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Altermagnetism and magnetic groups with pseudoscalar electron spin
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We revise existing group-theoretical approaches for a treatment of nonrelativistic collinear magnetic systems
with perfect translation invariance. We show that full symmetry groups of these systems, which contain elements
with independent rotations in the spin and configuration spaces (spin groups), can be replaced by magnetic
groups consisting of elements with rotations acting only on position vectors. This reduction follows from
modified transformation properties of electron spin, which in the considered systems becomes effectively a
pseudoscalar quantity remaining unchanged upon spatial operations but changing its sign due to an operation
of antisymmetry. We introduce a unitary representation of the relevant magnetic point groups and use it for a
classification of collinear magnets from the viewpoint of antiferromagnetism-induced spin splitting of electron
bands near the center of the Brillouin zone. We prove that the recently revealed different altermagnetic classes
correspond in a unique way to all nontrivial magnetic Laue classes, i.e., to the Laue groups containing the
operation of antisymmetry only in combination with a spatial rotation. Four of these Laue classes are found to
be compatible with a nonzero spin conductivity. Subsequent inspection of a simple model allows us to briefly
address the physical mechanisms responsible for the spin splitting in real systems.
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I. INTRODUCTION

One of the most important characteristics of a solid from
the viewpoint of magnetic properties is certainly its magnetic
structure. A standard classification of various magnetic orders
is based on the mutual arrangement of local magnetic mo-
ments and their orientation with respect to the atomic lattice
[1]. This approach covers both traditional spin structures (fer-
romagnets, spin glasses, etc.) and more exotic orders, such as
magnetic skyrmions [2,3]. In recent years, the close relation of
magnetism and spintronics has given rise to a complementary
approach to the varieties of magnetic solids, which is based
on their electronic structure. This change of focus from the
real space (local magnetic moments) to the reciprocal space
(electronic spectra) has partly been motivated by new phe-
nomena related to topological aspects of electron states [4–6]
or by a momentum-dependent spin splitting of electron bands
in collinear antiferromagnets [7–12]. The latter phenomenon,
proposed theoretically by Pekar and Rashba in 1964 [13], has
recently attracted considerable attention, especially due to the
fact that the strength of this splitting can be sizable also in
systems of light elements [14–17]. This contrasts the usual
splitting due to spin-orbit interaction, which is mainly strong
in systems containing heavy elements. The nonrelativistic ori-
gin of the antiferromagnetism-induced spin splitting, a large
number of systems exhibiting this property, and its potential
importance for further development of spintronics have led
to a special term for this type of magnetic order, namely,
altermagnetism, as introduced by Šmejkal et al. [17,18].
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In the field of solid-state magnetism, group theory proved
its usefulness several decades ago. Its standard tools include
magnetic groups [19–21] which represent an extension of
crystallographic groups by considering time reversal as an
additional symmetry operation; the time reversal is a special
case of an operation of antisymmetry or anti-identity con-
tained in some elements of the magnetic groups [22,23]. The
space-time symmetry in magnetic crystals has well-known
consequences for shape restrictions of various vector or ten-
sor quantities appearing as equilibrium properties [20,24] or
linear response (transport) coefficients [25–28]. This involves,
e.g., identification of magnetic point groups compatible with a
net nonzero magnetic moment [19] or modification of the On-
sager reciprocity relations for solids characterized by certain
magnetic point groups [25]. These topics have been worked
out in much detail; see Ref. [29] and references therein. More-
over, a scheme for labeling electron eigenvalues in magnetic
crystals, based on irreducible representations of magnetic
point and space groups, is available as well [21]. This scheme
has recently been extended and used in the systematic search
for new topological phases of magnetic materials [30–32].
The irreducible representations are also indispensable for an
advanced analysis of complex magnetic structures [33,34].

From the viewpoint of electronic structures, treated within
effective one-electron Pauli or Dirac equations, elements of
the magnetic groups act simultaneously on internal degrees of
freedom of electron (spin) and on the electron position vector.
For specific problems, spin groups as an extension of the mag-
netic groups were introduced [35,36]. Elements of the spin
groups are featured by independent rotations in the spin and
configuration spaces. The spin groups are relevant, e.g., for
systems without spin-orbit interaction; a very recent applica-
tion of the spin groups deals with the spin splitting of electron

2469-9950/2022/106(9)/094432(14) 094432-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0604-6590
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.094432&domain=pdf&date_stamp=2022-09-27
https://doi.org/10.1103/PhysRevB.106.094432


ILJA TUREK PHYSICAL REVIEW B 106, 094432 (2022)

states in collinear antiferromagnets [17]. Undoubtedly, the
spin groups comprise all symmetry elements of nonrelativistic
collinear magnets and their use is thus fully justified. Never-
theless, one should mention that this extension of theoretical
formalism is accompanied by a substantial increase in the
number of all possible groups: there are 32 crystallographic
point groups, which lead to 122 magnetic point groups [25]
and to 598 nontrivial spin point groups [36]. Moreover, inclu-
sion of the translational invariance of crystals leads to a further
extension of the group formalism by considering the space
groups in addition to their point counterparts; this route has
recently been followed with magnetic groups in Refs. [14,15]
and with spin groups in Ref. [37].

The more sophisticated formalism of the spin groups
as compared with that of the magnetic groups obviously
contradicts the simpler theoretical and numerical electronic-
structure techniques for nonrelativistic collinear magnets as
compared with those for general magnetic crystals. The main
purpose of this paper is to reconsider the group-theoretical
framework for the electronic structure of nonrelativistic
collinear magnets from the viewpoint of magnetic groups. We
suggest that an alternative treatment of these systems can be
formulated by replacing the vector spin operator by a pseu-
doscalar spin quantity, which leads to magnetic groups modi-
fied as compared to those with the standard vector spin. Such
an approach has been mentioned implicitly in the literature
[14,16], but its systematic description is not available. In this
work, we derive a general unitary infinite-dimensional repre-
sentation of the modified magnetic point groups which does
not rely on any particular model of the electronic structure.
We apply the developed formalism to investigation of the spin
splitting of electronic states near the center of the Brillouin
zone (BZ) of nonrelativistic crystalline collinear magnets.
We also study a connection between the spin splitting and
spin conductivity, which has recently lead to a prediction of
efficient spin-current generation [16] and giant tunneling mag-
netoresistance [38,39]. Moreover, the obtained results allowed
us to briefly address the physical mechanisms responsible for
the appearance of this spin splitting in real materials.

II. FORMALISM

A. Pseudoscalar electron spin

Electrons are charged fermions of spin 1/2. In one-particle
approximations for many-electron spin-polarized systems, the
Pauli exclusion principle and the Coulomb interaction be-
tween the electrons give rise to a vector exchange field
coupled to the vector spin operator in the Zeeman term of
an effective one-electron Hamiltonian. The additional spin-
orbit interaction and/or the noncollinear spin structure (and,
consequently, the noncollinear exchange field) lead to coupled
equations for the electron wave functions in the two spin chan-
nels (spin-up and spin-down channels) of the Pauli equation as
a nonrelativistic limit of the Dirac equation [40]. Transforma-
tions of the wave functions, comprised in the magnetic space
and point groups, thus take the vector nature of the electron
spin, of the exchange field, and of the electron position vector
fully into account. Transformation properties of the spin and
of the exchange field are the same as those of the angular

orbital momentum r × p, where r is the position vector and
p is the electron momentum.

The situation simplifies substantially for systems with ne-
glected spin-orbit interaction and with collinear exchange
fields, leading thus to collinear spin structures. The wave
function amplitudes are 〈rs|ψ〉 = ψs(r), where s denotes
the spin index (s = 1 for spin-up channel, s = −1 for spin-
down channel). The Hamiltonian can be written (in atomic
units with h̄ = 1 and with the electron mass m = 1/2) as

H (r) = −� + V (r), (1)

where the kinetic energy term is spin independent, whereas
the local potential V (r) is spin dependent but diagonal in the
spin index: 〈s|V (r)|s′〉 = δss′Vs(r). This leads to two eigen-
value problems with eigenvalues Es,

−�ψs(r) + Vs(r)ψs(r) = Esψs(r), (2)

to be solved separately in each spin channel (s = ±1). If
we introduce a spin operator σ such that 〈s|σ |s′〉 = sδss′ ,
a spin-averaged potential V̄ (r) = [V+(r) + V−(r)]/2, and an
exchange field B(r) = [V+(r) − V−(r)]/2, the Hamiltonian
(1) can be rewritten as

H (r) = −� + V̄ (r) + B(r)σ. (3)

The direction of the spin quantization axis is irrelevant, the
Hamiltonian H (r) describes motion in two uncoupled spin
channels with local potentials Vs(r), s = ±1, and the defined
spin σ and exchange field B(r) can be treated as scalar quan-
tities.

In magnetic crystals, the Hamiltonian H (r) is translation-
ally invariant, so that V (r) = V (r + T) for all r and for all
primitive translation vectors T (vectors of the Bravais lattice),
which implies the same condition for Vs(r), s = ±1, V̄ (r),
and B(r). Let us consider further symmetry elements of the
system. In ferromagnets, the two potentials Vs(r) are mutually
different since V+(r) is on average more (or less) attractive
than V−(r). The system is thus invariant only with respect
to ordinary rotations (combined optionally with nonprimitive
translations) that belong to the crystallographic point group.
These rotations will be denoted by a symbol α, which is a
real 3 × 3 orthogonal matrix, α ≡ {αμν}, where the subscripts
μ and ν denote the Cartesian index (μ, ν ∈ {x, y, z}); the
rotations α can be both proper and improper (accompanied
by space inversion).

In antiferromagnets, both spin channels are mutually
equivalent, which points to a presence of more general sym-
metry elements as compared to ferromagnets. These elements
of the system point group will be denoted as (α, η), where
the extra parameter η acquires two values, namely, η = 1
for symmetry elements not changing the spin channels, and
η = −1 for symmetry elements with mutual interchange of
both spin channels. All these elements form the magnetic
point group PM of the system with a group multiplication rule

(α1, η1)(α2, η2) = (α1α2, η1η2). (4)

Strictly defined, (α, η) ∈ PM means that a translation vector t
(either null or nonprimitive) exists such that

Vs(r) = Vηs(αr + t) (5)
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holds for all r and for both values of s (s = ±1). Hence the
group elements (α, 1) correspond to usual rotations, whereas
the group elements (α,−1) correspond to rotations combined
with the spin-channel interchange, which plays a role of the
operation of antisymmetry of the magnetic group [21]. Note
that the spin-channel interchange does not change only the
sign of the spin channel (s → −s), but it changes the sign
of the exchange field as well [B(r) → −B(r)]. The electron
spin and the exchange field thus behave like pseudoscalar
quantities changing their signs due to the operation of an-
tisymmetry. In antiferromagnets, the regions of positive and
negative values of the exchange field B(r) represent an anal-
ogy to white and black regions, respectively, of two-color
figures with a symmetry group extended by inclusion of an
operation of antisymmetry (interchange of colors), as intro-
duced by Shubnikov [22,23]. However, the group PM defined
by Eq. (5) reflects the symmetry of both local potentials Vs(r)
(s = ±1), not only of their difference (the exchange field),
in full compatibility with the density functional theory of
nonrelativistic collinear magnets [41]. This means that the
presence and positions of nonmagnetic atoms in the system
have to be taken into account in a reliable symmetry analysis.

The magnetic point groups PM derived from crystallo-
graphic point groups P can be split into three categories (a),
(b), and (c) [25] or, alternatively, into three types I, II, and
III [21] [whereby the categories (a), (b), and (c) correspond
to the types II, I, and III, respectively]. The category (a)
comprises all 32 groups P to which the operation of antisym-
metry is added (so that the pure operation of antisymmetry
is an element of PM). The groups of the category (b) do
not involve the operation of antisymmetry at all (neither as
a separate element nor in a combination with a rotation); all
these groups are thus equivalent to all bare 32 groups P .
The groups PM of the category (c) contain the operation of
antisymmetry only in a combination with a nontrivial rotation;
there are 58 groups in this category. Each group PM of the
category (c) can be constructed from a parent group P by
taking its subgroup S of index two. All elements α ∈ S then
enter the group PM as (α, 1), i.e., without the operation of
antisymmetry, whereas all elements α ∈ P and α /∈ S give
rise to elements containing the operation of antisymmetry,
(α,−1) ∈ PM. Loosely speaking, the group S can be iden-
tified with a subgroup of PM containing all elements of PM

without the operation of antisymmetry. For the magnetic point
groups PM defined by Eq. (5), the three mentioned categories
are unambiguously related to basic types of collinear nonrel-
ativistic magnets: ferromagnets and ferrimagnets possess PM

of category (b), whereas antiferromagnets are featured by PM

of category (a) or (c). This simple classification contrasts with
that based on the standard magnetic groups applied to general
magnets (with spin-orbit coupling and/or with noncollinear
orders), where the magnetic point groups of ferromagnets and
ferrimagnets belong to categories (b) and (c) while those of
antiferromagnets belong to categories (a), (b), and (c).

The magnetic point group PM defined by Eq. (5) can
differ from the standard magnetic point group of the same
collinear system. The latter group reflects the vector nature of
the involved quantities and it depends on the direction of the
exchange field and magnetic moments. Moreover, the oper-
ation of antisymmetry contained in elements of the standard

magnetic groups denotes the time reversal leading to the
sign change of the spin, exchange field, and magnetic mo-
ments. The modification of the magnetic groups owing to
the pseudoscalar nature of the involved quantities can lead to
additional spatial operations contained in the group elements,
while the operation of antisymmetry has to be identified with
the spin-channel interchange according to Eq. (5). More de-
tails about the relation of both kinds of magnetic point groups
can be found in the Supplemental Material [42] and exam-
ples of these groups for selected systems are presented in
Sec. III A.

Let us note that the symmetry operations of the in-
troduced modified magnetic groups rest on the neglect of
all interactions leading to a coupling of the spin-up and
spin-down channels of the one-electron Hamiltonian. In the
case of collinear ferromagnets and ferrimagnets, this means
the neglect of spin-orbit interaction and of its well-known
consequences, such as the anisotropic magnetostriction of-
ten responsible for reduced symmetry of the lattice in the
magnetically ordered phase as compared to that in the para-
magnetic phase [43,44]. This approximate approach resulted
in important theoretical concepts, including the half-metallic
magnetism [45] or the symmetry-induced spin filtering in
Fe|MgO|Fe magnetic tunnel junctions [46]. For antiferromag-
nets, this approach also neglects a weak noncollinearity of
the magnetic moments in noncentrosymmetric systems owing
to the Dzyaloshinskii-Moriya interaction [47,48]. The sym-
metry analysis of nonrelativistic collinear antiferromagnets
has recently been carried out in several theoretical studies
using the spin groups [17,18,37]. These and similar studies
are devoted not only to systems of very light elements, such
as MnF2 [14], CuF2 [17], Mn5Si3 [39], or NiO [15,49], but
also to systems with heavier elements, such as RuO2 [16,38],
KRu4O8 [17], FeSb2 [12], CrSb and MnTe [16,17], La2CuO4

[17], and AMnBi2 (A = Ca, Sr) [37]. A comparison of theo-
retical results of the above approximate treatment with those
of a more accurate description (with spin-orbit interaction
switched on), supported by ab initio electronic structure calcu-
lations, enables one to identify the origin of unusual properties
of altermagnetic materials [17,18].

The magnetic group introduced according to Eq. (5) con-
tains only symmetry elements for invariance of the pair of
potentials Vs(r) (s = ±1). However, the full group for invari-
ance of the Hamiltonian, given by Eq. (1), is inevitably bigger;
two additional symmetry operations have to be considered.
First, it is the spin operator σ which obviously commutes
with the Hamiltonian H (r). This symmetry reflects invariance
with respect to arbitrary rotations in the spin space around the
axis parallel to the direction of all magnetic moments of the
collinear magnet. Second, the Hamiltonian eigenvalue prob-
lem (2) is invariant with respect to complex conjugation of
the wave functions: ψs(r) → ψ∗

s (r). This symmetry reflects
real values of the potentials Vs(r) = V ∗

s (r) and it corresponds
to time reversal for effective particles of spin zero [6,50,51]
moving in both decoupled spin channels. A closer inspection
of a relation between the introduced magnetic groups and the
spin groups of the studied systems (see Supplemental Material
[42]) proves that no further independent symmetry operations
exist. In the following, none of both mentioned additional
symmetries (present in all collinear nonrelativistic magnets)
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is included in the magnetic point group PM; however, their
possible effect on the results of the performed analysis is
properly taken into account.

B. Hamiltonians and resolvents in reciprocal space

In the analysis of spin splitting of the eigenvalues of the
real-space Hamiltonian (1), we employ the Bloch theorem,
transform the original H (r) into a k-dependent Hamiltonian
H̃ (k), where k denotes a reciprocal-space vector, and fo-
cus on a neighborhood of the center of BZ, i.e., on k →
0. The Hamiltonians H̃ (k) for different k vectors are de-
fined on different Hilbert spaces. However, we represent each
H̃ (k) by a matrix in an orthonormal basis {|Gs〉}, where
G runs over all lattice vectors of the reciprocal lattice and
s runs over both spin channels, s = ±1. The basis vec-
tors are chosen as |Gs〉 = |G〉 ⊗ |s〉, where |G〉 describes
a plane wave, 〈r|G〉 ∼ exp[i(k − G) · r], and where |s〉 de-
notes the basis vector in the two-dimensional spin space.
This plane-wave basis is used in a formulation of the nearly
free electron model [6,52]; however, it leads to accurate
eigenvalues as long as the full infinite basis set {|Gs〉} is em-
ployed. With this matrix representation, all Hamiltonians can
be considered as defined on the same Hilbert space H (corre-
sponding to k = 0). The particular form of H̃ (k) is given in
Appendix A. Its full dependence on k is confined to a few
terms,

H̃ (k) = h + U (k), U (k) =
∑

μ

Jμkμ +
∑
μ1μ2

Lμ1μ2 kμ1 kμ2 .

(6)

The first term h refers to the Hamiltonian for k = 0 and the op-
erator U (k), consisting of terms that are linear and quadratic
in k, can be considered for k → 0 as a small perturbation
added to the reference Hamiltonian h. The operators Jμ coin-
cide with components of a velocity operator and the operators
Lμ1μ2 are symmetric in their indices, Lμ1μ2 = Lμ2μ1 . The latter
is equal to Lμ1μ2 = Iδμ1μ2 , where I is the unit operator in H.

The spin-resolved eigenvalues E (n)
s (k), where n denotes

the band index, depend on the matrix elements of H̃ (k) in
a complicated manner. Moreover, a thorough analysis of the
spin splitting requires a reliable identification of the spin pairs
of eigenvalues, which is not always straightforward owing to
band crossing [49]. In order to avoid these problems, we turn
to techniques developed earlier for shapes of various tensor
quantities due to the point-group symmetry of the system
[24–26]. For this purpose, we focus on spin-resolved Bloch
spectral functions As(k, E ) = ∑

n δ[E − E (n)
s (k)], where E

denotes an energy variable. Let us note that the Bloch spectral
functions substitute the energy bands in strongly correlated
systems [9]. The spin splitting of the system eigenvalues
is reflected by nonzero values of the difference A+(k, E ) −
A−(k, E ) = ∑

s sAs(k, E ). The Bloch spectral functions are
closely related to the resolvent G(k, E ± iε) of the Hamilto-
nian H̃ (k), defined for ε > 0 by [53]

G(k, E ± iε) = [(E ± iε)I − H̃ (k]−1. (7)

This yields explicit relations involving the quantity∑
s sAs(k, E ):

Tr[σG(k, E ± iε)] =
∫ +∞

−∞

1

E ± iε − E ′
∑

s

sAs(k, E ′)dE ′,

∑
s

sAs(k, E ) = − 1

π
ImTr[σG(k, E + i0)], (8)

where Im denotes the imaginary part and the trace Tr refers
to the Hilbert space H. In the following, we thus examine the
properties of Tr[σG(k, E ± iε)] for small k vectors.

Let us denote the resolvent of the reference Hamiltonian
h as g(E ± iε) and let us employ it in evaluation of the k-
dependent resolvent G(k, E ± iε). For brevity, we omit the
energy arguments of both resolvents. The infinite Born series
corresponding to Eq. (6),

G(k) = g +
∑
N�1

[gU (k)]N g, (9)

can be rearranged into the Taylor series

G(k) = g +
∑
N�1

∑
μ1μ2...μN

gW (N )
μ1μ2...μN

gkμ1 kμ2 . . . kμN , (10)

where the operators W (N )
μ1μ2...μN

are fully symmetric in the
indices μ1, . . . , μN . The first four members of the infinite
sequence W (N )

μ1μ2...μN
, N = 1, 2, . . . , are equal to

W (1)
μ = Jμ, W (2)

μ1μ2
= Lμ1μ2 + 1

2

(
Jμ1 gJμ2 + Jμ2 gJμ1

)
,

W (3)
μ1μ2μ3

= 1
6

(
Jμ1 gLμ2μ3 + Lμ1μ2 gJμ3 + Jμ1 gJμ2 gJμ3 + · · · ),

W (4)
μ1μ2μ3μ4

= 1
24

(
Lμ1μ2 gLμ3μ4 + Jμ1 gJμ2 gLμ3μ4

+ Jμ1 gLμ2μ3 gJμ4 + Lμ1μ2 gJμ3 gJμ4

+ Jμ1 gJμ2 gJμ3 gJμ4 + · · · ), (11)

where the dots denote terms obtained from the given ones by
all permutations of the indices μ1, μ2, . . . . The infinite series
(10) leads to the following Taylor expansion of the quantity
F (k) = Tr[σG(k)]:

F (k) = Tr(σg) +
∑
N�1

∑
μ1μ2...μN

T (N )
μ1μ2...μN

kμ1 kμ2 . . . kμN ,

T (N )
μ1μ2...μN

= Tr
[
σgW (N )

μ1μ2...μN
g
]
, (12)

where the tensor components T (N )
μ1μ2...μN

are fully symmetric
in their indices. We will investigate the shape of the tensors
T (N ) due to the symmetry of the studied system; nonvanishing
components T (N )

μ1μ2...μN
correspond to spin splitting of energy

bands near the BZ center.

C. Representation of magnetic point groups

Since the operators h, Jμ, Lμ1μ2 , g, and W (N )
μ1μ2...μN

, involved
in the expansions (6), (10), and (12), act in the Hilbert space H
for zero k vector, the symmetry analysis can be carried out in
terms of the magnetic point group PM of the system. For this
purpose, one has to construct the corresponding representation
of the group PM by means of operators D(α, η) acting in the
space H [21,54,55]. The spatial parts of the orthonormal basis
vectors |Gs〉 for k = 0 are given by 〈r|G〉 ∼ exp(−iG · r) and
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we define the unitary operators D(α, η) explicitly by

D(α, η)|Gs〉 = |αG, ηs〉 exp(iαG · t), (13)

where t denotes the translation vector involved in the invari-
ance condition (5). Note that this definition naturally includes
the rotation of the reciprocal lattice vectors (G → αG) and
the sign change of the spin index (s → ηs) due to the opera-
tion of antisymmetry. The additional phase factor in Eq. (13)
is consistent with a general rule for rotations and translations
in a space of scalar functions of the position vector r [21,55].
Alternatively, one can show that Eq. (13) follows from a
simple transformation of all basic kets |rs〉 due to a com-
bined effect of the rotation α, translation t, and spin-channel
interchange η, which yields |rs〉 → |r′s′〉, where r′ = αr + t
and s′ = ηs; see, also, Eq. (32) in the Supplemental Material
[42]. It can be proved that the introduced operators D(α, η),
given by Eq. (13), possess all properties of a representation; in
particular, the operator counterpart of the group multiplication
rule (4),

D(α1, η1)D(α2, η2) = D(α1α2, η1η2), (14)

holds for all elements (α1, η1) ∈ PM and (α2, η2) ∈ PM (for a
proof, see Appendix A).

Let us briefly compare the present treatment of rotations
and of the operation of antisymmetry according to Eq. (13)
with other group-theoretical approaches. Elements of the spin
groups contain two independent rotations, acting separately
in the spin and configuration spaces [17,35,37], in contrast to
the rotations of standard magnetic groups, acting simultane-
ously in both spaces [19,21]. However, the standard magnetic
point groups applied to one-particle Hamiltonians for real
electrons with spin 1/2 lead to double-valued representations
[21,54,55]. Moreover, the operation of antisymmetry is identi-
fied with time reversal and the group elements containing the
time reversal are represented by antiunitary operators, which
calls for the use of corepresentations of these magnetic groups
[21]. The present formalism does not employ any of these
extensions of the group theory. The structure of the nonrel-
ativistic Hamiltonian for collinear magnets (Sec. II A) allows
one to confine the action of rotations only to the configuration
space, while the operation of antisymmetry reduces to the in-
terchange of the spin channels; see Eq. (5). As a consequence,
the defined representation D(α, η), given by Eq. (13), is single
valued and all elements (α, η) of the modified magnetic point
groups PM are represented by unitary operators, so that no
corepresentations have to be considered. These features sim-
plify the formalism substantially.

The introduced representation (13) leads to the following
transformations of the involved operators. For each element
(α, η) ∈ PM and with abbreviation D(α, η) = D, we get

D−1hD = h, D−1gD = g, D−1σD = ησ,

D−1JμD =
∑

ν

αμνJν,

D−1Lμ1μ2 D =
∑
ν1ν2

αμ1ν1αμ2ν2 Lν1ν2 ,

D−1W (N )
μ1μ2...μN

D =
∑

ν1ν2...νN

αμ1ν1αμ2ν2 . . . αμN νN W (N )
ν1ν2...νN

. (15)

The proof of these relations is sketched in Appendix A and
their physical meaning is obvious: the Hamiltonian h and the
resolvent g are invariant with respect to the action of all group
elements, the velocity operators Jμ are components of a vector
operator, the operators Lμ1μ2 and W (N )

μ1μ2...μN
are components of

tensor operators of rank 2 and N , respectively, and the spin
σ changes its sign due to the operation of antisymmetry, but
remains unchanged by pure spatial rotations, in full agreement
with its pseudoscalar nature discussed in Sec. II A.

The time reversal mentioned in the last paragraph of
Sec. II A has to be represented by an antiunitary operator. We
denote it by T and define it explicitly by

T |Gs〉 = |−G, s〉, (16)

so that T changes the sign of the reciprocal lattice vector G,
but leaves the spin index s unchanged. We have thus T 2 = I
and obtain the following transformation rules:

T hT = h, T gT = g+, T σT = σ,

T JμT = −Jμ, T Lμ1μ2T = Lμ1μ2 ,

T W (N )
μ1μ2...μN

T = (−1)N
[
W (N )

μ1μ2...μN

]+
, (17)

where M+ denotes the Hermitian conjugate of an operator
M. Note especially the unchanged sign of the spin operator
σ , which reflects the fact that the time reversal treats each
separate spin channel as a subspace for a particle of spin zero.
The sign (−1)N in the transformation of operators W (N )

μ1μ2...μN

is due to the velocities Jμ in their definition (11).

D. Shape analysis of the studied tensors

The invariance of the system with respect to the time re-
versal (17) has an obvious consequence for the studied tensors
T (N ). We get from Eq. (12) for N odd:

T (N )
μ1μ2...μN

= −Tr
{
T σT T g+T T

[
W (N )

μ1μ2...μN

]+T T g+T
}

= −Tr
{
gW (N )

μ1μ2...μN
gσ

} = −T (N )
μ1μ2...μN

, (18)

where we used the rule Tr(T MT ) = Tr(M+) that is valid for
linear operators M. This means that the entire tensor T (N )

vanishes identically for N odd, which is consistent with the
eigenvalues of the considered systems being even functions of
the k vector, E (n)

s (−k) = E (n)
s (k).

Let us now examine the terms in the expansion (12) that
are even in k; we will employ the transformations given by
Eq. (15). For the reference term Tr(σg), for an arbitrary el-
ement (α, η) ∈ PM, and with abbreviation D(α, η) = D, we
get

Tr(σg) = Tr(DησD−1DgD−1) = ηTr(σg). (19)

This means that for PM of category (a) or (c), which contains
elements (α,−1), the term Tr(σg) vanishes and there is no
spin splitting of the bands in the very center of the BZ. For
ferromagnets and ferrimagnets, featured by PM of category
(b), the eigenstates are obviously spin split for all k points.
In the following, we thus confine ourselves to magnetic point
groups of categories (a) and (c), i.e., to groups with some
elements containing the operation of antisymmetry.

Let us further discuss in detail the shape of the tensor T (2)
μ1μ2

,
given by Eq. (12). For (α, η) ∈ PM and with abbreviation
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D(α, η) = D, we get

T (2)
μ1μ2

= Tr
(
DησD−1DgD−1W (2)

μ1μ2
DgD−1

)

= η
∑
ν1ν2

αμ1ν1αμ2ν2 Tr
(
σgW (2)

ν1ν2
g
)
, (20)

so that the condition for each element (α, η) ∈ PM is

T (2)
μ1μ2

= η
∑
ν1ν2

αμ1ν1αμ2ν2 T (2)
ν1ν2

. (21)

However, this approach does not account explicitly for the ten-
sor symmetry, T (2)

μ1μ2
= T (2)

μ2μ1
. In order to include this property,

one has to modify the condition (21) to

T (2)
μ1μ2

= 1

2
η

∑
ν1ν2

(
αμ1ν1αμ2ν2 + αμ2ν1αμ1ν2

)
T (2)

ν1ν2
. (22)

The validity of the last condition for all group elements then
leads to the final condition on the shape of the tensor T (2)

μ1μ2
as

T (2)
μ1μ2

=
∑
ν1ν2

Q(2)
μ1μ2,ν1ν2

T (2)
ν1ν2

,

Q(2)
μ1μ2,ν1ν2

= 1

2|PM|
PM∑

(α,η)

η
(
αμ1ν1αμ2ν2 + αμ2ν1αμ1ν2

)
, (23)

where the last sum runs over all elements (α, η) of the
magnetic point group PM and where |PM| denotes its or-
der (number of group elements). It can be shown that the
introduced superoperator Q(2)

μ1μ2,ν1ν2
is a projector in a nine-

dimensional vector space, i.e., it is symmetric, Q(2)
μ1μ2,ν1ν2

=
Q(2)

ν1ν2,μ1μ2
, and idempotent,

∑
λ1λ2

Q(2)
μ1μ2,λ1λ2

Q(2)
λ1λ2,ν1ν2

= Q(2)
μ1μ2,ν1ν2

. (24)

Consequently, the number q(2) of independent nonzero com-
ponents of the tensor T (2)

μ1μ2
can easily be obtained as the trace

of the projector Q(2)
μ1μ2,ν1ν2

, namely,

q(2) =
∑
μ1μ2

Q(2)
μ1μ2,μ1μ2

. (25)

The shape of the tensor T (2)
μ1μ2

, given by Eq. (23), was derived
by considering only the elements of the group PM; it can
easily be shown that inclusion of both additional symmetries,
mentioned in the end of Sec. II A, has no influence on the
obtained result. This follows from the commutation of the spin
operator σ with operators h, g, and W (2)

μ1μ2
, as well as from the

obvious modification of Eq. (18) for N even.
The derived shape of the tensor T (2)

μ1μ2
is closely related

to spin conductivity. The latter property, defined as the lin-
ear response of a spin current to an external electric field,
is usually quantified by a tensor σλ

μ1μ2
, where the Cartesian

index λ refers to the spin polarization of the spin current, μ1

corresponds to the direction of the spin-current flow, and μ2

to the direction of the electric field [16,26]. In nonrelativistic
collinear magnets, the two-current model of electron transport
is valid [56], the original tensor reduces to σλ

μ1μ2
= nλσ̃μ1μ2 ,

where (nx, ny, nz ) = n is a unit vector parallel to all magnetic
moments, and the shape of the tensor σ̃μ1μ2 coincides with that
of T (2)

μ1μ2
; see Appendix B. This fact points to a close relation

between the spin splitting of the electronic band structure and
the spin conductivity, which is one of the central properties in
spintronics.

We turn finally to the case of a general even N . In full
analogy with Eq. (21) for N = 2, the condition on the tensor
T (N )

μ1μ2...μN
can be written for each (α, η) ∈ PM as

T (N )
μ1μ2...μN

= η
∑

ν1ν2...νN

αμ1ν1αμ2ν2 . . . αμN νN T (N )
ν1ν2...νN

. (26)

Explicit inclusion of the tensor symmetry (invariance of
T (N )

μ1μ2...μN
with respect to all permutations of the indices) leads

to a modified condition of the form

T (N )
μ1μ2...μN

= 1

N!
η

∑
ν1ν2...νN

per(α̃μ1μ2...μN ,ν1ν2...νN )T (N )
ν1ν2...νN

, (27)

where the symbol per(C) denotes the permanent of a square
matrix C and where α̃μ1μ2...μN ,ν1ν2...νN denotes a square N × N
matrix with elements

{α̃μ1μ2...μN ,ν1ν2...νN }i j = αμiν j for i, j ∈ {1, 2, . . . , N}. (28)

The final condition on the tensor shape is

T (N )
μ1μ2...μN

=
∑

ν1ν2...νN

Q(N )
μ1μ2...μN ,ν1ν2...νN

T (N )
ν1ν2...νN

,

Q(N )
μ1μ2...μN ,ν1ν2...νN

= 1

N! |PM|
PM∑

(α,η)

ηper(α̃μ1μ2...μN ,ν1ν2...νN ),

(29)

and the number q(N ) of independent nonzero components of
the tensor T (N )

μ1μ2...μN
equals

q(N ) =
∑

μ1μ2...μN

Q(N )
μ1μ2...μN ,μ1μ2...μN

. (30)

The last two equations represent the main result of this sec-
tion.

Evaluation of the projection superoperator
Q(N )

μ1μ2...μN ,ν1ν2...νN
for selected groups PM was straightforward,

based on the known group elements (α, η) and rotation
matrices α = {αμν}. The identification of nonvanishing
components of the tensor T (N )

μ1μ2...μN
and the linear dependences

among them were derived from the identification of nonzero
rows of the superoperator Q(N )

μ1μ2...μN ,ν1ν2...νN
and from the

linear dependences among them. The success of this simple
approach rests on the adopted orientation of rotation axes and
mirror planes of the considered point groups with respect to
the Cartesian coordinate system (for details, see Appendix C).
However, the number q(N ) is insensitive to this orientation.

III. RESULTS AND DISCUSSION

A. Magnetic point groups of selected systems

As mentioned in Sec. II A, the replacement of the original
vector spin, exchange field, and local magnetic moments by
their pseudoscalar counterparts (accompanied also by switch-
ing off spin-orbit interaction) leads to modified magnetic point
groups for real systems (see Supplemental Material [42]). As
an illustration, we present in Table I the standard and modified
magnetic point groups PM for three elemental ferromagnets
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TABLE I. Directions of magnetic moments (n), standard mag-
netic point groups (st-MPG), and modified magnetic point groups
(mod-MPG) with pseudoscalar spin for selected collinear magnetic
systems. The parentheses at the group symbols contain the group
orders.

System n st-MPG mod-MPG

Fe (001) 4/mm′m′ (16) m3̄m (48)
Co (0001) 6/mm′m′ (24) 6/mmm (24)
Ni (111) 3̄m′ (12) m3̄m (48)
FeO (111) 3̄m1′ (24) 3̄m1′ (24)
Mn2Au (100), (110) m′mm (8) 4/m′mm (16)
RuO2 (001) 4′/mm′m (16) 4′/mm′m (16)
RuO2 (100), (110) m′m′m (8) 4′/mm′m (16)
MnTe (112̄0) mmm (8) 6′/m′m′m (24)
MnTe (11̄00) m′m′m (8) 6′/m′m′m (24)

(bcc Fe, hcp Co, and fcc Ni) and four binary antiferromagnetic
compounds: FeO with a rock-salt structure [57], Mn2Au with
a body-centered tetragonal (bct) structure [58,59], RuO2 with
a rutile structure [60,61], and MnTe with a hexagonal structure
[62]. The selected antiferromagnets are featured by simple
magnetic structures, with one formula unit per magnetic unit
cell for Mn2Au [58,59], while two formula units form one
magnetic unit cell in FeO [57], RuO2 [60], and MnTe [62];
for all compounds, the positions of nonmagnetic atoms are
taken into account. In the standard treatment, the resulting
symmetry depends on the direction n of magnetic moments,
whereas the results of the modified approach are insensitive
to this direction. For ferromagnets listed in Table I, the stan-
dard magnetic point groups belong to category (c), while the
modified ones belong to category (b), being identical with the
crystallographic point groups of the underlying cubic (Fe, Ni)
and hexagonal (Co) lattices. Different situations are found for
antiferromagnets. For FeO, both groups are identical, belong-
ing to category (a). For RuO2 with magnetic moments along
the (001) direction (the fourfold axis), both groups belong to
category (c) and they represent two different versions of the
group 4′/mm′m [the primed reflections are on the (110) and
(100) planes in the standard and modified PM, respectively].
For all other systems, the modified groups belong to category
(c) as well, but they differ explicitly from the standard ones.
Moreover, no direct group-subgroup relation could be found
in these cases between the modified and standard PM. Nev-
ertheless, one can observe in Table I that the group order of
the standard PM divides that of the modified PM in all studied
cases; see the Supplemental Material [42] for more details.

The modification of the magnetic point groups naturally
leads to a modification of the magnetic space groups. As an
example, we mention the antiferromagnetic MnF2 compound
with a rutile structure and with Mn moments pointing along
the tetragonal axis [14]; this system is equivalent to RuO2

with Ru moments along the (001) direction. Its standard mag-
netic space group (for the system with spin-orbit interaction)
is P4′

2/mnm′ and the modified group is P4′
2/mn′m [14], in

agreement with the two versions of the point group 4′/mm′m
of RuO2. A more detailed discussion of the space groups goes
beyond the scope of the present study.

TABLE II. Nontrivial magnetic Laue groups (MLG) (in paren-
theses is the subgroup S of all elements without the operation of
antisymmetry), the lowest rank N of a nonvanishing symmetric ten-
sor T (N ), the nature B or P of the leading term in the Taylor expansion
of F (k), and the number q(N ) of independent nonzero components of
the tensor T (N ).

MLG (S ) N B/P q(N )

m′m′m (2/m) 2 P 1
2′/m′ (1̄) 2 B 2
4′/m (2/m) 2 P 2
4′/mm′m (mmm) 2 P 1
3̄m′ (3̄) 4 B 1
4/mm′m′ (4/m) 4 P 1
6′/m′ (3̄) 4 B 2
6′/m′m′m (3̄m) 4 B 1
6/mm′m′ (6/m) 6 P 1
m3̄m′ (m3̄) 6 B 1

B. Classification of collinear nonrelativistic magnets

Inspection of the derived general formula for N even, given
by Eq. (29), reveals that the superoperator Q(N ) depends only
on the Laue class of PM (the magnetic Laue group is obtained
by adding space inversion to all elements of the magnetic
point group PM [26]). This resembles the case of certain
tensors, such as the conductivity tensor and the tensor of ther-
moelectric coefficients [25,26], and it simplifies the analysis
of possible shapes of the tensors T (N ) substantially. However,
it should be noted that some of the magnetic point groups
of category (c) belong to the Laue class of category (a); this
happens if (and only if) the PM contains the combination of
space inversion and of the operation of antisymmetry. Further
inspection of Eq. (29) proves that for a particular PM (or
its Laue class) of category (a), the superoperators Q(N ) and
the resulting tensors T (N ) vanish identically for all N . The
evaluation of Eqs. (29) and (30) thus has to be performed only
for magnetic Laue groups of category (c); the total number of
these nontrivial magnetic Laue groups amounts to 10.

Our results are summarized in Table II. For each mag-
netic Laue group, the lowest rank N of a nonvanishing tensor
T (N )

μ1μ2...μN
is given together with the number q(N ) of its in-

dependent nonzero components. All these nonzero tensor
components are listed explicitly in Appendix C; the symbols
B (bulk) and P (planar) in Table II indicate which of the
components kx, ky, and kz of the k vector enter the leading term
in the Taylor expansion (12) of F (k). The symbol P refers to
the cases where only two components in directions perpendic-
ular to a prominent direction of the group are present, while
the symbol B denotes all other cases. The most important
observation is the fact that for each magnetic Laue group of
category (c), a nonvanishing tensor T (N ) exists, which in turn
proves the presence of spin splitting in a neighborhood of the
BZ center.

Let us briefly discuss the four antiferromagnets (FeO,
Mn2Au, RuO2, MnTe) mentioned in Sec. III A; see, also,
Table I. The modified PM of FeO (3̄m1′) belongs to cate-
gory (a), incompatible with spin splitting. The modified PM

of RuO2 (4′/mm′m) and that of MnTe (6′/m′m′m) are Laue

094432-7



ILJA TUREK PHYSICAL REVIEW B 106, 094432 (2022)

groups of category (c), compatible with spin splitting. The
modified PM of Mn2Au (4/m′mm) is of category (c); however,
its Laue class (4/mmm1′) is of category (a), which does not
support spin splitting.

The present identification of a broad pool of 10 nontrivial
magnetic Laue groups, yielding the spin splitting of energy
bands in antiferromagnets, is in full agreement with the ample
occurrence of this phenomenon [8–12,15,17]. Moreover, a
closer look at the results in Table II reveals a remarkable
similarity with a classification scheme of altermagnets ob-
tained by Šmejkal et al. [17]. The approach developed by
the authors of Ref. [17] is based on spin point groups, on
eigenvalues of model k · p Hamiltonians, and on an orbital-
harmonic representation [63]. The 10 different altermagnetic
cases, summarized in Table 1 of Ref. [17], are featured by the
spin Laue group, a spin winding number W (W = 2, 4, 6), and
the B/P symbol. An explicit one-to-one mapping between the
10 cases of Šmejkal et al. and those in Table II can be found
after identification of N with the spin winding number W and
by comparing the B/P symbols, the parent crystallographic
point groups, and the subgroups of index two attached to the
magnetic/spin Laue groups. This mapping is further corrob-
orated by the resulting k-dependent functions: F (k), given
by Eq. (12), and its eigenvalue-based counterpart [17]; see
Appendix C.

The similarity of the results of both classification schemes
deserves a brief comment. In the approach using the spin
point groups, the reversal of local magnetic moments in an-
tiferromagnets is achieved by the π rotation in the spin space
around an axis perpendicular to the moment direction [17].
In the pseudoscalar-spin approach, the local moment rever-
sal is owing to the operation of antisymmetry (spin-channel
interchange) present in the modified magnetic groups. The
latter approach then leads to a very simple classification of
nonrelativistic collinear magnets: the ferro- and ferrimagnets
(including the compensated ones) with different spin-up and
spin-down band structures are characterized by the magnetic
point group of category (b), the usual antiferromagnets with-
out spin-split electronic structure possess the magnetic Laue
group of category (a), and the antiferromagnets with spin
splitting (altermagnets) are featured by the magnetic Laue
group of category (c). These three categories of magnetic
point and Laue groups proved very useful for understand-
ing the transport phenomena in magnetic materials since the
1960’s; one might expect that they will also be helpful in
the field of antiferromagnets with momentum-dependent spin
splitting.

As an example, let us consider the spin conductivity intro-
duced in Sec. II D. The shape of the spin-conductivity tensor
σ̃μ1μ2 coincides with that of the tensor T (2)

μ1μ2
. According to

Table II, this tensor is nonzero only for four magnetic Laue
classes, namely, for m′m′m, 2′/m′, 4′/m, and 4′/mm′m. This
result explains different sources of the calculated spin conduc-
tivities of hexagonal MnTe and tetragonal RuO2 systems [16]:
in MnTe (modified PM 6′/m′m′m), it is caused solely by spin-
orbit interaction, whereas in RuO2 (modified PM 4′/mm′m), it
is induced primarily by the anisotropic spin-split bands. The
anisotropy of RuO2 can easily be understood by inspecting
the subgroup S of all elements without the operation of anti-
symmetry, which is the orthorhombic group mmm with mirror

planes (001), (110), and (11̄0). Consequently, the conductiv-
ities in each spin channel are different along the (110) and
(11̄0) directions, which (together with the spin-channel inter-
change accompanying the rotation by π/2 around the z axis
present in PM) leads to the resulting nonzero spin conductivity
[9,16].

The obtained classification scheme is also compatible with
the recently formulated criteria for spin splitting in anti-
ferromagnets, based on magnetic space groups [14,15]. All
magnetic space groups GM can be divided into four types [21],
which correspond to the three categories of the magnetic point
groups PM derived from the GM as follows. A group GM of
type I does not involve the operation of antisymmetry at all
(neither as a separate element nor in a combination with a
spatial operation); its PM belongs to category (b). A group GM

of type II contains the pure operation of antisymmetry as a
group element; its PM belongs to category (a). A group GM

of type III contains the operation of antisymmetry only in a
combination with a nontrivial rotation (combined optionally
with a translation); its PM belongs to category (c). For this
type, further partitioning can be done which is equivalent to
the two categories [(a) or (c)] relevant for the Laue class of
the PM of category (c). A group GM of type IV contains the
operation of antisymmetry in a combination with a nonprim-
itive translation; its PM belongs to category (a). However, in
application of both approaches to a particular system, the dif-
ferent nature of electron spin (vector or pseudoscalar) should
also be taken into account. As an illustrating example, we
consider the antiferromagnetic NiO system with a perturbed
rock-salt structure in which each oxygen (111) plane is dis-
placed slightly along the (111) direction towards the nearest
nickel (111) plane with positive magnetic moments [49]. For
Ni moments oriented along the (112̄) direction, the standard
GM is C2′/m′, which is of type III and which leads to the spin
splitting of eigenvalues essentially throughout the whole BZ.
Within the pseudoscalar-spin approach, the modified PM is
3̄m which belongs to category (b), leading thus to the same
kind of spin splitting. This can easily be understood in terms
of ferrimagnetism: nickel atoms with opposite signs of local
moments behave (from a viewpoint of symmetry) as two
chemically different species due to the adopted displacements
of oxygen atoms. The system can thus be treated as a nearly
compensated ferrimagnet with different band structures in
spin-up and spin-down channels, which explains the resulting
spin splitting. A more detailed comparison of the approach
based on GM [14,15] and the current one employing PM goes
beyond the scope of this work.

C. Spin splitting in a model antiferromagnet

In this section, we briefly discuss the physical mecha-
nisms behind the spin splitting of eigenvalues in collinear
antiferromagnets. Since the only known monatomic collinear
antiferromagnet is chromium on a bcc lattice, which however
forms a spin-density wave with a wavelength incommensurate
with the bcc lattice parameter [64], one can conclude that
nonmagnetic atoms play an important role for collinear anti-
ferromagnets with perfect translation invariance. The effect of
the nonmagnetic atoms is manifold. First, they are responsible
for stabilization of the geometric structure of the systems.
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Second, they often lead to the formation of the local magnetic
moments and to their antiferromagnetic exchange coupling.
Finally, the nonmagnetic atoms create local electric crystal
fields around the magnetic atoms, which in combination with
spin-group symmetries of the one-electron Hamiltonian give
rise to the spin splitting [17]. The important role of nonmag-
netic atoms has also been proved in a recent study of NiO with
a rock-salt structure, in which small displacements of oxygen
atoms were introduced, which generated a pronounced spin
splitting [49].

Let us assess the relative importance of the nonmagnetic
atoms and of the group symmetry using an example of the
antiferromagnetic KRu4O8 compound with a bct structure,
which exhibits the spin splitting [17]. The potassium atoms
occupy the Wyckoff 2(b) positions of the space group (space
group I4/m, No. 87), while the ruthenium atoms as well
as both kinds of oxygen atoms occupy the Wyckoff 8(h)
positions [65]. The three fundamental vectors of the Bra-
vais bct lattice are a1 = (a, 0, 0), a2 = (0, a, 0), and a3 =
(a/2, a/2, c/2), where a and c are the bct lattice parameters.
The basis vectors of Ru atoms are B1 = (ua, va, 0), B2 =
(−va, ua, 0), B3 = −B1, and B4 = −B2, where u and v are
dimensionless atomic coordinates. The local magnetic mo-
ments of Ru atoms at B1 and B3 are identical, being opposite
to those of Ru atoms at B2 and B4. The magnetic point group
(with pseudoscalar spin) of the whole system is 4′/m, which is
compatible with the existence of the spin splitting according
to Table II. However, the same magnetic point group is also
obtained for a hypothetical four-site bct system derived from
KRu4O8 by removing all nonmagnetic atoms (K, O), thus
keeping only the magnetic Ru atoms with their antiferromag-
netic structure. This indicates that the spin splitting might be
obtained even without any nonmagnetic atoms in this case.

In order to verify this idea on a very simple model, we
performed band-structure calculations for this four-site bct
model using the linear muffin-tin orbital (LMTO) method in
the atomic sphere approximation [66], in which the angular-
momentum cutoff was set to �max = 0, thus corresponding
to a single orbital per atom. The LMTO potential parameter
�, which controls the bandwidth, was set to � = 1.8w−2,
where w denotes the Wigner-Seitz radius of the lattice, and
the dimensionless LMTO potential parameter was taken as
γ = 0.4, which is a typical value for s orbitals of transition
metals. The LMTO potential parameter C, which controls the
position of the bands on the energy scale, was set to zero
for a nonmagnetic system, whereas exchange-split values of
C = ±� were used to simulate the antiferromagnetic order.
The geometric structure of the model is defined by u = 0.27,
v = 0.08, and c/a = 0.4 (these values were chosen in order
to achieve good space filling by the atomic spheres).

The resulting band structures are displayed in Fig. 1 along
the Y − � − X path in the bct BZ, i.e., for kz = 0, ky = |kx|,
and −π � akx � π . One can clearly observe the spin splitting
in the antiferromagnetic state, in qualitative agreement with
that found in the realistic band structure of the KRu4O8 com-
pound [17]. A similar result has recently been obtained for a
single-orbital four-site antiferromagnetic model without non-
magnetic atoms, derived from a pyrochlore structure [11] and
characterized by the magnetic point group 4′/mm′m. These
results prove that the nontrivial magnetic Laue group of the
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FIG. 1. The band structure of the four-site model on a bct lattice:
(a) in the nonmagnetic state, (b) in the antiferromagnetic state. In (b),
the dotted and dashed curves correspond to the two spin channels
s = 1 and s = −1, respectively.

system is the most important prerequisite for the appearance
of spin splitting; other features present in real materials, such
as the local electric fields and magnetic exchange interactions
due to the nonmagnetic atoms, or the true orbital structure of
the magnetic transition-metal atoms, are less essential in this
respect (despite their primary importance for the realistic band
structure and the splitting strength).

IV. CONCLUSIONS

We have introduced the concept of a pseudoscalar electron
spin appropriate for a theoretical treatment of the electronic
structure of nonrelativistic collinear magnets. The substitu-
tion of the original vector spin by the pseudoscalar spin
brings about a modification of magnetic groups of crystalline
systems. We have defined an infinite-dimensional represen-
tation of the modified magnetic point groups, which enabled
us to avoid any approximations in solving the Hamiltonian
eigenvalue problem. This representation is single valued and
unitary, which might be beneficial in future extensions of the
formalism.
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The developed theory was used for an analysis of spin
splitting of electron states in antiferromagnets near the cen-
ter of the Brillouin zone. Our results provide an alternative
view on the recently introduced altermagnetic systems [17];
their different classes were identified unambiguously with
the nontrivial magnetic Laue classes that are relevant for
shape restrictions of various transport tensor quantities. As
a consequence, the spin conductivity induced by spin-split
bands in certain antiferromagnets has been ascribed to four
specific magnetic Laue classes. A brief discussion of a model
antiferromagnet without nonmagnetic atoms revealed that the
point-group symmetry of the system represents the key factor
for the existence of the spin splitting, while the nonmagnetic
atoms only influence the splitting magnitude.

The present work was confined to magnetic point groups; it
can be, together with recent studies based on magnetic space
groups [14,15,49] and on spin point groups [17], considered
as one of the starting points towards a complete symmetry
analysis of transport properties and electron states in collinear
nonrelativistic magnets, which should inevitably include spin
space groups [37]. This topic has to be left for the future.

APPENDIX A: HAMILTONIAN AND
TRANSFORMATION OF OPERATORS

The Hamiltonian (1) is represented in the basis of orthonor-
mal vectors |Gs〉 = |G〉 ⊗ |s〉, where the spatial part for a
given k point is defined by

〈r|G〉 = �−1/2 exp[i(k − G) · r], (A1)

where � denotes the volume of the primitive cell in the real
space. The full Hamiltonian matrix in this basis is

〈Gs|H̃ (k)|G′s′〉 = [(k − G)2δGG′ + Ṽs(G − G′)]δss′ , (A2)

where we introduced Fourier coefficients Ṽs(G) of the poten-
tials Vs(r), so that

Vs(r) =
∑

G

Ṽs(G) exp(−iG · r). (A3)

Consequently, matrix elements of the operators h, Jμ, and
Lμ1μ2 , which define the full k dependence of H̃ (k), given by
Eq. (6), are equal to

〈Gs|h|G′s′〉 = [G2δGG′ + Ṽs(G − G′)]δss′ ,

〈Gs|Jμ|G′s′〉 = −2GμδGG′δss′ ,

〈Gs|Lμ1μ2 |G′s′〉 = δμ1μ2δGG′δss′ . (A4)

The last relation implies that Lμ1μ2 = Iδμ1μ2 , where I is the
unit operator. We also mention the matrix elements of the spin
operator σ , which reduce to

〈Gs|σ |G′s′〉 = sδGG′δss′ . (A5)

Note that Eq. (A2) represents a starting point for accurate
eigenvalues of the Hamiltonian (1), provided that the basis set
{|Gs〉} is not truncated.

Let us now prove the basic property (14) of the repre-
sentation D(α, η) of the magnetic point group PM, defined
by Eq. (13). If we denote (α1, η1)(α2, η2) = (α1α2, η1η2) ≡
(α3, η3), then the corresponding translations t j, j ∈ {1, 2, 3},
entering Eq. (5), satisfy t3 = α1t2 + t1. We get, for an arbi-
trary basis vector |Gs〉,

D(α1, η1)D(α2, η2)|Gs〉
= D(α1, η1)|α2G, η2s〉 exp(iα2G · t2)

= |α1α2G, η1η2s〉 exp(iα1α2G · t1) exp(iα2G · t2)

= |α1α2G, η1η2s〉 exp[iα1α2G · (t1 + α1t2)]

= |α3G, η3s〉 exp(iα3G · t3) = D(α3, η3)|Gs〉. (A6)

This completes the proof of Eq. (14).
Let us now turn to the transformation of relevant operators,

as summarized in Eq. (15). We start with the reference Hamil-
tonian h. We evaluate D(α, η)h and hD(α, η) for (α, η) ∈ PM

and compare the results. We get, for an arbitrary basis vector
|G′s〉,

D(α, η)h|G′s〉 = D(α, η)
∑
G′′

|G′′s〉〈G′′s|h|G′s〉 =
∑
G′′

|αG′′, ηs〉 exp(iαG′′ · t)[(G′)2δG′′G′ + Ṽs(G′′ − G′)]

=
∑

G

|G, ηs〉 exp(iG · t)[(G′)2δG,αG′ + Ṽs(α
−1G − G′)], (A7)

where we replaced the summation lattice vector G′′ by G = αG′′. Similarly, we get

hD(α, η)|G′s〉 = h|αG′, ηs〉 exp(iαG′ · t) =
∑

G

|G, ηs〉〈G, ηs|h|αG′, ηs〉 exp(iαG′ · t)

=
∑

G

|G, ηs〉 exp(iαG′ · t)[G2δG,αG′ + Ṽηs(G − αG′)]. (A8)

The difference of both results yields

[D(α, η)h − hD(α, η)]|G′s〉 =
∑

G

|G, ηs〉[exp(iG · t)Ṽs(α
−1G − G′) − exp(iαG′ · t)Ṽηs(G − αG′)]. (A9)

After application of an auxiliary identity (valid for all reciprocal lattice vectors G),

Ṽs(G) = exp(−iαG · t)Ṽηs(αG), (A10)
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with G replaced by (α−1G − G′), we get, finally,

D(α, η)h − hD(α, η) = 0, (A11)

which proves the invariance of the Hamiltonian h, given by Eq. (15). The auxiliary identity (A10) follows from Eq. (5) combined
with the Fourier expansion (A3),∑

G

Ṽs(G) exp(−iG · r) =
∑
G′

Ṽηs(G′) exp[−iG′ · (αr + t)] =
∑

G

Ṽηs(αG) exp[−iαG · (αr + t)]

=
∑

G

Ṽηs(αG) exp(−iαG · t) exp(−iG · r). (A12)

The comparison of coefficients at exp(−iG · r) on both sides
of this relation yields the identity (A10).

The transformation of the other operators can be obtained
in a similar way. As an example, let us consider the velocities
Jμ. We get, for an arbitrary basis vector |Gs〉,

D(α, η)Jμ|Gs〉 = D(α, η)(−2Gμ)|Gs〉
= −2Gμ|αG, ηs〉 exp(iαG · t) (A13)

and

JμD(α, η)|Gs〉 = Jμ|αG, ηs〉 exp(iαG · t)

= −2(αG)μ|αG, ηs〉 exp(iαG · t)

= −2
∑

ν

αμνGν |αG, ηs〉 exp(iαG · t).

(A14)

This means that

JμD(α, η) =
∑

ν

αμνD(α, η)Jν = D(α, η)
∑

ν

αμνJν,

(A15)
from which the transformation of Jμ, given by Eq. (15), im-
mediately follows.

APPENDIX B: SPIN CONDUCTIVITY

The spin-conductivity tensor σλ
μ1μ2

of a nonrelativistic
collinear magnet can be written according to a general for-
mula for the static linear response of noninteracting electron
systems [67,68] at zero temperature as

σλ
μ1μ2

= −2c
∫ EF

−∞
dETr

{
σλ pμ1 Z ′(E+)pμ2 [Z (E+) − Z (E−)]

− σλ pμ1 [Z (E+) − Z (E−)]pμ2 Z ′(E−)
}
. (B1)

Here the prefactor c is inversely proportional to the size
of the system (a big finite crystal with periodic boundary
conditions), the integration is carried out over the occupied
part of the valence spectrum (for energies E up to the Fermi
energy EF), and the trace Tr refers to the Hilbert space of
the entire system. The quantities σλ denote the Pauli spin
matrices, (σ x, σ y, σ z ) = σ, the quantities pμ refer to the
momentum operator, (px, py, pz ) = p, the symbol Z (E±) =
Z (E ± i0) denotes the retarded and advanced one-electron
propagator (resolvent), and the prime at Z (E±) denotes the
energy derivative. Note that evaluation of Eq. (B1) involves
implicitly averaging over all k vectors in the whole BZ. The

direction of all magnetic moments (and exchange fields) of the
collinear system is specified by a unit vector n = (nx, ny, nz ).
The momentum operator pμ is spin independent; the spin
dependence of the propagators Z (E±) can be written as a sum
over the spin-channel index s (s = ±1) as

Z (E±) =
∑

s

Zs(E±) ⊗ �s(n), �s(n) = 1 + sn · σ

2
,

(B2)
and similarly for the derivatives Z ′(E±). Here the symbol
a ⊗ b means an operator involving an operator a acting only
in the orbital space and an operator b acting only in the two-
dimensional spin space. The quantities Zs(E±) in Eq. (B2)
thus refer to the propagators in the spin channel s (s = ±1),
while the �s(n) denotes a projection operator in the spin
space (projecting on the spin channel s with respect to the
spin quantization axis n). Evaluation of the trace follows the
rule Tr(a ⊗ b) = Tr(a)tr(b), where the traces Tr and tr refer
to the orbital and spin space, respectively. Using Eq. (B2) in
the starting formula (B1) together with the relation

tr[σλ�s(n)�s′ (n)] = nλsδss′ (B3)

leads to the final expression for the spin-conductivity tensor
σλ

μ1μ2
as

σλ
μ1μ2

= nλσ̃μ1μ2 , σ̃μ1μ2 =
∑

s

sσ (s)
μ1μ2

,

σ (s)
μ1μ2

= −2c
∫ EF

−∞
dETr{pμ1 Z ′

s(E+)pμ2 [Zs(E+) − Zs(E−)]

− pμ1 [Zs(E+) − Zs(E−)]pμ2 Z ′
s(E−)}. (B4)

This result proves the reduction of the tensor σλ
μ1μ2

of rank
three to a tensor σ̃μ1μ2 of rank two; the latter equals the
difference of tensors σ (s)

μ1μ2
for the majority (spin-up, s = 1)

and minority (spin-down, s = −1) channels. The tensor σ (s)
μ1μ2

coincides with the electrical conductivity tensor in channel s,
which can be expressed by the Kubo-Greenwood formula [69]
in terms of the spin-resolved propagators only at the Fermi
energy. This yields

σ (s)
μ1μ2

= cTr
[
pμ1�s pμ2�s

]
, �s = i[Zs(EF,+) − Zs(EF,−)].

(B5)
Using the pseudoscalar spin operator σ , the notation of
Sec. II A, and an operator �, diagonal in the spin-channel
index and defined by its spin-resolved blocks �s, the reduced
spin-conductivity tensor σ̃μ1μ2 can be rewritten as

σ̃μ1μ2 = cTr
(
σ pμ1�pμ2�

)
. (B6)
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The group invariance of the system means that the Hamil-
tonian commutes with a unitary operator D representing the
combination of a rotation α, translation t, and spin-channel
interchange η; see Eq. (5). The latter operator is defined by its
action on all basic kets as D|rs〉 = |r′s′〉, where r′ = αr + t
and s′ = ηs. As a consequence, one can derive transforma-
tions of the operators in Eq. (B6) as

D−1σD = ησ, D−1�D = �, D−1 pμD =
∑

ν

αμν pν,

(B7)
in complete analogy with Eq. (15). This leads to a condition
for the tensor σ̃μ1μ2 :

σ̃μ1μ2 = cTr
(
DησD−1 pμ1 D�D−1 pμ2 D�D−1

)
= η

∑
ν1ν2

αμ1ν1αμ2ν2 cTr
(
σ pν1�pν2�

)

= η
∑
ν1ν2

αμ1ν1αμ2ν2 σ̃ν1ν2 , (B8)

which has the same form as Eq. (21) for the tensor T (2)
μ1μ2

.
The derived condition (B8) does not explicitly contain the
translation vector t, so that it holds for all elements (α, η) of
the magnetic point group PM. This proves that the shapes of
both symmetric tensors σ̃μ1μ2 and T (2)

μ1μ2
are identical.

APPENDIX C: DETAILED RESULTS
OF SYMMETRY ANALYSIS

In this part, we list more details of the resulting nonva-
nishing tensors T (N )

μ1μ2...μN
, briefly sketched in Table II for all

10 nontrivial magnetic Laue groups. For groups possessing
only one rotation axis of the maximal order, this axis coincides
with the z axis; further information on the orientation of the
symmetry elements with respect to the coordinate system is
given below for each particular group. In listing the indepen-
dent nonzero tensor components, relations reflecting the full
symmetry of T (N )

μ1μ2...μN
, such as T (2)

xy = T (2)
yx , are not explicitly

mentioned. We also give the leading term of the Taylor expan-
sion of the function F (k), given by Eq. (12); the symbols c1

and c2 below denote two arbitrary constants.
For the group m′m′m, we chose the unprimed reflection on

the x − y plane and the primed reflections on the x − z and
y − z planes. We get N = 2 and a single component T (2)

xy . This
yields

F (k) ∼ kxky. (C1)

For the group 2′/m′, we get N = 2 and two components, T (2)
xz

and T (2)
yz . This yields

F (k) = c1kxkz + c2kykz. (C2)

For the group 4′/m, we get N = 2 and two components,
T (2)

xx = −T (2)
yy and T (2)

xy . This yields

F (k) = c1
(
k2

x − k2
y

) + c2kxky. (C3)

For the group 4′/mm′m, the primed reflection was on the (110)
plane. We get N = 2 and a single component T (2)

xx = −T (2)
yy .

This yields

F (k) ∼ k2
x − k2

y . (C4)

For the group 3̄m′, the primed reflection was on the y − z
plane. We get N = 4 and a single component T (4)

xxxz = −T (4)
xyyz.

This yields

F (k) ∼ kxkz
(
k2

x − 3k2
y

)
. (C5)

For the group 4/mm′m′, one of the primed reflections was on
the y − z plane. We get N = 4 and a single component T (4)

xxxy =
−T (4)

xyyy. This yields

F (k) ∼ kxky
(
k2

x − k2
y

)
. (C6)

For the group 6′/m′, we get N = 4 and two components,
T (4)

xxxz = −T (4)
xyyz and T (4)

xxyz = −T (4)
yyyz. This yields

F (k) = c1kxkz
(
k2

x − 3k2
y

) + c2kykz
(
k2

y − 3k2
x

)
. (C7)

For the group 6′/m′m′m, the unprimed reflection was on the
y − z plane. We get N = 4 and a single component T (4)

xxyz =
−T (4)

yyyz. This yields

F (k) ∼ kykz
(
3k2

x − k2
y

)
. (C8)

For the group 6/mm′m′, the primed reflections were on the
x − z and y − z planes. We get N = 6 and a single component
T (6)

xxxxxy = −T (6)
xxxyyy = T (6)

xyyyyy. This yields

F (k) ∼ kxky
(
3k2

x − k2
y

)(
3k2

y − k2
x

)
. (C9)

For the group m3̄m′, the threefold rotation axes were cho-
sen along the (111), (111̄), (11̄1), and (11̄1̄) directions.
We get N = 6 and a single component T (6)

xxxxyy = −T (6)
xxxxzz =

−T (6)
xxyyyy = T (6)

xxzzzz = T (6)
yyyyzz = −T (6)

yyzzzz. This yields

F (k) ∼ (
k2

x − k2
y

)(
k2

y − k2
z

)(
k2

z − k2
x

)
. (C10)

The obtained functions F (k) for the individual magnetic
point groups can be compared with their eigenvalue-based
counterparts. These functions for the groups m′m′m (C1), 3̄m′
(C5), 4/mm′m′ (C6), 6/mm′m′ (C9), and m3̄m′ (C10) are
identical to those of Ref. [17]. In two other cases, differences
are encountered which, however, can easily be removed by
rotations of the coordinate systems: for the group 4′/mm′m
(C4), a rotation by π/4 around the z axis is needed, while
for the group 6′/m′m′m (C8), a rotation by π/2 around the z
axis is needed (these rotations correspond to an interchange
of the secondary and tertiary symmetry directions for both
groups). In the remaining three cases, i.e., for the groups 2′/m′
(C2), 4′/m (C3), and 6′/m′ (C7), the derived functions F (k)
contain two terms, whereby only one of them coincides with
the corresponding single-term expression of Ref. [17]. This
can be ascribed to the fact that all elements of these point
groups are insensitive to the choice of a direction of the x
(and y) axis, whereas this ambiguity is always missing in a
model calculation using a particular lattice, which leads to a
suppression of one of both terms.
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