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Ground-state selection by magnon interactions in a fcc antiferromagnet
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We study the nearest-neighbor Heisenberg antiferromagnet on a face-centered cubic lattice with arbitrary
spin S. The model exhibits degenerate classical ground states including two collinear structures AF1 and AF3
described by different propagation vectors that are prime candidates for the quantum ground state. We compute
the energy for each of the two states as a function of S using the self-consistent spin-wave theory and the
numerical coupled cluster method. Our results unambiguously demonstrate that quantum fluctuations stabilize
the AF1 state for realistic values of spin. Transition to the harmonic spin-wave result, which predicts the AF3
state, takes place only for S � 10. We also study quantum renormalization of the magnon spectra for both states
as a function of spin.
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I. INTRODUCTION

An antiferromagnet on a face-centered cubic (fcc) lattice
has attracted a longstanding theoretical interest [1–26]. Early
on, Anderson argued for an infinite degeneracy of the classical
ground state for the nearest-neighbor Heisenberg model [1]
making it the second such example after the celebrated tri-
angular Ising antiferromagnet [27]. The interest in magnetic
frustration on the fcc network is fueled by an abundance of
related materials, see [28] for a survey of the early works and
[29–35] for more recent studies.

The infinite degeneracy in the ground state can be lifted
by additional interactions, for example, the second-neighbor
exchange J2 that is often present in the fcc materials [28].
The two collinear AF1 and AF3 spin structures stabilized,
respectively, by weak negative or positive J2 are shown in
Fig. 1. The propagation vector of the AF1 magnetic structure
is Q1 = (2π, 0, 0) or the two other wavevectors obtained by
permutation of its components. The AF3 magnetic structure is
described by Q3 = (2π, π, 0) or other symmetry related vec-
tor in the Brillouin zone (BZ). For the nearest-neighbor model
(J2 = 0) the two collinear states become degenerate together
with an infinite number of incommensurate spin spirals de-
scribed by wavevectors belonging to the line Qs = (2π, q, 0)
that connects the AF1 and AF3 wavevectors.

The problem of a finite-temperature transition in an in-
finitely degenerate frustrated spin model as well as subsequent
selection of a specific ground-state structure by quantum fluc-
tuations was formulated already in the early papers [3–5].
The nonzero transition temperature for the nearest-neighbor
Heisenberg fcc model was unambiguously demonstrated by
classical Monte Carlo simulations [12,16]. However, the

question about its ground state for the quantum model has
not been satisfactorily answered. The two main contenders are
collinear AF1 and AF3 states since quantum effects generally
increase energy for noncollinear spin arrangements [36–39].
The exact-diagonalization study of the J1−J2 spin-1/2 fcc
antiferromagnet in zero field [15] was performed on clusters
up to N = 32 sites, which is clearly insufficient to reach a
conclusion about the type of a long-range order for J2 = 0.
In the recent article, three of us investigated this problem
in the harmonic spin-wave approximation [25]. The energy
difference between the AF1 and AF3 structures is found to be

�E13 = EAF1
g.s. − EAF3

g.s. = 0.00305(1)JS, (1)

suggesting that the AF3 spin structure is the ground state. Still,
�E13 remains very small and the above conclusion may be
affected by the magnon-magnon interaction.

The standard spin-wave expansion works poorly for
highly-frustrated antiferromagnets with lines of pseudo-
Goldstone (zero-energy) modes in the harmonic spectra, see,
e.g., [40]. Instead, in this paper we perform a self-consistent
spin-wave calculation, which corresponds to summation of an
infinite subseries of the 1/S diagrams. The magnon interac-
tion renormalizes the bare excitation energies such that the
accidental zero-energy magnons acquire finite quantum gaps.
The ground-state energy correction obtained with the renor-
malized magnon spectrum is expected to be more reliable.
In addition, we obtain the ground-state energies numerically
using the coupled-clusters method, which appears to be one
of a few techniques suitable for numerical investigation of
three-dimensional frustrated magnets. Both approaches agree
that the AF1 state is the ground state of the Heisenberg
fcc antiferromagnet for all physical values of spin S � 10.
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FIG. 1. Collinear magnetic structures for the nearest-neighbor
fcc antiferromagnet. Left: The two-sublattice AF1 state with
Q1 = (2π, 0, 0). Right: The four-sublattice AF3 state with Q3 =
(2π, π, 0). Closed (open) spins correspond to two rotating sublat-
tices described by a (b) bosons (see the text).

Furthermore, the absolute energy values are in good corre-
spondence between the two approaches.

The paper is organized as follows. Section II describes the
self-consistent spin-wave calculations. The general idea of the
approach is explained in Sec. II A and analytical results for
the AF1 and AF3 states are provided in Secs. II B and II C,
respectively. The coupled cluster method (CCM) is described
in Sec. III. The main results for the fcc antiferromagnet ob-
tained by the two methods are presented in Sec. IV, where the
ground-state properties and the renormalized magnon spectra
are discussed. Section V summarizes our results and conclu-
sions. Additional information on self-consistent calculations
for the AF3 state is included in Appendix A. Details of
the CCM extrapolation for S = 1/2 and 1 are provided in
Appendix B.

II. SPIN-WAVE THEORY

A. Self-consistent approach

We use the self-consistent spin-wave theory to study quan-
tum effects in the Heisenberg antiferromagnet on an fcc lattice
with nearest-neighbor interactions between spins of length S,

Ĥ = J
∑
〈i j〉

Si · S j . (2)

One of the first formulations of the self-consistent approach
was given by Takahashi in a study of a square-lattice anti-
ferromagnet at finite temperatures [41]. Various extensions of
the Takahashi’s work were subsequently applied to ordered
and disordered quantum magnetic phases at zero and finite
temperatures [42–52]. We outline details relevant for ordered
magnetic states at T = 0 below.

We use the Holstein-Primakoff representation of spin oper-
ators [53]

S− = a†
√

2S − a†a ≈
√

2Sa†

(
1 − a†a

4S

)
,

S+ = (S−)†, Sz = S − a†a (3)

applied in the local frame associated with the average spin di-
rection on each site. The bond Hamiltonian is, then, expressed

via bosonic operators

Ĥi j = JSi · S j ≈ E (0)
i j + Ĥ(2)

i j + Ĥ(4)
i j , (4)

restricting expansion up to the fourth-order terms.
For the nearest-neighbor fcc antiferromagnet we have to

distinguish two types of bonds with antiparallel (↑↓) and
parallel (↑↑) orientation of spins. In AF1 and AF3 structures
every spin participates in eight ↑↓ bonds and four ↑↑ bonds
giving them the same classical energy

E0/N = −2JS2. (5)

The quadratic bond contributions are

Ĥ(2)
↑↑ = JS(a†

i a j + a†
j ai − a†

i ai − a†
j a j ),

Ĥ(2)
↑↓ = JS(a†

i ai + a†
j a j − aia j − a†

i a†
j ). (6)

The nonlinear quartic terms responsible for magnon-magnon
interaction are expressed as

Ĥ(4)
↑↑ = J

[
nin j − 1

4 (a†
i nia j + a†

i n ja j + H.c.)
]
,

Ĥ(4)
↑↓ = J

[ − nin j + 1
4 (niaia j + n jaia j + H.c.)

]
, (7)

where H.c. stands for the Hermitian conjugate terms and ni =
a†

i ai is the occupation number operator.
The harmonic or linear spin-wave theory amounts to keep-

ing only quadratic terms in the boson Hamiltonian. Standard
diagonalization of Ĥ(2) with the help of the Fourier and the
Bogoliubov transformations yields the bare magnon energies.
One can also compute the expectation values of various boson
averages in the harmonic ground state

n = 〈a†
i ai〉, mi j = 〈a†

i a j〉, �i j = 〈aia j〉. (8)

Performing linear spin-wave calculations for a chosen
collinear state, it is straightforward to verify that mi j are
nonzero for bonds with parallel spins and vanish for all
antiparallel pairs. The anomalous averages �i j exhibit an
opposite pattern: nonzero for ↑↓ and zero for ↑↑ spin pairs.
These relations are imposed by a continuous rotation symme-
try about the sublattice direction. Indeed, a rotation by angle ϕ

is equivalent to a gauge transformation, which proceeds differ-
ently for bosons on up and down sublattices: ai → e±iϕai. The
above relations, then, follow from gauge invariance of cor-
responding operator combinations and remain valid beyond
the harmonic approximation. Once the rotation symmetry is
absent, either for the spin Hamiltonian or for the magnetic
structure, nonzero mi j , �i j appear for every bond.

The next step is to decompose the quartic Hamiltonian
Ĥ(4) into quadratic terms using the standard Hartree-Fock
decoupling with the mean-field averages defined by (8). Ba-
sically, this approximation implies that the magnon scattering
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process are neglected. Skipping straightforward intermediate
steps and collecting all relevant contributions we obtain

Ĥ↑↑ ≈ J[S2 − (n − mi j )
2 + (S − n + mi j )

× (a†
i a j + a†

j ai − a†
i ai − a†

j a j )],

Ĥ↑↓ ≈ J[−S2 + (n − �i j )
2 + (S − n + �i j )

× (a†
i ai + a†

j a j − aia j − a†
i a†

j )]. (9)

At this point the mean-field averages are considered as inde-
pendent parameters and the excitation spectrum is obtained by
diagonalization of a new quadratic Hamiltonian Ĥ(2)

MF obtained
by summation of bond contributions (9). The system is finally
closed by a self-consistency condition (8), where the averages
are computed over a new renormalized ground state.

Once a solution of the self-consistent equations is obtained,
the ground-state energy can be expressed as

Eg.s. = E0 + 〈Ĥ(2) + Ĥ(4)〉

= J
↑↑∑
〈i j〉

(S−n+mi j )
2 − J

↑↓∑
〈i j〉

(S−n+�i j )
2. (10)

In the following subsections we give explicit analytic results
for the AF1 and the AF3 states of the fcc antiferromagnet.

B. AF1 state

The antiferromagnetic AF1 structure consists of two op-
posite magnetic sublattices, which transform into each other
under translation. As a result, the exchange bonds are charac-
terized by only two mean-field averages: mi j = m and �i j =
� for parallel and antiparallel spins, respectively. Choos-
ing among three equivalent domains the state with Q1 =
(2π, 0, 0), we introduce a single species of bosons in the
rotating spin frame and obtain for the quadratic part of the
mean-field Hamiltonian (9),

Ĥ(2)
MF =

∑
k

[
Aka†

kak − 1

2
Bk(aka−k + a†

ka†
−k )

]
, (11)

where

Ak = 4J (S − n + m)(1 + cycz ) + 8J (� − m),

Bk = 4J (S − n + �)cx(cy + cz ), (12)

with cα = cos kα/2 for α = x, y, z. Applying the Bogoliubov
transformation to Eq. (11) one obtains

εk =
√

A2
k − B2

k (13)

for the magnon energy, whereas the ground-state energy is
expressed as

Eg.s./N = − 2JS2 + 4J (n − �)2 − 2J (n − m)2

+ 1

2N

∑
k

(εk − Ak ). (14)

The self-consistent equations are explicitly given by

n + 1

2
= 1

N

∑
k

Ak

2εk
, m = 1

N

∑
k

Ak

2εk
cycz,

� = 1

N

∑
k

Bk

4εk
cx(cy + cz ), (15)

with εk found from Eqs. (12) and (13). The above equa-
tions satisfy the stationary conditions obtained by varying the
ground-state energy (14) with respect to n, m, and �. Thus, the
self-consistent solution corresponds to the lowest-energy state
in the class of variational Bogoliubov vacuums constructed for
the quadratic bosonic Hamiltonians (9).

The solution of Eqs. (15) is found separately for each value
of S by iteration procedure starting with the harmonic values
for n, m, and �. Iterations stop once an accuracy 10−6 is
reached between two subsequent steps. The final expression
for the ground-state energy of the AF1 state is

Eg.s./N = 2J (S − n + m)2 − 4J (S − n + �)2. (16)

C. AF3 state

The collinear AF3 structure can be represented as

Si =
√

2S ẑ cos(Q3 · ri + π/4), (17)

where the propagation vector Q3 = (2π, π, 0) or any other
symmetry related vector. The AF3 state has a larger unit
cell in comparison to the AF1 structure with two spins up
and two spins down. To simplify analytic calculations we
again transform into the rotated local frame. Still, two type
of bosons are needed corresponding to adjacent parallel spins
at ρa = (0, 0, 0) and ρb = ( 1

2 , 1
2 , 0), see Fig. 1. Within this

description, a half of antiparallel pairs ↑↓ correspond to spins
on the same rotating sublattice (a−a or b−b) and the other
half is formed by spins from different sublattices (a−b). The
parallel spin pairs ↑↑ always belong to different sublattices
(a−b). Accordingly, in the Hartree-Fock approximation we
introduced two different �i j : �aa = �bb and �ab, whereas
mi j = m is unique.

After the Fourier transformation, the quadratic boson
Hamiltonian can be presented in the matrix form

Ĥ(2) = 1

2

∑
k

(X̂ †
k MkX̂k − �), (18)

where � = 1
2 Tr{Mk} and X̂ †

k = (a†
k, b†

k, a−k, b−k ). Momen-
tum summation is now performed over the reduced Brillouin
zone corresponding to the chosen two-sublattice basis. The
4 × 4 matrix Mk has the following block structure:

Mk = 4J

(
Ak −Bk

−Bk Ak

)
, � = 8JS0, (19)

with the internal blocks

Ak =
(

S0 Smγ ∗
k

Smγk S0

)
, Bk =

(
Sacxcz Sbγk
Sbγ

∗
k Sacxcz

)
, (20)

where S0 = S − n − m + �aa + �ab, Sm = S − n + m, Sa =
S − n + �aa, Sb = S − n + �ab, and

γk = 1

2
cy(cx + cz ) + i

2
sy(cx − cz ), sy = sin

ky

2
. (21)

Using the matrix Bogoliubov transformation [54,55] for
diagonalization of the quadratic Hamiltonian (18) one obtains

094431-3



R. SCHICK et al. PHYSICAL REVIEW B 106, 094431 (2022)

the dynamic matrix∣∣∣∣Ak − λ −Bk
Bk −Ak − λ

∣∣∣∣ = 0, (22)

which can be further reduced to

|(Ak − Bk )(Ak + Bk ) − λ2| = 0. (23)

Two magnon branches are given by positive roots of the above
biquadratic equation

ε±
k = 4J[Pk ±

√
Qk]1/2 (24)

with

Pk = S2
0 − S2

ac2
xc2

z + (
S2

m − S2
b

)|γk|2,
Qk = 4|S0Smγ ∗

k − SaSbcxczγk|2+ S2
mS2

b

(
γ 2

k − γ ∗2
k

)2
. (25)

In Appendix A, we outline derivation of the self-consistent
equations for n, m, �aa, and �ab without explicitly con-
structing the Bogoliubov transformation. Once a solution of
self-consistent equations is found, the ground-state energy of
the AF3 state is expressed as

Eg.s./N = 2J (S − n + m)2 − 2J (S − n + �aa)2

−2J (S − n + �ab)2. (26)

III. COUPLED CLUSTER METHOD

The coupled cluster method (CCM) has been successfully
applied to a variety of quantum frustrated models, see [56–65]
and references therein. Here we describe only the basic steps
of the CCM calculations. One starts by choosing a reference
quantum state |
〉, which corresponds usually to one of the
classical ground states of a frustrated spin model. For the
fcc antiferromagnet the two collinear states AF1 and AF3,
Fig. 1, are taken as reference states. Next a rotation to the local
frame is performed such that all spins in a reference state align
along the negative z axis |
〉 = |↓↓↓ . . .〉. A complete set of
multispin creation operators is introduced in the rotated frame

C+
I = S+

i , S+
i S+

j , S+
i S+

j S+
k , . . . , (27)

where S+
i = Sx

i + iSy
i , i, j, k, . . . denote arbitrary lattice sites,

and C−
I = (C+

I )†.
The CCM parametrization of bra and ket ground-state

eigenvectors 〈�̃| and |�〉 of a spin model is chosen as

|�〉 = eS |
〉, S =
∑
I 
=0

aIC
+
I ,

〈�̃| = 〈
|S̃e−S , S̃ = 1 +
∑
I 
=0

ãIC
−
I . (28)

The CCM coefficients aI and ãI contained in the correlation
operators S and S̃ are determined by

〈
|C−
I e−SĤeS|
〉 = 0, 〈
|S̃e−S[Ĥ,C+

I ]eS|
〉 = 0. (29)

Each ket- and bra-state equation labeled by a multispin index I
corresponds to a certain configuration of lattice sites i, j, k, . . .

Using the Schrödinger equation, Ĥ|�〉 = E |�〉, one can write

the ground-state energy and the sublattice magnetization as

Eg.s = 〈
|e−SĤeS |
〉, M = − 1

N

∑
i

〈�̃|Sz
i |�〉, (30)

where Sz
i is computed in the rotated frame.

In order to truncate the series for S and S̃ we use a standard
SUBn-n approximation scheme [56,59,63]. In the SUBn-n
scheme we include no more than n spin flips spanning a range
of no more than n adjacent lattice sites [66]. This scheme
allows us to improve the approximation level in a systemic
and controlled manner. Using an efficient parallelized code
[67], we solved the CCM equations up to the SUB8-8 level for
S = 1/2 with Nc = 410750 (Nc = 1643726) nonequivalent
multispin configurations for the AF1 (AF3) state. For S > 1/2
multiple on-site spin flips are allowed producing a fast growth
of Nc with increasing S. The highest approximation level is
only SUB6-6 except of the AF1 state with S = 1, for which
we computed the SUB8-8 result with Nc = 5490340. On the
other hand, for the AF3 state with S = 1 we could not get the
SUB8-8 data, because the number of nonequivalent multispin
configurations is significantly larger (Nc = 22089437).

The obtained SUBn-n results have to be extrapolated to the
n → ∞ limit. As was established previously [58,60,61,63],
the extrapolation scheme takes different forms for the ground-
state energy and the sublattice magnetization,

Eg.s.(n) = a0 + a1

n2
+ a2

n4
, M(n) = b0 + b1

n
+ b2

n2
. (31)

For S = 1/2 we can use four data points n = 2, 4, 6, 8 as
well as their subsets n = 2, 4, 6 and n = 4, 6, 8 to check the
accuracy of three-parameter fits (31). However, for S = 1,
AF3, as well as for S > 1 we have only three data points
(SUBn-n, n = 2, 4, 6) and, thus, performed only a single ex-
trapolation. Hence, the obtained CCM results in these cases
are generally less accurate. The CCM results included into the
plots of Sec. IV correspond to extrapolation of the restricted
series n = 2−6 for all spin values. Further details on the
extrapolation results for S = 1/2 and S = 1 are provided in
Appendix B.

IV. QUANTUM ORDER BY DISORDER

A. Ground-state properties

We begin with results for the ground-state energies of the
two competing antiferromagnetic structures. The harmonic
spin-wave theory was used in Ref. [25] to compute the 1/S
energy correction. An earlier study [5] employed an incorrect
magnon spectrum for the collinear AF3 state thus coming to
an erroneous conclusion, see [25] for further details. The next
order (1/S)2 energy correction is straightforwardly obtained
using Eq. (10) with the harmonic values for n, mi j , and �i j .
The first two terms in the 1/S series for the ground-state
energies of two states are

EAF1
g.s. = −2JS2

[
1 + 0.488056

2S
− 0.186629

(2S)2

]
,

EAF3
g.s. = −2JS2

[
1 + 0.491106

2S
− 0.354197

(2S)2

]
. (32)
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The first-order 1/S correction lowers the ground-state energy
with respect to the classical value E0 = −2JS2. The corre-
sponding energy shift is larger for the AF3 state but by a very
small amount �E13 ≈ 0.003JS.

For frustrated spin models with degenerate classical
ground states, an energy gain due to the quantum order
by disorder mechanism is typically an order of magnitude
larger 0.1−0.01JS. Thus, the harmonic zero-point energies
of two collinear magnetic structures in the fcc antiferro-
magnet appear to be accidentally close to each other. In
such a case, higher-order quantum corrections resulting from
magnon-magnon interaction can play a decisive role. For
the fcc antiferromagnet, the magnon repulsion yields a state-
dependent upward shift of the ground-state energies (32). As a
result the net energy gain for the AF1 state appears to be larger
than for the AF3 structure modifying the conclusion based on
the harmonic theory.

The convergence and accuracy of the 1/S series are, how-
ever, questionable for a frustrated spin model with lines of
pseudo-Goldstone (zero-energy) modes. Indeed, the second-
order 1/S correction to the sublattice magnetization, �S �∑

k 1/ε3
k, diverges for the nearest-neighbor fcc antiferro-

magnet. To overcome the above problem, we resort to the
self-consistent spin-wave calculations described in Sec. II.
The renormalized magnon spectrum has only true Goldstone
modes and, thus provides a better starting point for computing
various physical properties.

The effect of quantum renormalization can be illustrated
by comparing bosonic averages in the AF1 ground state for
S = 1/2 obtained self-consistently

n = 0.14094, m = 0.07066, � = 0.16381, (33)

and from the harmonic spin-wave theory

n = 0.33878, m = 0.10994, � = 0.28537. (34)

The interacting spin-wave vacuum is significantly modified in
comparison to the noninteracting ground state. In particular,
the harmonic theory overestimates n and � by a factor of two.
Corresponding values for the AF3 structure are presented in
Appendix A.

Figure 2 shows the quantum correction to the classical
ground-state energy

�Eg.s. = Eg.s. − E0

normalized to JS and plotted as a function of 1/S. The full
lines with open symbols, circles (AF1) and triangles (AF3),
indicate energies obtained by the self-consistent spin-wave
theory. Numerical CCM results for both states are shown
by solid symbols. In addition, the dashed and dotted lines
indicate energies calculated to the 1/S and the (1/S)2 order,
respectively. The total ground-state energies of two collinear
states obtained self-consistently for S = 1/2,

EAF1
g.s. = −0.72425J, EAF3

g.s. = −0.72160J (35)

differ significantly from the first- and the second-order spin-
wave results (32). On the other hand, the self-consistent theory
and the CCM give remarkably consistent values for �Eg.s. as a
function of spin. In particular, the CCM ground-state energies

FIG. 2. Quantum correction to the ground-state energy for the
AF1 and AF3 states as a function of inverse spin. Continuous lines
with open circles and triangles are the self-consistent spin-wave
results. Solid symbols indicate the CCM results. Dashed and dotted
lines show the harmonic (1/S) and the (1/S)2 spin-wave energies.

in the case of S = 1/2 are

EAF1
g.s. = −0.7267(3)J, EAF3

g.s. = −0.7244(3)J, (36)

see Appendix B for further details. The AF1 state has a
lower energy than the AF3 state for all realistic spin values
S < S∗ ≈ 10. The harmonic-theory prediction is recovered
only for unphysically large spins. The remaining difference
between spin-wave values and the extrapolated CCM data
should be attributed to the magnon scattering processes that
are not included in the self-consistent theory.

Another effect produced by zero-point fluctuations is re-
duction of the sublattice magnetization from its classical value
〈Sz〉 = S. Figure 3 shows the spin reduction �S = S − 〈Sz〉
obtained in the self-consistent spin-wave approximation and
from the extrapolation of the CCM results. The two ap-
proaches consistently predict �S to be substantially smaller
than the values obtained from the harmonic spin-wave theory.
A lack of accuracy of the harmonic approximation can be
again related to the presence of spurious pseudo-Goldstone
modes in the harmonic magnon spectra, whereas the higher-
order quantum corrections restore the correct form of εk, see
Sec. IV B below. For S = 1/2, the ordered moments in the
two antiferromagnetic states are reduced by about 30%, which
is quite large for a three-dimensional antiferromagnet, but
still much smaller than the 70% reduction predicted by the
harmonic theory [25].

B. Spectrum renormalization

Quantum fluctuations have a profound effect on the excita-
tion spectra of frustrated magnets with classical ground-state
degeneracy. At the harmonic level, degrees of freedom that
connect different ground states show up as pseudo-Goldstone
modes at zero energy. They are shifted to finite energies by
quantum corrections, see, for example, [36,68–70]. Below
we discuss such renormalization effects focusing on the AF1
state, which is the ground state of the fcc antiferromagnet for
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FIG. 3. Quantum correction to the sublattice magnetization
�S = S − 〈S〉 in two collinear antiferromagnetic structures. Con-
tinuous lines with open circles and triangles are obtained in the
self-consistent spin-wave approximation. Solid symbols represent
the CCM results. The horizontal dashed lines indicate the harmonic
values.

all realistic values of spin. Complementary results for the AF3
state are presented in Appendix A.

The collinear AF1 states have a propagation vector at one
of the X points in the Brillouin zone, see Fig. 4. Between
degenerate antiferromagnetic domains we choose the state
described by Q1 = (2π, 0, 0). The harmonic spectrum of the
AF1 state is obtained from general expressions (12) and (13)
by keeping terms O(S) for Ak and Bk. A zero-energy mode
appears once the harmonic parameters Ak, Bk obey: (i) Ak =
|Bk| or (ii) Ak = Bk = 0. For the fcc antiferromagnet, the
pseudo-Goldstone magnons of the first type appear on the
lines (0, q, 0), (0, q, 2π ), and other equivalent directions in
the momentum space. Zero-energy modes of the second type
correspond to excitations with the wave vectors (q, 2π, 0) and
(q, 0, 2π ). Expanding Ak, Bk to the second order in k in the
vicinity of these lines, one can straightforwardly show that the
magnon energy vanishes linearly εk ∼ k for the type-I modes
and quadratically εk ∼ k2 for the type-II modes. The top panel
of Fig. 4(b) shows the harmonic spectrum for the AF1 state in
the plane ky = 2π . The zero-energy modes of two types are
present as dark blue valleys of different width that cross at
X′ = (0, 2π, 0). Note, that X′ is not the ordering wave vector
for the chosen AF1 state.

The above distinction of pseudo-Goldstone modes can be
extended to a general multisublattice case beyond the sim-
ple expression (13) [70]. It is reminiscent of the Goldstone
mode classification for systems with nonconserved (type-I)
and conserved (type-II) order parameters, which represent
respectively the usual Heisenberg antiferromagnets and fer-
romagnets [71]. Once quantum corrections to the spectrum
are included within the 1/S expansion, the harmonic Ak, Bk =
O(JS) receive extra contributions δAk, δBk = O(J ). A simple
consideration shows that in such a case an energy of a type-I
mode increases as �g = O(JS1/2), whereas a type-II pseudo-
Goldstone magnon acquires a smaller gap �g = O(J ) [69,70].

FIG. 4. Magnon dispersion in the AF1 state. (a) The Brillouin
zone of the fcc lattice with a high-symmetry momentum path.
(b) False color plots of εk within the ky = 2π plane computed in
the harmonic theory (upper panel) and in the self-consistent approx-
imation for S = 1/2 (lower panel). Spin-wave dispersions along the
high-symmetry path for (c) S = 1/2 and (d) S = 5/2. Full lines show
the results of the self-consistent calculations, dashed lines indicate
the harmonic spectra.

Figures 4(b)–4(d) illustrate quantum renormalization of the
magnon spectrum for the AF1 state obtained from the self-
consistent spin-wave theory. The false color maps in Fig. 4(b)
compare the harmonic and the renormalized spectrum in the
(kx, 2π, kz ) plane for S = 1/2. Figures 4(c) and 4(d) show εk
for S = 1/2 and 5/2, respectively, along a symmetric path in
the Brillouin zone indicated in Fig. 4(a). As S increases, the ef-
fect of magnon-magnon interaction weakens and, ultimately,
the harmonic spectrum should be recovered for S → ∞. Such
a tendency is illustrated by considering εk on the K− seg-
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ment in Figs. 4(c) and 4(d), where magnons have finite energy
already in the harmonic approximation.

The segments −X′ and X′−W correspond to the pseudo-
Goldstone modes. Magnons along these lines are shifted
to finite energies by quantum corrections. For the segment
X′−W the energy gap is explicitly given by

�g = 8J (� − m). (37)

Flat magnon dispersion along this line is accidental and a
weak modulation of εk should arise as a result of higher-order
scattering processes excluded in the self-consistent approx-
imation. Note, that the gap obtained by computing the 1/S
correction to the spectrum has the same form (37) but its value
is twice as large as the self-consistent result, cf. Eqs. (33)
and (34). Comparing results for S = 1/2 and S = 5/2 one can
also observe different scaling of magnon energies on the paths
−X′ and X′−W, which correspond to type-I and type-II
pseudo-Goldstone modes, respectively.

Zero-energy modes of the renormalized spectrum corre-
spond to two Goldstone modes at  and X points. The velocity
of acoustic magnons is anisotropic with the two principal
values

c‖ = 4J (S − n + �), c⊥ = 2J
√

2(S − n + �)(� − m),
(38)

where ‖ and ⊥ are taken with respect to the −X direction.
The dispersion along the −X line is finite in the harmonic
approximation, hence, c‖ = O(JS). The harmonic spectrum
has two orthogonal lines of zero-energy modes in the y−z
plane and, as a result, the corresponding velocity in the renor-
malized spectrum is generally smaller c⊥ = O(JS1/2).

Similar results for the spectrum renormalization were also
obtained for the AF3 state. The corresponding plots are
presented in Appendix A. Here we summarize the main qual-
itative features. The majority of pseudo-Goldstone modes for
the AF3 state belong to the type I. If we choose for the or-
dering wave vector of the AF3 state Q3 = (2π, π, 0), then the
only type-II pseudo-Goldstone mode exists at X′ = (0, 2π, 0)
and equivalent points. The expression for the quantum gap at
this point

�g = 8J
√

(�aa − m)(�ab − m) (39)

resembles Eq. (37) for the AF1 state. The anisotropic velocity
for the acoustic modes in the AF3 state is given by

c‖ = 2J
√

[2(S − n) + �aa + �ab](�ab − m),

c⊥ = J[4(S − n) + 2�aa + 2�ab]1/2 (40)

× [2(S − n) + 2�aa + �ab − m]1/2. (41)

In contrast to the results for the AF1 state (38), two compo-
nents of the magnon velocity behave as c⊥ = O(JS) and one
as c‖ = O(JS1/2).

All the above allows us to conclude that the quantum
excitation spectrum in the AF1 state for the large-S fcc an-
tiferromagnet is intrinsically softer than in the AF3 state. This
qualitative conclusion has important implication for the low-
temperature behavior. In a 3D case, for T � J , an acoustic

mode contributes

�F/V = −π2

90

T 4

c‖c2
⊥

, (42)

to the free energy per volume. Since c‖c2
⊥ � S2 and S5/2 for

AF1 and AF3 states, respectively, stability of the former state
is further enhanced by the thermal fluctuations. At interme-
diate temperatures T ∼ �g, magnons with energies above the
quantum gap become also excited. Their density of states is
obviously larger for the AF1 structure, since the gap (37) is
present along the lines, whereas (39) appears only at separate
points in the Brillouin zone. Thus, the conclusion that thermal
fluctuations favor the AF1 state should hold also in the in-
termediate temperature range. At higher temperature T ∼ J ,
thermal corrections to the spectrum become important and no
statement can be made without further studies. Still, we note
that the previous harmonic spin-wave analysis [25] as well
as the classical Monte Carlo simulations [16] all predict the
AF1 state due to the thermal order by disorder suggesting this
selection to be a universal result for the fcc antiferromagnet.
Hence, the scenario with a finite-temperature transition be-
tween the AF3 and AF1 states previously discussed in [25]
may be realized for small J2 > 0, which favors at the classical
level the AF3 state at T = 0.

V. CONCLUSIONS

The problem of long-range ordering for the nearest-
neighbor fcc antiferromagnet was raised more than fifty
years ago [1–5]. In our paper we give a comprehensive
solution of this problem at T = 0 using the interacting self-
consistent spin-wave theory and the numerical CCM method.
We find that the state selection by quantum fluctuations
proceeds differently for S < S∗ and S > S∗ corresponding
to the collinear AF1 and AF3 states, respectively. The
separation point at S∗ ≈ 10 indicates that magnon-magnon
interaction plays a significant role for all physical values of
spin.

We find good agreement between the two theoretical
methods on the ground-state energies and values of ordered
moments for the competing collinear states. In addition,
the self-consistent spin-wave calculations provide also the
magnon spectrum renormalization. The magnon-magnon
interaction produces finite quantum gaps for the pseudo-
Goldstone modes leaving only two acoustic branches in
accordance with the spontaneous breaking of the continuous
symmetry in the collinear antiferromagnetic state. The normal
form of the magnon spectra explains why the self-consistent
spin-wave calculations provide more accurate numerical pre-
dictions in comparison with the harmonic theory and the
second-order 1/S results. Previously the self-consistent spin-
wave theory was compared to the numerical results for the
J1−J2 square-lattice antiferromagnet for J2 > 0.5J1 [48]. Our
paper gives further evidence that the self-consistent approach
has good accuracy also for infinitely degenerate frustrated spin
models.

The spectacular failure of the harmonic theory to predict
the correct ground state as a result of the quantum order
by disorder is related to a close proximity �E ∼ 10−3JS of
the harmonic energies for the two contenders for the ground
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FIG. 5. Magnon dispersion in the AF3 state. (a) False color plots
of εk within the ky = 2π plane computed in the harmonic theory
(left panel) and in the self-consistent approximation for S = 1/2
(right panel). Spin-wave dispersions along the high-symmetry path
for (b) S = 1/2 and (c) S = 5/2. Full lines show the results of
the self-consistent calculations, dashed lines indicate the harmonic
spectra.

state. In such a case the higher-order quantum corrections
determined by magnon interaction play an important role. The
example of the nearest-neighbor fcc antiferromagnet is by no
means unique. A close proximity of the harmonic ground-
state energies was also found for the Heisenberg kagome
antiferromagnet in a wide range of applied magnetic fields
0.5Hs < H < Hs [72]. Elucidating the state selection due to
magnon interaction for this model is an interesting open
problem.
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APPENDIX A: SELF-CONSISTENT THEORY
FOR THE AF3 STATE

In this Appendix we provide additional details on the
self-consistent spin-wave calculations for the AF3 state. We
begin by deriving expressions for the mean-field parameters
n, m, �aa, and �ab by a method that avoids an explicit use
of the Bogoliubov matrix transformation. The idea consists
in adding to the mean-field quadratic Hamiltonian an extra
source term linear in a required combination of boson opera-
tors. For example, to compute n = 〈a†

i ai〉 we write

Ĥ(h) = Ĥ(2)
MF + h

∑
i

a†
i ai. (A1)

The Hamiltonian Ĥ(h) can be straightforwardly diagonalized
and the magnon spectrum is given by the same expression (24)
with a substitution S0 → (S0 + h/4J ). The expectation value
in the ground state for the considered combination of boson
operators is obtained as

n = 1

N

∂Eg.s.(h)

∂h

∣∣∣
h→0

, (A2)

where N is the number of sites. Explicitly,

n + 1

2
= 1

N

∑
k,±

2J

ε±
k

{
2S0 ± Sm√

Qk

[
2S0Sm

− SaSbcxcz(γ 2
k + γ ∗2

k )
]}

. (A3)
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Here the momentum summation is performed over the reduced Brillouin zone. Similar calculation for the other averages yields

m = 1

N

∑
k,±

2J

ε±
k

{
Sm|γk|2 ± 1√

Qk

[
2S2

0Sm|γk|2 − S0SaSbcxcz
(
γ 2

k + γ ∗2
k

) + 1

2
SmS2

b

(
γ 2

k − γ ∗2
k

)2
]}

,

�aa = 1

N

∑
k,±

2J

ε±
k

{
Sac2

xc2
z ∓ Sb√

Qk

[
2SaSbc2

xc2
z |γk|2 − S0Smcxcz

(
γ 2

k + γ ∗2
k

)]}
,

�ab = 1

N

∑
k,±

2J

ε±
k

{
Sb|γk|2 ∓ 1√

Qk

[
2S2

aSbc2
xc2

z |γk|2 − S0SmSacxcz
(
γ 2

k + γ ∗2
k

) + 1

2
S2

mSb
(
γ 2

k − γ ∗2
k

)2
]}

, (A4)

The system of four self-consistent equations was solved itera-
tively. Values for the four parameters in the AF3 ground state
for S = 1/2 are

n = 0.1297, m = 0.0578, �aa = 0.1613, �ab = 0.1411.

Again, a significant renormalization is observed in compari-
son with the harmonic values

n = 0.3663, m = 0.0284, �aa = 0.2943, �ab = 0.2232.

The magnon dispersion in the AF3 state can be computed
using Eq. (24) and self-consistently obtained parameters n,
m, �aa, and �ab. Results for εk for fcc antiferromagnets
with S = 1/2 and 5/2 that compliment similar plots for the
AF1 state in Sec. IV are included in Fig. 5. We choose a
domain of the AF3 state described by Q3 = (2π, π, 0) as the
propagation vector. In our spin-wave description of the AF3
state in Sec. II C we introduce two (parallel) sublattices. Con-
sequently, we find two different magnon branches and have
to consider accordingly the reduced magnetic Brillouin zone
shown in Fig. 5(a). Still for the plots in Figs. 5(c) and 5(d)

we use a high-symmetry path in the paramagnetic Brillouin
zone. Therefore, some wave vectors become equivalent in
the reduced Brillouin zone notations. In particular, the X′ =
(0, 2π, 0) point is equivalent to the  point, which explains
an extra acoustic mode at X′ present in Figs. 5.

APPENDIX B: CCM RESULTS

Extrapolation of numerical results of different SUBn-n
approximation schemes to n → ∞ was performed using
Eq. (31). For S = 1/2 we have obtained the series with n =
2, 4, 6, 8 for both antiferromagnetic structures. Accordingly,
it is possible to construct three different extrapolations in the
S = 1/2 case that are summarized in Table I. A small spread
of final values give an estimate for the error bar on the final
result quoted in (36).

For the spin-1 model the n = 2–8 series was obtained only
for the AF1 structure. For the AF3 state with S = 1, as well
as for all S > 1 we have to rely on the shorter series n =
2, 4, 6, which allows only a single extrapolation according to
Eq. (31). The numerical results for the S = 1 case are also
included in Table I.
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