for the “bad” ZBCP. Parameters: α = 2.51 meV, �0 = 0.2 meV, Vc = 2.1 meV, L = 3.0 μm, μ = 1.0 meV,
λ = 1.0 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.414 meV. The parameters for the quantum dot on the left end

are VD = 0.3 meV and σD = 0.15 μm. (a) Conductance false-color plot as a function of bias voltage V and Zeeman field Vz, with the fixed
tunneling barrier height at Ebarrier = 75 meV. (b) Conductance false-color plot as a function of bias voltage V and tunneling barrier height
Ebarrier, with the fixed Zeeman field at Vz = 0.87 meV. (c) Lowest-lying wave-function probability density |�|2 as a function of nanowire
position x, with fixed Vz = 0.87 meV and Ebarrier = 75 meV. (d) Quality factor F as a function of temperature T for three different tolerance
factors ε, with the fixed Vz = 0.87 meV. The inset figure gives an overall trend starting from T = 0. At T = 10 mK, F = 1.331 for ε = 0.05.
At T = 20 mK, F = 1.789 for ε = 0.1. (e) Conductance line cuts as a function of Zeeman field Vz for three different bias voltages Vbias,
with the fixed Ebarrier = 75 meV. The black dashed line marks Vz = 0.87 meV. (f) Conductance line cuts as a function of tunneling barrier
height Ebarrier for three different bias voltages Vbias, with the fixed Vz = 0.87 meV. (g) Zero-bias conductance Gz as a function of normal-metal
conductance GN for five different temperatures T , with the fixed Vz = 0.87 meV. (h) Quality factor J as a function of temperature T for three
different tolerance factors ε, with the fixed Ebarrier = 75 meV.

conductance Gz does not cross the quantized values. In this
case, we formally define F and J to be zero. In nontopo-
logical cases, where the zero-bias conductance Gz crosses
the quantized value, F and J are also slightly higher but
close to 1. In contrast, we will see from our numerical re-
sults in Sec. III that F and J can be much larger than 1
in the ideal case of low-temperature toplogical supercon-
ductors. The main goal of our paper is to study F and
J for various models to determine if they can be used
to distinguish MZMs from other nontopological sources of
ZBCPs.

III. RESULTS

In this section, we present conductance plots for various
tunnel gate strengths and magnetic field strengths to determine
the robustness of the ZBCP quantization to the variety of per-
turbations. The finite-temperature conductance plots will be
used to determine the quality factors F and J for the ZBCP for
a variety of models. The quality factors F and J for the ideal
MZM will turn out to be limited by temperature, topological
gap, and length. The goal of this section will be to compare
this quality factor for the so-called “good” ZBCP (i.e., ideal
MZM) with other nontopological models for the ZBCP (i.e.,
the “bad” and “ugly” ZBCPs discussed in Sec. II A). Since
the quantities plotted in this section are the typical ones that
are measured in most MZM experiments [16,19,30,31,66], we
believe that the conclusions about F and J obtained from these
results can directly be applied to experiments on MZMs, as we
will discuss in Sec. IV.

A. “Good” ZBCP

ZBCPs associated with MZMs at the ends of topolog-
ical superconducting nanowires are referred to as “good”
ZBCPs [32]. Theoretically, they can be produced above the
TQPT field in the simple pristine SC-SM nanowire model as
Fig. 1(a), which is the setup for the numerical results in Fig. 3.
While this model is not particularly relevant for experiment
and one expects at least weak versions of the effects shown in
Figs. 1(b)–1(d) to appear in reality, the results in this subsec-
tion will serve as a reference for the signatures of a topological
superconductor.

Figure 3(a) shows the conductance (at zero temperature) as
a false-color plot versus the bias voltage V and Zeeman field
Vz. As expected from previous works [51,63–65], we observe
that a nearly quantized ZBCP appears at a Zeeman field above
the TQPT field Vz > VTQPT = 1.118 meV. The topologically
nontrivial origin of this ZBCP can be seen from Fig. 3(c),
which shows the lowest-lying wave-function probabilities
|�A,B(x)|2 (see Sec. II B) at Vz = 1.5 meV > VTQPT [yellow
dashed line in Fig. 3(a)]. The localization of |�A,B(x)|2 at
opposite ends of the wire confirms that the ZBCP at Vz =
1.5 meV arises from topological MZM modes. Unfortunately,
the spatial structure of the wave function is not accessible in
a transport experiment in a nanowire. On the other hand, as
discussed in the Introduction and Sec. II C, the quantization
of the ZBCP associated with a topological MZM should be
robust to changes in the barrier height. This is consistent with
the results shown in Fig. 3(b), which shows the conductance
false-color plot as a function of bias voltage V and tunneling
barrier height Ebarrier at the fixed Zeeman field Vz = 1.5 meV.
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FIG. 5. Numerical results for the “bad” ZBCP. Parameters: α = 2.5 meV, �0 = 0.2 meV, Vc = 1.2 meV, L = 3.0 μm, μ = 1.0 meV,
λ = 0.2 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.020 meV. The parameters for the inhomogeneous potential

on the left end are VD = 1.2 meV and σD = 0.4 μm (σ ′
D = √

2 × 0.4 μm). (a) Conductance false-color plot as a function of bias voltage V
and Zeeman field Vz, with the fixed tunneling barrier height at Ebarrier = 10 meV. (b) Conductance false-color plot as a function of bias voltage
V and tunneling barrier height Ebarrier, with the fixed Zeeman field at Vz = 0.9 meV. (c) Lowest-lying wave-function probability density |�|2
as a function of nanowire position x, with fixed Vz = 0.9 meV and Ebarrier = 10 meV. (d) Quality factor F as a function of temperature T for
three different tolerance factors ε, with the fixed Vz = 0.9 meV. The inset figure gives an overall trend starting from T = 0. At T = 10 mK,
F = 2.148 for ε = 0.05. At T = 20 mK, F = 1.785 for ε = 0.1. (e) Conductance line cuts as a function of Zeeman field Vz for three different
bias voltages Vbias, with the fixed Ebarrier = 10 meV. The black dashed line marks Vz = 0.9 meV. (f) Conductance line cuts as a function of
tunneling barrier height Ebarrier for three different bias voltages Vbias, with the fixed Vz = 0.9 meV. (g) Zero-bias conductance Gz as a function of
normal-metal conductance GN for five different temperatures T , with the fixed Vz = 0.9 meV. (h) Quality factor J as a function of temperature
T for three different tolerance factors ε, with the fixed Ebarrier = 10 meV.

The plot shows that the height of the ZBCP associated with
the MZM is largely unchanged with increasing tunnel bar-
rier height Ebarrier, while the width of the ZBCP decreases.
This is further confirmed by the line cuts from Fig. 3(b) at
Vbias = 0 that are shown in Fig. 3(f), where the ZBCP height,
Gz, is found to change by less than 5% from quantization.
Figure 3(f) also shows line cuts from Fig. 3(b) at Vbias =
±0.2 meV. In contrast to the ZBCP height, these line cuts,
which may be interpreted as the normal-state conductance,
change significantly with the tunnel barrier height Ebarrier. In
fact, the tunnel barrier height Ebarrier is not directly compara-
ble to anything measurable in experiments since tunnel gates
have so-called lever arms that are determined by complicated
capacitance structures. On the other hand, the normal-state
conductance GN determined by the plots from Fig. 3(f) at
Vbias = ±0.2 meV provides a way to quantify the tunnel bar-
rier height in a way that is directly comparable to experiments.
One subtlety that arises in semiconductor systems is that the
conductance at the nonzero biases in Fig. 3(f) can be different
in semiconductor systems, where the Fermi energy could be
comparable to the superconducting gap � ∼ 0.2 meV. This
is remedied by defining GN to be the average between the
conductances at Vbias = ±0.2 meV.

Thus, to obtain a result that can be directly compared to
experiments, we plot Gz versus GN in Fig. 3(g), while keeping
Vz = 1.5 meV, so the wire is in the topological supercon-
ducting phase [yellow dashed line in Fig. 3(a)]. Consistent
with our discussion in the previous paragraph about Fig. 3(f),
we find that the ZBCP height does not change significantly
as GN is reduced at temperature T = 0. This is in contrast

to the results at finite temperature T > 0 that are obtained
using Eq. (4) and show that Gz goes to zero as GN decreases,
as expected from the discussion in Sec. II C. The results in
Fig. 3(g) make it clear that the robustness of the quantized
ZBCP to changing the tunnel barrier, even in the case of
ideal MZMs, would be limited by the temperature at which
the measurement is performed. The degree of robustness of
the ZBCP quantization can be characterized by the quality
factor F that was defined in Sec. II C as the relative size
of the range of GN where the conductance Gz is within a
tolerance ε from quantization. The plot of the quality factor
F versus temperature shown in Fig. 3(d), shows that while
the quality factor F associated with MZMs can be quite large
(i.e., more than 80 at T = 0), F decreases quite rapidly as
the temperature T becomes comparable to the topological su-
perconducting gap. The main figure in Fig. 3(d) is to show the
detailed variations of F in the experimental temperature range
from T = 2 mK to T = 30 mK. The inset figure starting from
T = 0 gives an overall trend to show how sharply F decreases
from zero temperature to finite temperature. Since we only
want to demonstrate how sharp the change of F is by the
temperature variations, the tick numbers in the inset figure are
not the key points here. While the quantitative value of F
increases with the increasing tolerance factor ε at which the
quality factor is calculated, the qualitative behavior does not
appear to be significantly affected by the value of ε.

Ideal MZMs are expected to arise in a topological su-
perconducting phase that should be robust to variations in
the parameter such as the Zeeman potential controlled by
the applied magnetic field. This is consistent with the result
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FIG. 6. Numerical results for the ugly ZBCP. Parameters: α = 2.5 meV, �0 = 0.2 meV, Vc = 1.2 meV, L = 3.0 μm, μ = 1.0 meV, λ =
0.2 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.020 meV. The parameter for the on-site random potential is

σμ = 2.0 meV. (a) Conductance false-color plot as a function of bias voltage V and Zeeman field Vz, with the fixed tunneling barrier height at
Ebarrier = 10 meV. (b) Conductance false-color plot as a function of bias voltage V and tunneling barrier height Ebarrier, with the fixed Zeeman
field at Vz = 0.8 meV. (c) Lowest-lying wave-function probability density |�|2 as a function of nanowire position x, with fixed Vz = 0.8 meV
and Ebarrier = 10 meV. (d) Quality factor F as a function of temperature T for three different tolerance factors ε, with the fixed Vz = 0.8 meV.
The inset figure gives an overall trend starting from T = 0. At T = 10 mK, F = 1.126 for ε = 0.05. At T = 20 mK, F = 1.352 for ε = 0.1.
(e) Conductance line cuts as a function of Zeeman field Vz for three different bias voltages Vbias, with the fixed Ebarrier = 10 meV. The black
dashed line marks Vz = 0.8 meV. (f) Conductance line cuts as a function of tunneling barrier height Ebarrier for three different bias voltages
Vbias, with the fixed Vz = 0.8 meV. (g) Zero-bias conductance Gz as a function of normal-metal conductance GN for five different temperatures
T , with the fixed Vz = 0.8 meV. (h) Quality factor J as a function of temperature T for three different tolerance factors ε, with the fixed
Ebarrier = 10 meV.

for the zero-bias conductance seen in Fig. 3(e), where we
find that the zero-bias (i.e., Vbias = 0) conductance starts out
small in the nontopological regime (i.e., Vz < VTQPT) but then
sharply rises to a quantized plateau for Vz > VTQPT. Similar to
the robustness to the tunnel barrier height seen in Fig. 3(f),
the result in Fig. 3(e) shows that the ZBCP associated with
a topological MZM is expected to be quite robust to vari-
ations in the Zeeman potential. Following the discussion in
Sec. II C, this robustness can be quantified through defining a
parameter J , which is plotted as a function of temperature in
Fig. 3(h). As with the case of the quality factor F associated
with tunnel gate robustness, the Zeeman-field quality factor J
also decreases with temperature in a way that is qualitatively
independent of the tolerance ε used in the definition of J .

B. “Bad” ZBCP

Let us now consider the quality factor of so-called “bad”
ZBCPs, which arise as a result of an inhomogeneous potential
near the end of the nanowire as shown in Figs. 1(b) and 1(c).
It has been shown previously that such an inhomogeneous
potential can lead to ZBCPs [36], which can have nearly
quantized conductance [39]. Therefore, it is interesting to
understand if the robustness of the quantization is able to
distinguish between such ABSs that give rise to “bad” ZBCPs
and the topological MZMs discussed in the previous subsec-
tion.

The conductance color plot in Fig. 4(a), based on the setup
in Fig. 1(b), clearly shows a pair of conductance peaks at
finite energy merge together into a ZBCP that is qualitatively

quite similar to the topological result shown in Fig. 3(a).
Considering the zero-bias conductance line cut shown in
Fig. 4(e), we observe that unlike the ideal MZM case, the
zero-bias conductance below the TQPT at Vz = 0.87 meV
[marked by the black dashed line in Fig. 4(e) or the yellow
dashed line in Fig. 4(a)] is near the quantized result 2e2/h
predicted for the topological case. A closer examination of
the ZBCP in Fig. 4(a) suggests that the reduction of the ZBCP
seen in Fig. 4(e) is likely a result of splitting of the ZBCP
for Vz > 0.87 meV. To study if the tunnel gate robustness
of MZMs seen in the last subsection applies to this nearly
quantized ZBCP, we study the ZBCP height with varying
tunnel barrier height. As seen from Fig. 4(b), we see that the
ZBCP height appears to remain nearly constant as the width of
the ZBCP changes, quite similar to the case of ideal MZMs.
However, a closer examination of the quantization using the
Vbias = 0 line cut shown in Fig. 4(f) shows that the ZBCP
height at Vz = 0.87 meV varies by a substantial amount as the
tunnel barrier is varied. This variation can also be observed
by considering the ZBCP height as a function of the normal-
state conductance shown in Fig. 4(g). In contrast to the case
of the ideal MZM discussed in the last paragraph, we find
that the ZBCP height overshoots the quantized value at low
temperatures and small normal-state conductance GN . This is
consistent with the relatively small value of the quality factor
F compared to the topological case as seen in Fig. 4(d). The
quality factor F for ε = 0.05 at 10 mK in this case is below
1.5. Interestingly, the quality factor F can become quite large
if we choose a tolerance of ε = 0.2, which can be expected
from the fact that the conductance Gz in Fig. 4(g) remains

094504-9



LAI, DAS SARMA, AND SAU PHYSICAL REVIEW B 106, 094504 (2022)

FIG. 7. Numerical results for the ugly ZBCP. Parameters: α = 2.5 meV, �0 = 0.2 meV, Vc = 1.2 meV, L = 3.0 μm, μ = 1.0 meV, λ =
0.2 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.020 meV. The parameter for the on-site random potential is

σμ = 2.0 meV. (a) Conductance false-color plot as a function of bias voltage V and Zeeman field Vz, with the fixed tunneling barrier height at
Ebarrier = 10 meV. (b) Conductance false-color plot as a function of bias voltage V and tunneling barrier height Ebarrier, with the fixed Zeeman
field at Vz = 0.66 meV. (c) Lowest-lying wave-function probability density |�|2 as a function of nanowire position x, with fixed Vz = 0.66 meV
and Ebarrier = 10 meV. (d) Quality factor F as a function of temperature T for three different tolerance factors ε, with the fixed Vz = 0.66 meV.
The inset figure gives an overall trend starting from T = 0. At T = 10 mK, F = 1.490 for ε = 0.05. At T = 20 mK, F = 2.638 for ε = 0.1.
(e) Conductance line cuts as a function of Zeeman field Vz for three different bias voltage Vbias, with the fixed Ebarrier = 10 meV. The black
dashed line marks Vz = 0.66 meV. (f) Conductance line cuts as a function of tunneling barrier height Ebarrier for three different bias voltages
Vbias, with the fixed Vz = 0.66 meV. (g) Zero-bias conductance Gz as a function of normal-metal conductance GN for five different temperatures
T , with the fixed Vz = 0.66 meV. (h) Quality factor J as a function of temperature T for three different tolerance factor ε, with the fixed
Ebarrier = 10 meV.

somewhat close to quantized. These observations together
with the weak splitting of the ZBCP seen in Fig. 4(a) can be
understood in terms of the Majorana decompositions of the
low-energy wave functions shown in Fig. 4(c). These wave
functions show clearly that the system is nontopological be-
cause both Majorana components are strongly overlapping at
the same end. However, one of the components has a stronger
spatial modulation, suggesting having a strong weight at a
different Fermi point. This suppresses the overlap between the
two states and ensures that only one of the states can couple
strongly to the lead, explaining the observations made about
Figs. 4(a) and 4(g). Because of the splitting of the ZBCP as a
function of Zeeman field seen in Fig. 4(a), the ZBCP quantiza-
tion in Fig. 4(e) is found to survive over a rather narrow range
of Zeeman potential Vz. This leads to the suppressed value of
the quality factor J seen in Fig. 4(h) relative to the topological
value.

Figure 1(c) shows another inhomogeneous potential con-
figuration that leads to the conductance shown in Fig. 5
with a “bad” ZBCP. While the conductance peaks shown
in Fig. 5(a) is qualitatively similar to the “bad” ZBCP in
Fig. 4(a) that we discussed so far, the quantization of the
ZBCP at Vz = 0.9 meV, based on Figs. 5(b) and 5(d)–5(g)
appears more robust relative to Fig. 4. In fact, the quality
factor F in Fig. 5(d) associated with the ZBCP at temperature
of 20 mK and ε = 0.1 is 1.79, which is closer to the ideal
value of 2.74 in Fig. 3(d) relative to the previous “bad” ZBCP
[Fig. 4(d)]. As will be discussed in more detail later, this can
be understood from the fact that the Majorana decomposition
[Fig. 5(c)] shows a pair of partially separated modes, which

have been described as quasi-Majoranas [39]. Such separated
segments between spatially separated MZMs may be thought
of as topological in their own right to the extent that the
overlap may be ignored and the lead (at the left end in this
case) is only coupled to one Majorana mode but not the other.
This explains the high value of F quality factor in this case
of “bad” ZBCP. The J quality factor shown in Fig. 5(h) also
turns out to be intermediate between the ideal case in Fig. 3(h)
and the previous “bad” ZBCP shown in Fig. 4(h).

C. Ugly ZBCP

The last scenario considered in this paper is the case where
a disorder potential of the type shown in Fig. 1(d), as dis-
cussed in Sec. II A, generates a ZBCP by chance as seen in
Figs. 6–9(a). Such ZBCPs would be present in only a small
fraction of disorder realizations with the same parameters.
These plots show results that span the set of possibilities,
though their occurrence is somewhat rare. More generic re-
sults that do not show any quantization can be found in the
Supplemental Material [67]. All the cases of Figs. 6–9(a)
show conductance peaks that may be interpreted as gap clo-
sure or bound states [44]. While a ZBCP arises in all these
plots below the nominal TQPT at Vz = VTQPT, Figs. 6–7(a)
show the gap closing feature merge into the ZBCP in a way
similar to the cases of “good” and “bad” ZBCPs [i.e., Figs. 3–
5(a)], while Figs. 8–9(a) show a separation between the ZBCP
and the gap closing peaks. Interestingly, the Vbias = 0 line
cuts shown in Figs. 6–9(e) show that all the ZBCPs appear-
ing in Figs. 6–9(a) approach close to the quantized value in
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FIG. 8. Numerical results for the ugly ZBCP. Parameters: α = 2.5 meV, �0 = 0.2 meV, Vc = 1.2 meV, L = 5.0 μm, μ = 1.0 meV, λ =
0.2 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.020 meV. The parameter for the on-site random potential is

σμ = 1.0 meV. (a) Conductance false-color plot as a function of bias voltage V and Zeeman field Vz, with the fixed tunneling barrier height
at Ebarrier = 10 meV. (b) Conductance false-color plot as a function of bias voltage V and tunneling barrier height Ebarrier, with the fixed
Zeeman field at Vz = 0.95 meV. (c) Lowest-lying wave-function probability density |�|2 as a function of nanowire position x, with fixed
Vz = 0.95 meV and Ebarrier = 10 meV. (d) Quality factor F as a function of temperature T for three different tolerance factors ε, with the fixed
Vz = 0.95 meV. The inset figure gives an overall trend starting from T = 0. At T = 10 mK, F = 1.084 for ε = 0.05. At T = 20 mK, F = 0
for ε = 0.1. (e) Conductance line cuts as a function of Zeeman field Vz for three different bias voltage Vbias, with the fixed Ebarrier = 10 meV.
The black dashed line marks Vz = 0.95 meV. (f) Conductance line cuts as a function of tunneling barrier height Ebarrier for three different bias
voltages Vbias, with the fixed Vz = 0.95 meV. (g) Zero-bias conductance Gz as a function of normal-metal conductance GN for five different
temperatures T , with the fixed Vz = 0.95 meV. (h) Quality factor J as a function of temperature T for three different tolerance factors ε, with
the fixed Ebarrier = 10 meV.

varying degrees. Figure 6(e) shows a somewhat broad plateau
of ZBCP, which shows significant deviations from quantiza-
tion that is quantified by the vanishing quality factor J at
ε = 0.05 plotted in Fig. 6(h). Figure 7(e) shows quantized
ZBCPs limited to small ranges, with a strong variation of
the zero-bias conductance value between the quantized peaks
that give rise to a very low quality factor J � 1.2 even when
the tolerance factor is ε = 0.2. Figure 8(e) shows a nearly
quantized plateau, which only approaches quantization in the
vicinity of the TQPT field. Finally, Fig. 9(e) shows a nearly
quantized ZBCP, which is limited to a small range of Zeeman
potentials that cannot be considered a plateau. Figures 6–9(b)
show the variation of the height of the ZBCP for the case
where the Zeeman field is chosen near the peak of the ZBCP
(i.e., dashed line) in Figs. 6–9(a) while the barrier height is
varied. Figures 6–7(b) show that the ZBCP splits as the peak
is reduced, revealing that the ZBCP was indeed nontopologi-
cal, as can be confirmed from the Majorana decompositions
shown in Figs. 6–7(c). However, these ZBCP splittings in
Figs. 6–7(b) can merge and mimic zero-bias peaks when the
finite-temperature effect kicks in, preventing ZBCPs to vary
sharply as temperature changes, as in Figs. 6–7(g), which are
opposite to what we have seen in Figs. 3–5(g). This is why we
do not observe a sharp drop from the zero-temperature value
of F in Figs. 6–7(d) to a finite-temperature one, and instead
observe almost flat profiles of F values as the temperature
changes for ε = 0.1 and ε = 0.2. Due to their nontopologi-
cal nature of the ZBCPs, the quality factors F at T = 0 are
much smaller (below 3) in Figs. 6–7(d) compared to other
topological cases [Figs. 3, 5, 8, and 9(d)]. With the apparent

overlapping wave functions localized at one end in Fig. 6(c),
the robustness of the ZBCP to changes in the tunnel barrier
height cannot sustain at a practically measurable temperature
of 20 mK, which is quantified to be F = 0 for ε = 0.05, indi-
cating the complete lack of quantization for this parameter. On
the other hand, the partially overlapping Majorana modes in
Fig. 7(c), which exhibit a bit more topological character com-
pared to the previous case, reflect this part on the quality factor
F—the value is F = 1.36 at T = 20 mK for ε = 0.05.

In contrast, Fig. 8(b) shows the results of a disorder config-
uration where a ZBCP remains unsplit even under changes
of the barrier height. This is consistent with the Majorana
decomposition plotted in Fig. 8(c), which shows a pair of sep-
arated Majoranas indicating a topological state. However, the
rather strong delocalization of the Majorana wave functions
implies that the tunneling conductance into these Majoranas
will be rather weak. The result is that the ZBCP height plotted
in Fig. 8(g) turns out to be quantized only at temperatures
below 10 mK. This is a result of the fact that the nearly
quantized ZBCP in Fig. 8 occurs only slightly below the
nominal TQPT, i.e., Vz ∼ VTQPT. Thus, the result shown in
Fig. 8 is better interpreted as the result of a reduction of the
critical Zeeman field to reach the TQPT field as a result of the
disorder potential. While disorder typically tends to suppress
the topological phase and increase VTQPT, it has been known to
reduce the TQPT in rare fluctuations [68]. Finally, the ZBCP
height for the disorder configuration plotted in Fig. 9(g) shows
a plateau that appears almost as robust as the topological
case shown in Fig. 3. This is quantified by the value of the
quality factor F plotted in Fig. 9(d) at T = 20 mK, ε = 0.05
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FIG. 9. Numerical results for the ugly ZBCP. Parameters: α = 2.5 meV, �0 = 0.2 meV, Vc = 1.2 meV, L = 5.0 μm, μ = 1.0 meV, λ =
0.2 meV, and γ = 10−4 meV. The TQPT field is at VTQPT =

√
λ2 + μ2 = 1.020 meV. The parameter for the on-site random potential is

σμ = 2.0 meV. (a) Conductance false-color plot as a function of bias voltage V and Zeeman field Vz, with the fixed tunneling barrier height at
Ebarrier = 10 meV. (b) Conductance false-color plot as a function of bias voltage V and tunneling barrier height Ebarrier, with the fixed Zeeman
field at Vz = 0.8 meV. (c) Lowest-lying wave-function probability density |�|2 as a function of nanowire position x, with fixed Vz = 0.8 meV
and Ebarrier = 10 meV. (d) Quality factor F as a function of temperature T for three different tolerance factors ε, with the fixed Vz = 0.8 meV.
The inset figure gives an overall trend starting from T = 0. At T = 10 mK, F = 1.624 for ε = 0.05. At T = 20 mK, F = 1.419 for ε = 0.1.
(e) Conductance line cuts as a function of Zeeman field Vz for three different bias voltage Vbias, with the fixed Ebarrier = 10 meV. The black
dashed line marks Vz = 0.8 meV. (f) Conductance line cuts as a function of tunneling barrier height Ebarrier for three different bias voltages
Vbias, with the fixed Vz = 0.8 meV. (g) Zero-bias conductance Gz as a function of normal-metal conductance GN for five different temperatures
T , with the fixed Vz = 0.8 meV. (h) Quality factor J as a function of temperature T for three different tolerance factors ε, with the fixed
Ebarrier = 10 meV.

being closer to that of the ideal case shown in Fig. 3 at T =
20 mK. The nearly topological behavior seen from ZBCP
height can be cross-checked from the Majorana decomposi-
tion shown in Fig. 9(c), which shows that the left Majorana
wave function is spatially separated from the right wave
function and should therefore be considered to be in the topo-
logical regime. One should note, however, that Fig. 9 shows
a disorder configuration where the right Majorana would not
be accessible to tunneling and will therefore fail the test of
end-to-end conductance correlation between zero modes. This
is, however, not a problem for several schemes for quantum
computation [39].

IV. DISCUSSION

A. Topological characterization based on the quality factor F

Let us now assess when the measured values of the quality
factor F can allow us to distinguish the case of topological
(i.e., “good”) MZMs from the “bad” and “ugly” ZBCPs that
can arise from end quantum dots and disorder. If we focus
on the quality factor F in the most ideal case,which is set by
choosing the smallest value ε = 0.05 and the lowest temper-
ature T ∼ 0 [i.e., insets in panel (d) of Figs. 3–9], we find
that the ideal MZM is predicted to reach an F in excess of
80, while this ideal value of the quality factors in the other
cases (i.e., the “bad” and the “ugly” cases) remain below 20.
This ideal value of the quality factor F , unfortunately, is not
measurable in a finite-temperature experiment. The plots in
panel (d) of Figs. 3–9 show the quality factor over a more
realistic range of temperatures. Looking back at Fig. 3(d), we

see that even measurements performed on an ideal MZM at
a low temperature of 10 mK (i.e., T = 0.001 meV) can only
measure a quality factor of 3.3 for ε = 0.05, which is much
below the T ∼ 0 value of 84. The quality factor F for the
“bad” and “ugly” cases are similarly reduced to be below 2
at T ∼ 10 mK for ε = 0.05. The significant reduction of the
quality factor at temperatures that are practical for transport
measurements potentially could make it difficult to distinguish
between topological and nontopological MZMs. However, as
already mentioned when discussing results for the “bad” and
“ugly” cases, the “good”-“bad”-“ugly” paradigm is more of a
classification of ZBCPs based on microscopic models rather
than their ultimate topological characteristics. More specifi-
cally, an examination of the wave functions plotted in Figs.
3–9(c) reveals that many of the systems classified as “bad”
and “ugly” based on models show spatially separated MZM
wave functions that allow them to be classified as topological.
While this occurs in more than one of the figures shown in this
paper, these are rare for devices under the “bad” and “ugly”
models, unless one specifically tunes the device to obtain a
magnetic-field-stable ZBCP. One can find more generic exam-
ples of “bad” and “ugly” models with lower F values that do
not demonstrate separated wave functions in the Supplemental
Material [67]. In fact, of the results presented in this paper,
only Figs. 4, 6, and 7 present truly nontopological results.
These results show a quality factor F below 1.5 at 10 mK for
ε = 0.05. While the ideal topological “good” ZBCP in Fig. 3
gives F = 3.25 at 10 mK for ε = 0.05, which is way above
1.5, a threshold of F to distinguish topological ZBCPs can
be carefully determined by the statistical distribution of the F
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FIG. 10. Statistical histogram for “bad” and “ugly” ZBCPs at
T = 10 mK and ε = 0.05. (a) Blue dots: Number of cases whose
quality values Fn (n denotes each case) are larger than a given F
value on the x axis. The data can be found in the Supplemental
Material [67]. Red dashed curve: Complementary cumulative distri-
bution function (CCDF) is determined by fitting the blue dot data
with a three-parameter metalog distribution. (b) Probability density
function (PDF) is the (negative) derivative of the CCDF shown in (a).
Inset: Regular histogram for the occurrence times with the bin width
of 0.5 corresponding to the cumulative histogram in the main figure.
The distribution from 0 to 1 is meaningless based on the definition of
F in Eq. (10).

values for the nontopological “bad” and “ugly” cases (see the
extended data in Supplemental Material [67]).

The results of F values for the various models studied here
can be summarized by the statistical distributions plotted in
Figs. 10 and 11. The blue dots in Figs. 10(a) and 11(a) show
the complementary cumulative distribution function (CCDF)
from the values of F . This plot is obtained with n along the
y axis and Fn along the x axis, where Fn are the F values
from the simulation listed in descending order. The CCDF at
a particular F represents the probability that a nontopological
ZBCP can have an quality factor in excess of F . The red
dashed curve in Figs. 10(a) and 11(a) are determined by fitting
the CCDF using a three-parameter metalog distribution [69] to
the points with F > 1. The corresponding probability density
function (PDF), which provides a sense of the probability
of obtaining a particular F value and can be obtained from
the fit to the CCDF is shown in Figs. 10(b) and 11(b). The
insets of this figures show the simple histogram obtained
from the F data directly. However, it should be noted that the

FIG. 11. Statistical histogram for “bad” and “ugly” ZBCPs at
T = 20 mK and ε = 0.1. (a) Blue dots: Number of cases whose
quality values Fn (n denotes each case) are larger than a given F
value on the x axis. The data can be found in the Supplemental
Material [67]. Red dashed curve: Complementary cumulative distri-
bution function (CCDF) is determined by fitting the blue dot data
with a three-parameter metalog distribution. (b) Probability density
function (PDF) is the (negative) derivative of the CCDF shown in (a).
Inset: Regular histogram for the occurrence times with the bin width
of 0.5 corresponding to the cumulative histogram in the main figure.
The distribution from 0 to 1 is meaningless based on the definition of
F in Eq. (10).

histogram from such a finite data set is strongly dependent on
the bin sizes used to determine the histogram. The PDF ob-
tained from the fits may be thought of as interpolations of the
histogram.

Note that the data points in Figs. 10(a) and 11(a) either
satisfy the constraint F > 1 [follows from Eq. (10)] for all
cases where the ZBCP height reaches within a threshold ε

of the quantized value or are set to F = 0. The F = 0 points
represent the cases where the ZBCP remains below quantiza-
tion as F = 0. Though the data points in Figs. 10(a) and 11(a)
contain a significant number of F = 0 cases, these represent
only a small fraction of the several hundred F = 0 cases in
our simulations. Specifically, to reduce the arbitrariness asso-
ciated with sampling the high-dimensional parameter space in
our model, we have restricted ourselves to parameters that can
lead to a ZBCP whose height reaches within the threshold ε

of the quantized value. For disordered samples (ugly cases),
this still leaves the possibility of disorder realizations hav-
ing F = 0 (i.e., not reaching quantization) even when other
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realizations for the same parameter have F > 1. These are the
F = 0 cases contained in the plots of Figs. 10(a) and 11(a).
The range of the dashed lines fitted to the CCDF for F < 1
should be thought of as an interpolation to F = 0. Since all
F < 1 represent ZBCPs below quantization and therefore are
not candidates for a topological phase, the distribution of val-
ues of 0 � F < 1 is irrelevant as long as the total probability
in this range is preserved.

Figure 10(a) shows that there is no nontopological case
(“bad” and “ugly”) that exhibits a quality factor F larger than
3, while the occurrence time for F > 2 is already rare. With
the extended data of “good” ZBCPs, which all demonstrate
F > 3 at T = 10 mK for ε = 0.05 (summarized on the first
page of the pdf file of the Supplemental Material [67]), the
cumulative histogram for the trivial ZBCPs in Fig. 10(a) sug-
gests a threshold of approximately F = 3 would be sufficient
to separate topological and nontopological ZBCPs. Based on
the CCDF in Fig. 10(a), one can estimate the probability of
a false positive, i.e., a nontopological ZBCP with a quality
factor above F would be less than 1%. While this estimate
depends on how many F = 0 cases we kept, one can be
more conservative by restricting to only ZBCPs within the
quantized range. In this case, since none of the 17 F > 1 cases
in Fig. 10(a) exceed the threshold, the probability of a false
positive within the quantized range is less than 1%.

The demanding 10 mK temperature regime discussed in
the last paragraph may be relaxed to 20 mK (which is close
to the temperature in current experiments) by increasing the
tolerance factor ε associated with F to ε = 0.1. Similar to
the analysis of the previous paragraph, using the statistical
analysis in Fig. 11, we determine a threshold of F = 2.5
for ε = 0.1 at T = 20 mK. With this threshold, this false-
positive case (i.e., the nontopological case whose quality
factor exceeds the threshold) only accounts for 3.3% of the
data set of nontopological samples in Fig. 11(a), giving rise
to a precision rate of 96.7% to distinguish the nontopologi-
cal ZBCPs from topological ZBCPs. This, while lower than
the T = 10 mK case, is still substantial, given that near-
quantized ZBCPs are quite rare even in current experiments.
To get a sense of this distinction, one can find that the ideal
MZM shown in Fig. 3 is associated with an F of 2.74 for
ε = 0.1 at T = 20 mK, while all the presented nontopolog-
ical cases [i.e., Figs. 4–9] are below 1.8, except for Fig. 7.
Considering that the quality factor in Eq. (10) is defined to
satisfy F > 1, one should really consider (F − 1) > 0 as the
true quality factor. With this redefinition, most of the data
at (F − 1) < 0.8 are almost a factor of 2 away from the
threshold F < 2.5.

Before we understand the outlier (i.e., case with F > 2.5)
in Fig. 11(a), detailed in Fig. 7, let us consider the data
that linger around F = 2.0 (at T = 10 mK for ε = 0.05)
in Fig. 10(a), which demonstrate partially separated quasi-
Majoranas that can be classified between being topological
and nontopological. In short nanowires, which are most of the
current experimental setups, MZMs appear as partially sepa-
rated quasi-Majoranas, which have been proposed to be able
to implement braiding [39]. Nonetheless, quasi-Majoranas are
nontopological in the sense that the two Majorana modes
would not localize ideally at both ends, which will fail the
examination of the end-to-end conductance correlation [59].

An example can be visualized in Fig. 5, which is labeled as a
model of a “bad” ZBCP with a F value of 2.15 for ε = 0.05
at T = 10 mK. Since Fig. 5(c) shows that the Majorana wave
functions in this system are quite well-separated but inac-
cessible from the right end, this case would correspond to
the quasi-Majorana scenario [39]. Because of the separated
MZMs, one can interpret this scenario as having a short seg-
ment of a topological superconductor at one end of the wire.

The outlier in Fig. 11(a) corresponds to the ugly ZBCP
results in Fig. 7, which is associated with a value of F = 2.64
for ε = 0.1 at T = 20 mK. It is an example of the ugly ZBCP
with a quality factor F larger than the threshold that are
mistakenly distinguished as topological, but does not possess
topological characters based on its Majorana-decomposed
wave functions (as we discussed in Sec. III C). Similar to
Fig. 10(a), one can find those cases [67] associated with F � 2
in Fig. 11(a) would exhibit partially separated wave functions,
known as quasi-Majoranas, while those cases associated with
F < 1.5 mostly show overlapping wave functions, which are
clearly nontopological. So, the quality factor F indeed demon-
strates the quality of MZMs of different levels gradually. A
high value of F is seen as being associated with a MZM of
“good” quality with sufficient confidence statistically.

This distinction between MZMs and quasi-Majoranas (or
ABSs) is further blurred at ε = 0.2 where Figs. 3–5 show an
F value of approximately 5 at T = 20 mK. However, raising
this tolerance ε seems to increase the separation between these
MZMs/quasi-Majoranas and the ugly ZBCPs. In fact, the
threshold for the quality factor F depends on several factors,
including the topological superconducting gap Eg (which can
be enhanced by increasing the spin-orbit coupling constant α),
nanowire length L, temperature T , and tolerance factor ε. For
a system with large Eg and long L, the MZMs produced in
the nanowires are expected to be quite robust against changes
in the tunnel barrier height, so we can pick a high value of
threshold, below which would be the nontopological cases. As
the temperature T is tuned lower, the MZM-induced ZBCPs
will become closer to the ideal quantized plateau, giving a
high value of F (as we can see in Fig. 3), while the ZBCPs
induced from trivial subgap states can barely do the same (as
we can see in Figs. 4–9). The difference of F values between
topological and trivial ZBCPs can even become two orders
of magnitude as the temperature approaches absolute zero. In
this case, it is also easy to choose a higher value of threshold
to separate the topological and nontopological ZBCPs. The
tolerance factor ε can be viewed as the sensitivity to the quan-
tization plateau. A smaller value of ε is only applicable when
the ZBCP is closer to quantization, which can be realized by
increasing the topological superconducting gap Eg, increasing
the nanowire length L, and/or lowering the temperature T .
Under these conditions, the gap of F values between the
topological and nontopological scenarios can be large, which
makes us easy to choose the threshold of F . In contrast, when
the experimental conditions do not facilitate the production of
MZMs, the distinction of the F values between topological
case and trivial case can be comparatively minor, making it
hard for choosing the threshold. This issue can also be seen
from the false-positive case popping up in Fig. 11 under the
condition of T = 20 mK with ε = 0.1 with a threshold of 2.5,
while this issue is completely diminished in Fig. 10 under
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the condition of T = 10 mK with ε = 0.05 with a threshold
of 3.0.

Among the “bad” and “ugly” results we present, the ones
that demonstrate some kind of topological character (i.e.,
separated Majorana decomposed wave functions), such as
Figs. 5, 8, and 9, in fact, do not pass the thresholds determined
by the statistical histograms in Figs. 10 and 11. We can inter-
pret these as the topological ZBCPs that cannot maintain their
topological character in the finite-temperature environment
when quantum dots or disorders interfere with the system.
Since the threshold we set is to rigorously distinguish the
ZBCP induced by MZMs, a measured value of F higher than
the threshold indicates a high probability (>95%) of getting a
topological ZBCP. On the other hand, a value of F below the
threshold does not tell the scenario—it could be topological
or nontopological. Therefore, our proposed quality factor F
can help filter out those ZBCPs with F values larger than the
threshold as potential MZM candidates to proceed with other
Majorana examinations.

To apply this new metric F to the experiments, we estimate
the quality factor F values through the recalibrated quantized
conductance data from Zhang et al. [30], which is our mo-
tivation to study the robustness of quantized ZBCPs. Under
the experimental temperature 20 mK, the quantized plateau in
Fig. 4(b) of Zhang et al.’s paper [30] gives rise to F � 1.16
for ε = 0.1. Their extra data as shown in Fig. G2(b) also ex-
hibits a quality factor value of F ∼ 1 (for ε = 0.1 at 20 mK),
which is way below F = 2.5 as the suggested threshold in
our simulation. These low values of F demonstrating fragile
quantization indicate the ZBCPs shown in Zhang et al.’s pa-
per [30,31] are very likely arising from nontopological subgap
states.

B. Relation to Majorana-based qubits

The estimates in the previous subsection suggest that
distinguishing MZMs from other nontopological “bad” and
“ugly” ZBCPs might be rather experimentally challenging.
This leads to questions about the motivation of using transport
to make this distinction as opposed to time-domain techniques
that work directly with nanowires in qubit configuration [70].
In this subsection, we will argue that the quality factor F
provides a preliminary estimate of the decoherence rate for
the MZM or the quasi-Majorana as a qubit. Alternatively, the
best quality factor that is measured in a class of Majorana
device provides a bound on how long of a coherence time
one may expect for a Majorana qubit based on such devices.
To understand this connection, let us assume the nanowire
is long enough so the overlap of Majoranas is smaller than
the temperature being measured. In this regime, the esti-
mated bit-flip rate of a topological qubit is determined by
the topological superconducting gap Eg and the temperature
T according to the relation Te−Eg/2T [8]. The precision of
quantization of the ZBCP associated with an MZM is limited
by the same ratio Eg/T . More precisely, the width of ZBCP
at T = 0, 
, in Eq. (9) is proportional to the normal-state
conductance GN ∝ 
 [52]. Accordingly, using the defini-
tion in Eq. (10), the quality factor F can be approximated

as

F = GN,2

GN,1
∼ 
max


min
. (11)

The largest 
 (controlled by tunneling) for which the ZBCP
can be approximated as Lorentzian [i.e., Eq. (9)] is of the order
of the topological gap, i.e., 
max ∼ Eg. For lower normal-state
conductance, GN , the conductance can only be quantized if

min � T . Combining these arguments, we estimate that the
quality factor for a ZBCP in a long Majorana wire with a
topological gap Eg at temperature T to be F ∼ Eg/T . From
the previous subsection, we concluded that within the class of
models studied here, the quality factor F needs to be greater
than 2 to be relatively confident of a topological MZM. As-
suming a qubit is build from an MZM of this quality, using
the error rate estimate quoted earlier, we would conclude a
rate of 56 MHz at 20 mK. This error rate is already higher
than most nontopological qubits at the present point, which
suggests that the threshold F for meaningful topological qubit
devices needs to be higher than that required to convincingly
demonstrate a quantized ZBCP.

C. Multichannel effects and other Majorana systems

In this paper, for the sake of simplicity of presentation, we
have restricted our results to single-channel semiconductor
nanowires. However, as shown in the analysis of probing
topological superconductivity through a quantum point con-
tact [65], the quantization of conductance into a multichannel
superconductor depends entirely on the number of channels
in the tunnel contact rather than the number of channels in
the wire. The quantization of the topological conductance can
thus be probed, as long as the tunnel contact can be gated
by a tunnel barrier even if the number of channels in the
topological superconduting nanowire is unknown, which is
often the case. In fact, the tunnel barrier is typically tuned to
be high such that the normal-state conductance is tuned to be
below 2e2/h [30], suggesting that the quantum point contact is
likely in the single-channel limit. This is because the transport
studies of nanowires [71] have shown that the nanowire mobil-
ities are large enough (i.e., ballistic transport) while the tunnel
barrier is adiabatic potential (i.e., smooth Gaussian potential
with the width larger than Landau Fermi wavelength) to show
a few quantized steps as a function of gate voltage. Thus, even
when the contacts on the two sides of the tunnel barrier are
multichannel, the transmission eigenvalues through the tunnel
barrier are likely quite small in the higher channels. However,
the small transmission in the higher channels may cause a
small deviation from quantization of the topological conduc-
tance, which may be critical to explain observed conductances
above 2e2/h [16,30]. This might be a limitation in our analysis
of the relation between topological quantum computing and
the quality factor from the last subsection, assuming that the
conductance was in the tunneling limit, i.e., 
 � �, which
is equivalent to GN � G0. In this tunneling limit, it is rea-
sonable to expect that the transmission of the tunnel contact
dominantly involves a single channel. At the higher end of the
tunnel conductance, i.e., GN,2 in Eq. (11), one can expect con-
tributions from additional channels to cause deviations of the
ideal MZM result from quantization. This can be avoided by
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ensuring that MZM conductance is measured through a clean
segment of semiconductor nanowire, which can be controlled
to be in the single-channel limit. This should be possible given
the demonstration of clear conductance steps in transport
through nonsuperconducting segments of such wires [71,72].
An interesting future direction would be to understand to what
extent the robustness of quantization can be used to establish
multichannel topological superconductors in other symmetry
classes, which also appear to be associated with quantized
conductance [73].

Nearly quantized conductance has also been observed in
STM measurements of vortices in iron superconductors [66].
In this scenario, one can expect to be truly in the tunneling
limit, where the tunneling process involves at most one chan-
nel near a few atom wide tip. A technical challenge involved
in accurately measuring quantized conductance that is often
overlooked is the small current involved in the measurement.
To be specific, to measure a ZBCP of width 
, which is
near the lower end of the tunnel conductance used to es-
timate F , one needs to measure a current of the order of
IZBCP ∼ 
G0 ∼ kBT G0. If one were to reduce the temperature
to 20 mK, this would amount to a current IZBCP ∼ 0.14 nA.
This is at the lower end of the currents measured in most
experiments. The most general way to avoid this challenge
as well as the requirement of going to temperatures as low as
20 mK is to work with topological superconducting platforms
with larger gap. Note that this does not simply refer to the
topological superconducting gap, which is quite high for iron
superconductors, but also the energy of subgap states such as
vortex states in the case of iron SCs or low-energy ABSs at
interfaces.

D. Characterizing MZMs based on J

Contrary to the quality factor F , which can be extremely
large, the quality factor J is limited. From the numerical
results in Sec. III, J values are all below 2.1, which are
comparatively lower when F values can reach almost 50 in the
zero-temperature limit. In general cases of “good” ZBCPs, J
values could even be lower than those from “bad” or “ugly”
ZBCPs when the Majorana splitting oscillations dominate.
The best value of J we can get for the “good” ZBCP is
Vc/VTQPT when the nanowire is longer than the SC coherence
length and therefore the Majorana splitting is suppressed. The
quality factor J in this case turns out to be constrained by how
soon the SC gap collapses and how late the system enters the
topological regime. There is not much significant difference
for the J values between the “good” ZBCPs and “bad” or
“ugly” ZBCPs. Therefore, based on the models studied here,
the magnetic field stability is difficult to use to characterize
MZMs. However, a low value of the quality factor suggests a
topological gap that may be too small for practical use.

V. CONCLUSION

In summary, we have studied the robustness of the ZBCP
height relative to changes in the tunnel barrier height and
magnetic field as a way to separate topological Majorana
modes from trivial “bad” and “ugly” ZBCPs associated with
subgap fermionic ABSs induced by inhomogeneous chemical

potential and random disorder, respectively. This was moti-
vated by the complete robustness to tunnel barrier height that
is theoretically predicted for Majorana modes at zero temper-
ature. In contrast to the experimental situation, theoretically,
we have direct access to the Majorana wave functions and can
determine in each case whether the system can be considered
topological based on the spatial separation of the Majorana
modes. While the magnetic field plateau, which we quantify
as a quality factor J , is not a particularly strong indicator
of the topological character of the system, the dimensionless
quality factor F introduced in Sec. II C sharply quantifies
the stability of the ZBCP to changes in normal-state conduc-
tance taking on values � 80 only in the topological phase.
It should be noted that the quality factor J is still a useful
diagnostic to avoid a very small topological gap. By contrast,
nontopological systems with strongly overlapping Majoranas
show quantization over a very narrow range of normal-state
tunneling conductance GN , which typically leads to quality
factors F well below 10 at zero temperature. Therefore, the
value of the low-temperature quality factor F is a rather
strong indicator of the topological character of the system.
Unfortunately, for the realistic estimates of the topological
gaps in currently existing semiconductor nanowire systems,
our calculated quality factor F at a somewhat realistic (albeit
still challenging) temperature of 20 mK turns out to be smaller
even for the topological Majorana case discussed in Sec. III A.
Although this finding of ours for current nanowires is some-
what disappointing, it does not detract from the key role that
the quality factor F could play as a single diagnostic for the
identification of emergent Majorana modes, particularly when
improved materials fabrication enhances the topological gap.
Even for small gaps, F can distinguish between topological
and trivial regimes, but perhaps not always decisively. The
challenge should be alleviated by working with materials
or systems with a larger topological gap. As discussed in
Sec. IV B, this constraint for verifying the topological char-
acteristics through transport is much softer than the constraint
of realizing a topological qubit with an error rate compara-
ble to existing nontopological qubit platforms. The additional
challenge in this approach, as discussed in Sec. IV C, would
be to design the tunnel barrier contact appropriately to en-
sure that the contact is actually in the single-channel limit.
This might be a possible reason why robust quantization of
Majorana conductance is still elusive. According to Wimmer
et al. [65], a topological superconductor, when probed through
a single-channel contact, is guaranteed to show quantized
conductance over a range of tunneling conductance that is
limited by temperature. This result does not depend on the
number of channels of the nanowire [65]. Our results show
that once these design, gap, and temperature constraints are
achieved, finding a ZBCP with a quality factor F in excess of
2.5 at 20 mK for ε = 0.1 (or in excess of 3.0 at 10 mK for ε =
0.05) should help establish a ZBCP as a topological Majorana
mode. This criterion is consistent with 98.5% of all the simu-
lations (67 sets) presented in the Supplemental Material [67]
of which only seven are shown in the main text. Indeed, the
significance of the quality factor F should be interpreted in
terms of the false positive probability at that value of F . But
the false-positive rate for a nontopological case to have a high
value of F is very low—much less than 3.3% as analyzed
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from our simulation results. In fact, no false positives were
recorded for the 10 mK measurement at ε = 0.05. Thus, the
small likelihood of false positives that this approach provides
at the currently realistic parameters of T = 20 mK vanishes
if the temperature is lowered to T = 10 mK or, equivalently,
if the topological gap is doubled. Therefore, we believe that
our proposed diagnostic F should play an important role in
all future topological superconducting platforms searching for
nonlocal Majoana anyonic modes.

We note that in short wires, occasional quasi-Majorana
modes do satisfy our F > 2 criterion for Majorana stability
because the wave-function overlap between the two MZMs
forming the quasi-MZM happens to be small (thus leading to
only one MZM of the pair coupling strongly with the lead).
We believe, however, that such quasi-MZMs would behave,
for all practical purposes, as topological MZMs, and should
even enable successful braiding operations in short wires [39].
After all, in finite length wires, there may not always necessar-
ily be a difference between MZMs and quasi-MZMs because
of finite wave function overlap.

We emphasize that although the importance of disorder in
complicating the distinction between trivial and topological
ZBPs was already known, the physics in our paper is to
introduce a single dimensionless quantity F , which can distin-
guish between trivial and topological ZBCPs by analyzing the
ZBCP stability in terms of experimentally measured quantities
and not in terms of theoretical parameters. It is indeed true
that in the end we find that the difference in F between
topological and trivial is rather small, but this unfortunately
is the current reality in the existing nanowire systems. The
currently available topological phase is extremely fragile be-
cause of disorder, and therefore any difference in F between
topological and trivial is not particularly large (i.e., about a
factor of 2) for parameter estimates in current systems. We
do not see any way out of this conundrum, but the positive
aspect of our physics is that the difference is measurable albeit
small. With improving sample quality with less disorder or
lower temperature, our quality factor F will become a stronger
indicator, distinguishing topological from trivial.
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APPENDIX A: SELF-ENERGY

The self-energy 	(ω,Vz ) in Eq. (2) can be expressed as

	(ω,Vz ) = −λ
ωτ0 + �(Vz )τx√

�2(Vz ) − ω2
σ0, (A1)

where λ is the self-energy coupling strength with the parent
SC. The self-energy is the effective renormalized energy in-
troduced into the system when proximitized by the SC in the
intermediate regime [74,75]. The Zeeman-field-varying SC

gap is

�(Vz ) = �0

√
1 − (Vz/Vc)2 · θ (Vc − Vz ), (A2)

which hosts a bulk parent SC gap �0 without Zeeman field
and vanishes above the SC collapsing field Vc. The Heaviside-
step function θ (Vc − Vz ) indicates that the proximitized SC
effect no longer exists in the nanowire when Vz > Vc, which
is not the interest of this paper. We will only numerically
show the calculated conductance, energy spectrum, and wave
functions below Vc.

The Hamiltonian in Eq. (2) becomes energy dependent
when the self-energy 	(ω,Vz ) is included. Thus, to get the
energy spectrum, instead of diagonalizing HNW(ω) directly,
we need to find the peaks of the density of states (DOS)
located at energies ω0 from the Green’s function, i.e.,

ρtot(ω) = − 1

π
Im{Tr[G̃(ω)]}, (A3)

and the Green’s function is

G̃(ω) = 1

ω − HNW(ω)
, (A4)

where ω = ω0 + iη and η is an infinitesimal real number for
DOS broadening. The trace function Tr(. . . ) in Eq. (A3) is
over the spatial space and subspace (i.e., particle-hole and
spins) of the Green’s function matrix G̃(ω). Note that all the
numerical results in this paper include the self-energy because
this is close to the real experimental situations.

APPENDIX B: DISCRETIZING HAMILTONIAN

To implement the numerical calculation, we have to dis-
cretize the continuum Hamiltonian as in Eq. (2) into a lattice
chain of a tight-binding model [61] with the lattice con-
stant a = 10 nm. Then the effective tight-binding tunneling
strength t = h̄2/(2m∗a2) ≈ 25 meV. The effective spin-orbit
coupling strength is α = αR/(2a). The length of the nanowire
is given by L = Na, where N is the total number of the atoms
constituting the nanowire.

APPENDIX C: HAMILTONIAN OF NS JUNCTION

The Hamiltonian of the normal lead is

Hlead(ω) =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ + Elead

)
τz + Vzσx,

(C1)
with the on-site energy Elead ≈ −25 meV in the lead con-
trolled by the gate voltage. A tunnel barrier at the interface
of the NS junction is modeled as a boxlike potential

Vbarrier(x) = Ebarrier�lbarrier (x) (C2)

in the barrier Hamiltonian

Hbarrier(ω) =
(

− h̄2

2m∗ ∂2
x − iαR∂xσy − μ + Vbarrier(x)

)
τz

+ Vzσx − i
 (C3)

to describe the interfacial scattering effect. Ebarrier is the tunnel
barrier height and lbarrier is the tunnel barrier width. lbarrier

occupies only one site in all the numerical results of this paper.

094504-17



LAI, DAS SARMA, AND SAU PHYSICAL REVIEW B 106, 094504 (2022)

[1] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[2] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic
New Platform for Topological Quantum Computation Using
Semiconductor Heterostructures, Phys. Rev. Lett. 104, 040502
(2010).

[3] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S.
Das Sarma, Non-Abelian quantum order in spin-orbit-coupled
semiconductors: Search for topological Majorana particles in
solid-state systems, Phys. Rev. B 82, 214509 (2010).

[4] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[5] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys.-Usp. 44, 131 (2001).

[6] A. Y. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[7] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Topological
quantum computation, Bull. Amer. Math. Soc. 40, 31 (2003).

[8] S. Das Sarma, M. Freedman, and C. Nayak, Topologically
Protected Qubits From a Possible Non-Abelian Fractional
Quantum Hall State, Phys. Rev. Lett. 94, 166802 (2005).

[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[10] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[11] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al–InAs
nanowire topological superconductor as a signature of Majo-
rana fermions, Nat. Phys. 8, 887 (2012).

[12] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb
nanowire–Nb hybrid device, Nano Lett. 12, 6414 (2012).

[13] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-
nanowire devices from tunneling to the multichannel regime:
Zero-bias oscillations and magnetoconductance crossover,
Phys. Rev. B 87, 241401(R) (2013).

[14] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Anomalous Modulation of a Zero-Bias Peak in a
Hybrid Nanowire-Superconductor Device, Phys. Rev. Lett. 110,
126406 (2013).
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