
PHYSICAL REVIEW B 106, 094503 (2022)

Pure crossed Andreev reflection assisted transverse valley currents in α − T3 lattices
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We propose a method for the generation of the transverse valley currents, which is based on the pure crossed
Andreev reflection (pCAR) in the superconducting hybrid junctions composed of the gapped α − T3 lattices with
ferromagnet-induced exchange interaction. The angle-resolved pCAR probability is asymmetric for a given val-
ley, resulting in the transverse valley currents with zero net charge. This pCAR assisted charge-valley conversion
is highly efficient with the valley Hall angle reaching an order of unity, suggesting potential applications for
valleytronic devices.
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I. INTRODUCTION

The α − T3 lattice is an extension of the graphene honey-
comb lattice with an additional site centered at each hexagonal
cell [1–6]. The coupling strength between the additional site
and one of the honeycomb subsites is parameterized by α,
which varies from α = 0 (graphene lattice) to α = 1 (dice
lattice). The low-energy excitations in α − T3 lattices are
the massless pseudospin-one Dirac fermions, which are fea-
tured by a flat band cutting through two linearly dispersing
branches at the nonequivalent Dirac points K and K ′ [7,8].
A symmetry-breaking term introduces an additional effective
mass in the α − T3 lattice [9,10], leading to the bandgap
opening at the Dirac point [5]. Several methods have been
proposed to realize the α − T3 lattice in experiments. The dice
lattice with α = 1 can be produced in SrTiO3/SrIrO3/SrTiO3

trilayer heterostructure grown along the (111) direction [11].
The Hamiltonian of Hg1−xCdxTe at the critical doping can
be mapped to that of the α − T3 lattice with α = 1/

√
3 [12].

Some novel properties of the α − T3 lattice are attributed to
the dispersionless flat band. Such as the super Klein tunnel-
ing [4,13,14], the super Andreev reflection [10,15,16], the
flat-band ferromagnetism [17,18], and the unconventional An-
derson localization [19,20].

In addition, the α − T3 lattice is also a promising can-
didate for valleytronics [21–26], where the generation of
the controllable valley polarization and valley current is the
key issue. Up to now, many strategies have been proposed
to do so, such as the valley-polarized current produced in
the α − T3 lattice-based magnetic Fabry-Pérot interferometer
[27], the valley-polarized magnetoconductivity in the period-
ically modulated α − T3 lattice [28], and the valley filtering
in strain-induced α − T3 quantum dots [29]. Analogous to
the spin Hall effect [30–32], the valley Hall effect [33–35] is
also an alternative solution to generate the controllable valley
current. Recently, the geometric valley Hall effect was re-
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ported in the α − T3 lattice [36], where the valley-contrasting
scattering and the transverse valley current can be produced by
the isotropic valley-independent impurities. Inspired by this,
we propose a method to generate the transverse valley current
in the α − T3 lattice by means of the crossed Andreev reflec-
tion (CAR) [37–41]. We focus on the pure crossed Andreev
reflection (pCAR) dominated transport [42–45] in the ferro-
magnet/superconductor/ferromagnet (FSF) junctions based on
the gapped α − T3 lattices, where the Fermi level is located
between two spin-subband edges, as shown in Fig. 1(a). The
crossed Andreev reflected hole is denoted by the empty circle
in the electron band at −k with a positive slope, implying
the creation of a hole of the momentum +k, which is right-
propagating. The local Andreev reflection and the electron
elastic cotunneling are completely inhibited due to the spin
mismatch. For α �= 0 and α �= 1, the angle-dependence of the
CAR probability is asymmetric for a given valley. The crossed
Andreev reflected holes in different valleys turn into opposite
directions, as shown in Fig. 1(b), leading to a transverse valley
current. The total CAR probability (K valley + K ′ valley) is
symmetric due to the time-reversal symmetry. Consequently,
the transverse charge current is zero. The transverse valley
conductance as well as the longitudinal charge conductance
is determined by the pCAR process, which can be electrically
controlled by tuning the Fermi level and the incident energy.
The charge-valley conversions are highly efficient with the
valley Hall angle reaching an order of unity, suggesting their
great potential for valleytronic applications.

The remainder of the paper is organized as follows. The
model Hamiltonian and the scattering approach are explained
in detail in Sec. II. The numerical results and discussions are
presented in Sec. III. Finally, we conclude in Sec. IV.

II. MODEL

We consider the FSF junction in the x − y plane with
the superconducting electrode covering the region 0 < x < d .
The low-energy Hamiltonian of the ferromagnetic α − T3
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FIG. 1. (a) Scattering processes in the spin-split parabolic bands.
The spin-up and the spin-down subbands are denoted by the red
and blue lines, respectively. The dispersionless flat bands are not
shown. The incident electron is local reflected as an electron (R) and
nonlocal transmitted as a hole (TCAR). The local Andreev reflection
(RA) and the electron elastic cotunneling (T ) are blocked due to the
spin mismatch. (b) Schematic of the valley-contrasting pCAR in the
FSF junctions. The wavy lines denote the crossed Andreev reflected
holes.

lattice is given by [3]

Hησ (k) =
⎡
⎣ 0 fη(k) cos ϕ 0

f ∗
η (k) cos ϕ 0 fη(k) sin ϕ

0 f ∗
η (k) sin ϕ 0

⎤
⎦ (1)

+ �U + σh,

where fη(k) = h̄v(ηkx − iky), kx(y) is the wave vector in the
x (y) direction, v is the Fermi velocity, η = + (−) for K
(K ′) valley, σ = + (−) for the spin-up (spin-down) elec-
trons, � measures the sublattice symmetry breaking with
the corresponding matrix U = diag[1,−1, 1], resulting in the
massive Dirac fermions with the effective mass m = �/v2

[9]. The parameter ϕ = tan−1 α provides a continuous lattice
transformation from the graphene-like lattice (α = 0) to the
dice lattice (α = 1). The ferromagnetic exchange energy h
is only applied in the normal region, which can be in-
duced by the proximity to an insulating ferromagnetic layer
[27,46]. The energy dispersion can be directly obtained from
Eq. (1). The valley-degenerate parabolic bands are given by

Eλσ = λ
√

(h̄vk)2 + �2 − EF + σh, (2)

where λ = + (−) for the conduction (valence) bands. The
dispersionless flat bands are located at the bottom of the con-
duction bands, which are given by E0,σ = −EF + � + σh.

The Dirac-Bogoliubov-de Gennes (DBdG) equation de-
scribing the quasiparticle excitations in the superconducting
region reads [47,48][

H − EF �sc(x)
�∗

sc(x) EF − T HT −1

][
u
v

]
= E

[
u
v

]
, (3)

where H = diag[H+↑,H+↓,H−↑,H−↓] is the 12×12 elec-
tron Hamiltonian spanned by the valley, the spin and the
sublattice space, the vector u (v) is the electron (hole) compo-
nent of the quasiparticle wave function, the excitation energy
E is measured from the Fermi level EF . T = iτxσyS0C is the
time-reversal operator, where τx and σy are the Pauli matrix in
the valley and the spin space, respectively, S0 is the identity
matrix in the sublattice space, and the operator C denotes
the complex conjugation. The s-wave superconducting pair
potential �sc(x) is zero in the normal region and is �sc in
the superconducting region, which can be generated via the
proximity effect [10,15,16]. Equation (3) can be decoupled
into 4 subsets due to the fact that the s-wave Cooper pairs are
composed of the spin-up (down) electrons in the K valley and
the spin-down (up) electrons in the K ′ valley.

For the convenience of calculation, we perform a π/2
rotation of the crystal coordinates, leading to the combination
of the valley index η and the conserved transverse wave vector
ky. We assume the translation invariance in y-direction with
ky being the good quantum number. The explicit form of the
decoupled DBdG equation with the valley and spin index
(η, σ ) reads

⎡
⎢⎢⎢⎢⎢⎣

� + σh − EF h̄vkη
− cos ϕ 0 σ�sc(x) 0 0

h̄vkη
+ cos ϕ −� + σh − EF h̄vkη

− sin ϕ 0 σ�sc(x) 0
0 h̄vkη

+ sin ϕ � + σh − EF 0 0 σ�sc(x)
σ�∗

sc(x) 0 0 −� + σh + EF −h̄vkη
− cos ϕ 0

0 σ�∗
sc(x) 0 −h̄vkη

+ cos ϕ � + σh + EF −h̄vkη
− sin ϕ

0 0 σ�∗
sc(x) 0 −h̄vkη

+ sin ϕ −� + σh + EF

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

uA
σ

uB
σ

uC
σ

vA
σ̄

vB
σ̄

vC
σ̄

⎤
⎥⎥⎥⎥⎥⎦ = E

⎡
⎢⎢⎢⎢⎢⎣

uA
σ

uB
σ

uC
σ

vA
σ̄

vB
σ̄

vC
σ̄

⎤
⎥⎥⎥⎥⎥⎦,

(4)

where kη
± = kx ± iηky, σ̄ ≡ −σ , and the vector [uA

σ · · · vC
σ̄ ]T is the eigenstate describing the quasiparticle excitations. In the

normal region with �sc(x) = 0, the scattering wave functions for the electron states are given by

ψ
(e)±
λησ =

(
E + EF − � − σh

E + EF − σh

) 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

h̄v(λkx−iηky ) cos ϕ

E+EF −�−σh
1

h̄v(λkx+iηky ) sin ϕ

E+EF −�−σh
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

× exp(ikxx + ikyy), (5)
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where kx = √
(E + EF − σh)2 − �2 − (h̄vky)2/h̄v is the lon-

gitudinal wave vector and the superscript “±” of the wave
function denotes the direction of propagation. The scattering
wave functions for the hole states are given by

ψ
(h)±
λ′η̄σ̄ =

(
E − EF + � + σ̄h

E − EF + σ̄h

) 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

h̄v(λ′k′
x+iη̄ky ) cos ϕ

E−EF +�+σ̄h
−1

h̄v(λ′k′
x−iη̄ky ) sin ϕ

E−EF +�+σ̄h

⎤
⎥⎥⎥⎥⎥⎥⎦

× exp(ik′
xx + ikyy), (6)

where the longitudinal wave vector for the hole states is k′
x =√

(E − EF − σh)2 − �2 − (h̄vky)2/h̄v, η̄ ≡ −η, and λ′ = +
(−) denotes the conduction (valence) bands of the hole exci-
tations.

In the superconducting region with h = 0, the scattering
states are given by

ψ (s)
ς� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̄v(ςks−iky )
μs

cos ϕei� β

2

ei� α
2

h̄v(ςks+iky )
μs

sin ϕei� β

2

h̄v(ςks−iky )
μs

cos ϕe−i� β

2

e−i� α
2

h̄v(ςks−iky )
μs

sin ϕe−i� β

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

× exp(ς (iksx − �κx) + ikyy), (7)

where ks = √
μ2

s − (h̄ky)2/h̄v is the longitudinal wave vector
for superconducting region with μs being the Fermi energy
of the superconductor, κ = μs�sc sin β/h̄2v2ks, ς = + (−)
denotes the electron-like (hole-like) quasiparticle states, � =
±1 and ς� = + (−) for the right (left) propagating states.
The phase parameter is given by β = −iarccosh(E/�sc) for
E > �sc and β = arccos(E/�sc) for E < �sc.

The probability current j can be obtained from the conti-
nuity equation ∂t |�|2 + ∇ · j = 0 with the quasiparticle wave
function � = (ψA, ψB, ψC, φA, φB, φC )T satisfying the DBdG
Eq. (4), which is given by

jx = +v Re[ψ∗
B (ψA cos ϕ + ψC sin ϕ)]

−v Re[φ∗
B(φA cos ϕ + φC sin ϕ)], (8)

jy = −v Im[ψ∗
B (ψA cos ϕ − ψC sin ϕ)] × η

+v Im[φ∗
B(φA cos ϕ − φC sin ϕ)] × η. (9)

The first (second) lines of Eqs. (8) and (9) come from the
contribution of the electron (hole) component of �. Conse-
quently, the probability current conservation along x direction
requires the continuity of ψB, φB, ψA cos ϕ + ψC sin ϕ, and
φA cos ϕ + φC sin ϕ at the boundary.

In our model, the lattice mismatch at the normal
metal/superconductor interface is minimal since the supercon-
ductivity is induced via proximity effect in the same α − T3

lattice, leading to the absence of the lattice mismatch induced
valley-triplet pairing [49]. Consequently, the pCAR is deter-
mined by the special spin-split band structure in the normal
region. The scattering wave function consists of the intraval-
ley normal reflection/transmission processes and intervalley

Andreev reflection/transmission processes [33,50], which is
given by

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

ψ
(e)+
λησ + rψ (e)−

λησ + rAψ
(h)−
λ′η̄σ̄ , x < 0,∑

ς� aς�ψ
(s)
ς� , 0 < x < d,

tψ (e)+
λησ + tCARψ

(h)+
λ′η̄σ̄ , x > d,

(10)

where aς� is the scattering amplitude in the superconduct-
ing region. In the normal region, r, rA, t , and tCAR are the
scattering amplitudes for the normal reflection, local Andreev
reflection, electron elastic cotunneling, and crossed Andreev
reflection, respectively, which can be obtained by matching
the wave functions at the boundary.

III. RESULTS

In the numeric calculation, we choose the superconducting
pair potential �sc = 1 meV, the effective mass � = 40 meV,
and the exchange splitting energy of the F region is h =
30 meV. The pCAR regime appears when the Fermi levels are
located between two spin-subband edges, requiring 10 meV <

EF,1 < 70 meV and −70 meV < EF,2 < −10 meV.
The scattering probability of the normal reflection and the

CAR can be obtained by R = |r|2 and TCAR = | jh
x / je

x ||tCAR|2,
respectively. The conservation of the probability currents re-
quires R + TCAR = 1. The normal reflection occurs in the
same spin subband, leading to the reflection angle θ ′ be-
ing identical to the incident angle θ , which is given by
θ ′ = θ = sin−1 (h̄vky/(

√
(E + EF,1 − σh)2 − �2)) with θ ∈

[−π/2, π/2]. For the crossed Andreev reflection, the trans-
mission angle is given by

θCAR = sin−1

[√
(E + EF,1 − σh)2 − �2

(E − EF,2 − σh)2 − �2
sin θ

]
. (11)

The refraction angle θCAR depends monotonically on the inci-
dent angle θ . Consequently, TCAR(θCAR) and TCAR(θ ) exhibit
the similar angle-resolved behavior. We focus on TCAR(θ )
in the following. The angle-resolved CAR probability for
α = 0.4 is shown in Fig. 2(a) (black lines). The electron in
K valley have a large CAR probability for the incident an-
gles in the range of 45◦ to 60◦. The CARs in K ′ valley are
similarly asymmetric but skewed into the opposite direction.
The carries in different valleys turn into different transverse
directions, leading to a transverse valley current. This similar
valley-contrasting CAR also occurs for α = 0.8, as shown in
Fig. 2(a) (blue lines). In fact, for α �= 0 and α �= 1, this skew
CAR for a given valley always exists and the CAR probability
is asymmetric,

TCAR(θ, η) �= TCAR(θ̄ , η), (12)

where θ̄ = −θ . Due to the time-reversal symmetry, the CAR
probabilities for different valleys satisfy

TCAR(θ, η) = TCAR(θ̄ , η̄). (13)

Equation (13) implies that the total CAR is mirror symmetric,

TCAR(θ,+) + TCAR(θ,−) = TCAR(θ̄ ,+) + TCAR(θ̄ ,−),

(14)
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FIG. 2. TCAR vs the incident angle θ for K valley (solid) and
K ′ valley (dashed) at μs = 120 meV, �sc = 1 meV, � = 40 meV,
h = 30 meV, and L = 1.5ξ0 with ξ0 = h̄v/π�sc being the coherence
lengths. (a) TCAR for α = 0.4 (black) and α = 0.8 (blue). (b) TCAR for
α = 0 (black) and α = 1 (blue).

which is responsible for the zero transverse charge current.
The CAR probability for α = 0 and α = 1 is shown in
Fig. 2(b), where the valley-contrasting skew CAR is absent.

With the help of the Blonder-Tinkham-Klapwijk (BTK)
formula [51], the CAR determined zero-temperature conduc-
tance is given by

GCAR = e2

2π h̄

∑
ησ

Nσ (E )
∫

dθ TCAR(θ, η) cos θ, (15)

where Nσ (E ) = W
√

(E + EF,1 − σh)2 − �2/2π h̄v is the
number of transverse modes for the spin-σ channel with W
being the junction width. The ballistic conductance of the
junction is G0 = (e2/2π h̄)

∑
σ Nσ (E ). The CAR conductance

can be electrically controlled by tuning the incident energy
(E ) and the Fermi level (EF,1(2), μs), and can also be modified
by changing the length of the superconducting region (d), as
shown in Fig. 3. GCAR disappears for the bandgap regime
EF,1 < (10 − E ) meV = 8.8 meV and sharply increases with
increasing E , as shown in Fig. 3(a). For different α, GCAR only
differs in their amplitudes but exhibits the same increasing
tendencies. Tuning EF,2 results in the similar characteristics,
as shown in Fig. 3(b), where the bandgap regime is EF,2 >

(−10 + E ) meV = −8.8 meV. GCAR versus E is shown in
Fig. 3(c), the smooth oscillation of GCAR occurs due to the res-
onant transport in the superconducting region. GCAR vanishes
at the resonant energy E � (2.8, 5.2, 7.6) meV, where the
pCAR disappears for all incident angles. Tuning μs directly
modifies the superconducting wave vector ks. The resonant
factor ks · d of the superconducting region leads to the os-
cillations in Fig. 3(d). The d dependence of GCAR is shown
in Fig. 3(e), the rapid oscillation occurs due to the large

FIG. 3. Zero-temperature GCAR. (a) GCAR vs EF,1 for α = 0
(solid), α = 0.5 (dotted), and α = 1 (dashed) at E = 1.2 meV,
EF,2 = −45 meV, μs = 120 meV, �sc = 1 meV, and L = 1.5ξ0.
(b) GCAR vs EF,2 with EF,1 = 40 meV. (c) GCAR versus the incident
energy E with (EF,1, EF,2) = (40, −45) meV. [(d), (e)] GCAR versus
μs and d with the same Fermi levels in (c).

superconducting chemical potential μs in the superconducting
region. The oscillation peaks appear at d = nπ/ks with n ∈ Z.

In the pCAR regime, the transverse charge current is only
carried by the electron states in the left normal region due to
the absence of the local Andreev reflected holes, leading to the
transverse charge current density for valley η [52,53]

Jη
T = J→

T + J←
T

= e
∑

σ

∑
k

[
h̄v2ky

E + EF,1 − σh
− h̄v2ky|r(θ, η)|2

E + EF,1 − σh

]
P→

e

+ e
∑

σ

∑
k

[
h̄v2ky

E − EF,1 − σh
− h̄v2ky|r̄(θ, η)|2

E − EF,1 − σh

]
P←

e ,

(16)

where J→
T and J←

T denote the transverse current carried by
the right and left moving scattering states, respectively, r and
r̄ are the normal reflection amplitudes corresponding to the
incident electron from the left and right, respectively, P→

e =
f0(E − eV )[1 − f0(E )] (P←

e = [1 − f0(E − eV )] f0(E )) in-
dicates that the electron state is occupied in the left (right)
and unoccupied in the right (left), where f0(E ) = 1/(eE/kBT +
1) is the Fermi distribution function with kB and T be-
ing the Boltzmann constant and temperature, respectively.
With the help of the identities:

∑
ky

ky

kx
|r|2 = −∑

ky

ky

k̄x
|r̄|2,∫

dkx = ∫
dE (∂kx/∂E ) = ∫

dE (E + EF,1 − σh)/h̄2v2kx and
df0(E )/dE = −δ(E ) at T = 0 K, the zero-temperature
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FIG. 4. [(a), (c), (e)] Transverse charge current for K valley
(solid) and K ′ valley (dashed). [(b), (d), (f)] Tangent of the valley Hall
angle for the pCAR regime in α − T3 based FSF junctions (solid) and
the pristine α − T3 based NSN junctions (dashed). The parameters
are same as Fig. 2.

transverse charge conductance ∂Jη
T /∂ (eV ) is given by

Gη
T = e2W

h̄

∑
σ

∫
dky

ky

kx
(1 − |r(θ, η)|2), (17)

= e2

2π h̄

∑
σ

Nσ (E )
∫

dθ TCAR(θ, η) sin θ. (18)

We note that both the longitudinal and transverse conductance
are the same in the left and right normal regions due to the
probability current conservation in the pCAR regime. Due
to the skew CAR given by Eq. (12), both the K and K ′
valley generate a nonzero transverse current. With the help
of Eqs. (12) and (13), one finds that GK

T = −GK ′
T , resulting

in the transverse valley conductance Gv
T = GK

T − GK ′
T = 2GK

T

and the transverse charge conductance GT = GK
T + GK ′

T = 0.
The efficiency of the charge-valley conversion is characterized
by the valley Hall angle θV H , which is given by

tan(θV H ) =

∫
dθ TCAR(θ,+) sin θ∫
dθ TCAR(θ,+) cos θ

. (19)

GK
T and GK ′

T exhibit a symmetric pattern when tuning the
incident energy as shown in Fig. 4(a), which is attributed
to the valley-contrasting CAR. GK

T approaches the maxi-
mum value at E � 0.48 meV with the maximum value of

the valley Hall angle tan(θV H ) � 1.4, as shown in Fig. 4(b).
GT and tan(θV H ) versus the Fermi level EF,1 are shown
in Figs. 4(c) and 4(d), respectively. The absolute value of
the valley Hall angle exhibits a sharply increasing in the
pCAR regime, indicating the high efficiency of the charge-
valley conversion. The transverse valley current approaches
the maximum value at α � 0.5 with the absolute value of
the valley Hall angle | tan(θV H )| � 1.5, as shown in Fig. 4(e).
The transverse valley current completely vanishes at α = 0
and α = 1 due to the absence of the skew CAR, as shown
in Fig. 4(f). It shows that the charge-valley conversion in
the CAR assisted model is more efficient than that in the
impurity-scattering model [tan(θV H ) � 0.8] [36]. We note
that the valley-contrasting skew CAR also occurs when we
go beyond the pCAR regime, where the nonlocal transverse
charge and valley conductance are no longer simply deter-
mined by the CAR processes. The local Andreev reflection
and the electron elastic cotunneling also play an important
role. The nonlocal valley Hall angle for the pristine α − T3 lat-
tices based normal metal/superconductor/normal metal (NSN)
junctions (� = h = 0) is shown in Figs. 4(b), 4(d), and 4(f)
with the dashed lines. The maximum absolute value of the
valley Hall angle is given by | tan(θV H )| � 0.5, which is gen-
erally smaller than that in the pCAR regime. It is believed
that the CAR assisted transverse valley current has the similar
origin as the skew scattering of the valley-free impurities
in α − T3 lattices, which is attributed to the singular non-π
Berry curvature caused geometric valley Hall effect [36]. For
the experimental implementation, the α − T3 lattice based
junctions can be realized in some candidate materials, such
as the SrTiO3/SrIrO3/SrTiO3 trilayer heterostructure grown
along the (111) direction [11] and the Hg1−xCdxTe at the
critical doping [12]. Due to the valley-contrasting scattering,
the valley imbalance induces a nonzero out-of-plane orbital
magnetization [54], which can be detected by the Kerr rotation
microscopy [35,55].

IV. CONCLUSIONS

To conclude, we study the nonlocal transport in the
ferromagnet-superconductor-ferromagnet junctions based on
the α − T3 lattices, where the spin subbands can be gapped by
introducing the symmetry breaking mass term, leading to the
pCAR dominated regime. The scattering amplitudes are ob-
tained by solving the DBdG equation, the valley-contrasting
skew CAR occurs for α �= 0 and 1, leading to the transverse
valley current with zero net charge. The valley Hall angle in
the pCAR assisted skew scattering process can reach an order
of unity, indicating the high efficiency of the charge-valley
conversions.
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