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Puzzle of bicriticality in the XXZ antiferromagnet
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Renormalization-group theory predicts that the XXZ antiferromagnet in a magnetic field along the easy Z axis
has asymptotically either a tetracritical phase diagram or a triple point in the field-temperature plane. Neither
experiments nor Monte Carlo simulations procure such phase diagrams. Instead, they find a bicritical phase
diagram. Here, this discrepancy is resolved: After generalizing a ubiquitous condition identifying the tetracritical
point, we employ different renormalization-group recursion relations near the isotropic fixed point, exploiting
group-theoretical considerations and using accurate exponents at three dimensions. These show that the results
from experiments and simulations can only be understood if their trajectories flow towards the fluctuation-driven
first-order transition (and the associated triple point), but reach this limit only for prohibitively large system sizes
or correlation lengths. In the crossover region one expects a bicritical phase diagram, as indeed is observed. A
similar scenario may explain puzzling discrepancies between simulations and renormalization-group predictions
for a variety of other phase diagrams with competing order parameters.
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I. INTRODUCTION

Natural. systems show behaviors ascribed to fluctuations
on many length scales (e.g., critical phenomena, fully de-
veloped turbulence, quantum field theory, the Kondo effect,
and polymers described by self-avoiding walks). These be-
haviors can be treated by the renormalization-group (RG)
theory [1–3]: Gradually eliminating short-range details, dur-
ing which the system size L and the correlation length ξ

rescale to L → L(�) = L/e� and ξ → ξ (�) = ξ/e� (� is the
number of RG iterations), the parameters characterizing the
system can “flow” to a “stable” fixed point (FP), which de-
termines universal power laws describing physical quantities.
Varying the parameters can lead to an instability of a FP (with
one or more parameters becoming “relevant” and “flowing”
away from it, as eλ�, with a positive “stability exponent” λ),
generating transitions between different universality classes.
Although in most cases the predictions of the RG have been
confirmed experimentally and/or by numerical simulations,
some puzzling discrepancies still await explanations. Here, we
resolve one such puzzle, involving the phase transitions be-
tween competing ordered phases. As listed, e.g., in Refs. [4,5],
phase diagrams with competing order parameters arise in a
variety of physical examples. Some of these are mentioned
below, after analyzing the phase diagram of the anisotropic
antiferromagnet in a magnetic field.

A uniaxially anisotropic XXZ antiferromagnet has long-
range order (staggered magnetization) along its easy axis Z . A
magnetic field H‖ along that axis causes a spin-flop transition
into a phase with order in the transverse plane, plus a small
ferromagnetic order along Z . Experiments [6,7] and Monte
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Carlo simulations on three-dimensional lattices [8–10] typi-
cally find a bicritical phase diagram in the temperature-field
T -H‖ plane [Fig. 1(a)]: a first-order transition line between the
two ordered phases, and two second-order lines between these
phases and the disordered (paramagnetic) phase, all meeting
at a bicritical point. Recently, the spin-flop transition in XXZ
antiferromagnets has raised renewed interest [11], related to
possible spintronic applications of the Seebeck effect near
that transition. Simulations in that paper also seem to find a
bicritical phase diagram.

II. HISTORY

The early RG calculations [4] were based on low-order
expansions in ε = 4 − d , where d is the spatial dimension-
ality. These calculations found that the (rotationally invariant)
isotropic FP is stable at d = 3, yielding asymptotically the
bicritical phase diagram. These calculations also found that
the isotropic FP becomes unstable as the total number of spin
components n (=3 in our case) increases beyond a threshold
nc(d ), and estimated that nc(3) > 3. For n > nc(d ) they found
a stable biconical FP. Had the RG trajectories flown to that FP,
the first-order line between the two ordered phases would be
replaced by an intermediate (mixed) phase, bounded by two
second-order lines, and all four second-order lines would have
met at a tetracritical point [Fig. 1(b)] [4,12,13]. In addition,
if the system parameters are initially outside the region of
attraction of that FP, the bicritical point turns into a triple
point, and the transitions between the ordered phases and the
disordered paramagnetic phase become first order near that
point, turning second order only at finite distances from it
[Fig. 1(c)] [14].

However, the ε expansions diverge, and low-order cal-
culations are not reliable [15]. One way to overcome this
divergence is to use resummation techniques, e.g., by taking
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FIG. 1. Possible phase diagrams for the XXZ antiferromagnet in a longitudinal magnetic field. (a) Bicritical phase diagram. (b) Tetracritical
phase diagram. (c) Diagram with a triple point. Thick lines: First-order transitions. Thin lines: Second-order transitions. The first-order
transition lines between the ordered phases and the disordered paramagnetic phase end at tricritical points (small open circles). After
Refs. [12,14].

into account the singularities of the series’ Borel trans-
forms [16], and extrapolating the results to ε = 1. These
yielded three stability exponents for the isotropic FP, λ0,2,4.
The small exponent λ4 also describes the (in)stability against
a cubic perturbation [13,17], and it vanishes at n = nc(d ). The
same resummation techniques (carried out on sixth-order ε

expansions) have been applied to the latter problem [18]. The
results were compared with a resummation of the sixth-order
perturbative (divergent) expansions in the original field-theory
coefficients at d = 3 [19], with recent bootstrap calcula-
tions [20], with Monte Carlo simulations [21], and with
high-temperature series (for λ0) [22]. An updated table of
these results appears in Ref. [20]. The agreement between all
the techniques indicates the accuracy of the exponents:

λ0 ≈ −0.78, λ2 ≈ −0.55, λ4 ≈ 0.01. (1)

Since λ4 > 0, the isotropic fixed point is unstable at d = 3,
and nc(3) < 3, contradicting previous estimates [4,13]. There-
fore, as explained below, the bicritical phase diagram should
be replaced by the tetracritical or the triple one, but neither of
these agrees with the experiments or the simulations.

The field theoretical analysis is based on the Ginzburg-
Landau-Wilson (GLW) Hamiltonian density [4],

H(r) = (|∇S|2 + t |S|2)/2 + U2 + U4, (2)

U2 = g[|S‖|2 − |S|2/3], (3)

U4 = u‖|S‖|4 + u⊥|S⊥|4 + 2u×|S‖|2|S⊥|2, (4)

with the local three-component (n = 3) staggered magne-
tization, S(r) ≡ [S‖(r), S⊥(r)]. For g = 0 and u‖ = u⊥ =
u× = u, H reduces to the isotropic Wilson-Fisher Hamilto-
nian [1–3], which has an (isotropic) FP at u = uI [23].

III. GROUP THEORY

A priori, at g = 0, the stability of the isotropic FP against
symmetry-breaking perturbations requires an analysis of 15
terms in the GLW Hamiltonian, which are quartic in the spin
components, SαSβSγ Sδ . Group-theoretical arguments showed

that these terms split into subsets of 1 + 5 + 9 terms, and all
the terms within a subgroup have the same stability expo-
nent, listed in Eq. (1) [16,21,24–26]. In our case [O(3) ⇒
O(1)

⊕
O(2)], the three exponents are associated with the

following combinations of quartic terms,

P4,0 ≡ |S|4, P4,2 ≡ |S|4[x − 1/3],

P4,4 ≡ |S|4[x(1 − x) − (1 + x)/7 + 2/35], (5)

where x = S2
‖/|S|2. The largest (negative) exponent λ0 corre-

sponds to the stability within the O(3)-symmetric case, P4,0.
In our case, the exponent λ2 corresponds to the term which
splits the O(3) isotropic symmetry group into O(1)

⊕
O(2).

Similar to U2, P4,2 “prefers” ordering of S‖ or of S⊥. The
smallest exponent λ4 describes the crossovers away from the
isotropic FP. As described below, for some range of the pa-
rameters the iterations flow towards either the biconical or
the cubic FP. For another range they flow away, eventually
reaching a first-order transition. Writing the quartic terms as

U4 = (uI + p0)P4,0 + p2P4,2 − p4P4,4, (6)

with arbitrary coefficients pi, i = 0, 2, 4 (which vanish at the
isotropic FP), implies the linear recursion relations near the
isotropic FP,

d pi/d� ≈ λi pi ⇒ pi(�) = pi(0)eλi�. (7)

IV. FINITE SIZES

The calculations of the stability exponents, Eqs. (1), apply
only in the asymptotic limit, for infinite samples and very close
to the multicritical point, i.e., at very large �. The explanation
of the experiments (carried out at a finite ξ ) and simulations
(accomplished at a finite L) requires the usage of a finite
number of RG iterations, � = � f , at which the fluctuations
have been eliminated: the renormalized correlation length
ξ (� f ) = O(1), with ξ (0) ∼ |t |−ν (t = T/Tc − 1 measures the
distance from the transition temperature Tc, and ν ≈ 0.711 is
the critical exponent), or the system size L(� f ) = O(1) [2]
(lengths are measured in units of the lattice constant). � f
increases with the system’s size L (at criticality), or when
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FIG. 2. The function p4(� − �1) (blue) for B = 1 and p4(�1) =
0.3 and −0.1. Below the horizontal (orange) line at p4 = −35uI/8 =
−1.75, the transition becomes first order and the bicritical point
becomes a triple point.

the initial parameters are closer to criticality (i.e., a larger
initial correlation length). At this stage, one can solve the
problem using the mean-field Landau theory [2]. An analysis
of this situation requires the full RG flow of the system’s
Hamiltonian [27]. Such an analysis, based on resummation of
(approximate) second-order ε expansions, was performed by
Folk et al. [28]. That paper presented numerical RG flows in
the parameter space, and observed the slow flow close to the
isotropic and biconical FP’s.

V. OUR CALCULATION

This paper presents a more precise way to perform this RG
analysis, based on the following steps. (1) Using the stability
exponents of the isotropic FP, believed to be accurate at three
dimensions, Eq. (1), we construct flow recursion relations
near that FP. (2) Equating Eq. (4) with Eq. (6), the initial
quartic parameters {ui} are expressed in terms of the pi’s, with
coefficients true to all orders in ε [see Eq. (11) below]. (3)
Since p0 and p2 are strongly irrelevant (λ0 and λ2 are negative
and large [Eq. (1)]) near the isotropic FP, they decay after a
small number �1 of “transient” RG iterations (irrespective of
nonlinear terms in their recursion relations). After that, the
RG iterations continue on a single universal straight line in
the three-dimensional parameter space, given in Eq. (12). In
a way, this line generalizes the concept of universality. (4)
On this universal line, Eq. (7) for p4 yields a slow flow [as
p4(�) ∼ eλ4�] away from the isotropic FP for both positive
and negative p4. The smallness of λ4 allows us to expand in
powers of p4 around the isotropic FP (instead of the “usual”
expansion in all the u’s near the Gaussian FP). To second order
in p4 (for � > �1),

d p4/d� = λ4 p4 − Bp2
4, (8)

where the (positive) coefficient B (the only unknown param-
eter) is presumably of order 1. This yields explicit solutions
for p4(�), Eq. (13), and typical solutions are shown in Fig. 2.
(5) For p4 > 0 the trajectories flow to the stable biconical FP,
and the stability exponents at that point agree (approximately)
with the full calculation in Ref. [16]—adding credibility to
our approximate expansion. On these trajectories the coeffi-
cients are shown to yield a tetracritical phase diagram. (6) For
p4 < 0 the trajectories eventually flow to a fluctuation-driven
first-order transition, which occurs when p4(�) crosses the

horizontal line in Fig. 2. In the wide intermediate range of
�, before that crossing, the parameters yield a bicritical phase
diagram. Beyond that crossing, for very large � (correspond-
ing to very large L or ξ ) the bicritical point turns into a
triple point [29]. The bicritical phase diagrams observed in the
experiments/simulations apparently occur at this intermediate
range.

VI. CRITERIA FOR TETRACRITICALITY

Eliminating the small (noncritical) paramagnetic moment
(generated by H‖) from the free energy renormalizes the three
u’s in Eq. (4), with corrections of order H2

‖ [4]. Although these
corrections are small, so that the new coefficients remain close
to the isotropic u, they are important because they determine
the ultimate shape of the phase diagram. The tetracritical
phase diagram [Fig. 1(b)] requires that on the line g = 0 both
order parameters are nonzero, implying that the mean-field
free energy has a minimum at 0 < x < 1 [30]. Presenting
Eq. (4) as

U4 = |S|4[u‖x2 + u⊥(1 − x)2 + 2u×x(1 − x)], (9)

this minimum is at x = (u⊥ − u×)/(u‖ + u⊥ − 2u×), pro-
vided that

u× < u‖ and u× < u⊥. (10)

These conditions for tetracriticality differ from the condition
found before, u‖u⊥ − u2

× > 0 [4]. In fact, the tetracritical
point found below obeys Eq. (10), but not this earlier condi-
tion. When even one of these criteria is violated, the minimum
of U4 is at x = 1 or at x = 0, implying that the mixed phase
does not exist; it is replaced by a first-order transition line, as
in Figs. 1(a) and 1(c).

VII. RENORMALIZATION GROUP

Comparing Eqs. (4) and (6) for U4 one finds

δu‖ = p0 + (70p2 + 24p4)/105,

δu⊥ = p0 − (35p2 − 9p4)/105,

δu× = p0 + (35p2 − 72p4)/210, (11)

with δui = ui − uI . We calculated the coefficients in these
equations also by the same resummation techniques which
yielded Eq. (1), and the results were close to the exact
group theory values in (11), supporting the accuracy of these
techniques. According to Eq. (10), the multicritical point is
tetracritical if both anisotropy parameters u‖ − u× = p2/2 +
4p4/7 and u⊥ − u× = −p2/2 + 3p4/7 are positive, i.e., when
|p2(�)| < 6p4(�)/7. Since p2(�) ≈ p2(0)eλ2� decays rather
quickly, and p4(�) varies slowly (see below), this will happen
when eλ2� < 6p4(0)/[7|p2(0)]. Assuming that p4(0) (=u‖ +
u⊥ − 2u×) and p2(0) [=2(3u‖ − 4u⊥ + u×)/7] are small and
of the same order, this happens for a small � < �1. We con-
clude that the phase diagram is in fact tetracritical whenever
p4(0) > 0, for practically all �, irrespective of the value of
B. Since the experiments and simulations do not exhibit
this phase diagram, we conclude that they probably have
p4(0) < 0.
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To complete the RG analysis, we note that both p0 and p2
decay quickly, so there is no need to add higher-order terms
for them in Eq. (7). They can be neglected in Eq. (11) after
a transient stage of �1 iterations [31], and then all the flows
continue on the universal semiasymptotic line,

(δu‖, δu⊥, δu×) = (8, 3,−12)p4/35. (12)

Higher-order terms in the RG recursion relations may turn this
line nonlinear [5].

For � > �1 the recursion relation for p4, Eq. (8), gives the
solution [5]

p4(�) = p4(�1)eλ4(�−�1 )

1 + Bp4(�1)(eλ4(�−�1 ) − 1)/λ4

. (13)

For p4(�1) > 0, the flow approaches the biconical FP,
p4(�) → pB

4 = λ4/B, with pB
4 	 1—justifying stopping the

expansion in Eq. (8) at second order [32,33]. Near the bi-
conical FP one finds that (to linear order in p4 − pB

4 ) d[p4 −
pB

4 ]/d� = −λ4[p4 − pB
4 ], identifying the stability exponent at

this FP as λB
4 = −λ4 ≈ −0.01, independent of B, and the bi-

conical FP is indeed stable. Within our approximate recursion
relations for p0 and p2, the other two exponents approximately
remain unchanged, λB

0,2 ≈ λ0,2. All three values are close to
those found near the biconical FP by the full sixth-order calcu-
lation in Ref. [16], confirming the validity of our approximate
expansion near the isotropic FP.

For p4(�1) < 0, Eq. (8) implies that p4(�) grows more
and more negative (note: both B and λ4 were assumed to
be positive). At � = � f , Eq. (10) is not obeyed, the min-
imum of U4 is at x = 1, with U4,min = |S|4u‖ = |S|4[uI +
8p4(� f )/35], where we used Eq. (12). This becomes negative
when p4(� f ) < −35uI/8. The resummation of the ε expan-
sion gives uI ∼ 0.4 [5], leading to 35uI/8 ∼ 1.75 (the orange
horizontal line in Fig. 2), which is quite large compared to
reasonable values of p4(�1), and probably out of the region
of applicability of the quadratic approximation which yielded
Eq. (13). However, it may still be reasonable for interme-
diate values of � (e.g., � − �1 < 8 in Fig. 2). Equation (13)
diverges at a large � = �2 [34], and we expect p4(�) to cross
the value −1.75 not very far below �2. With the parameters
used in Fig. 2, the divergence occurs at �2 − �1 ∼ log[1 −
λ4/(Bp4(�1)]/λ4 ∼ 9.5, and the transition to first order occurs
at �x − �1 ∼ 9. These numbers become smaller for larger val-
ues of Bp4(�1). In this example, the bicritical point turns into a
triple point at ξ ∼ e�x ∼ e8+9 ∼ 107, which cannot be reached
experimentally. Even if this approximation is improved, and if
Bp4(0) increases (see the end of the paper), there will still be a
wide range of parameters where experiments and simulations
will follow the bicritical phase diagram. In this range, the
effective exponents near the bicritical point may depend on
� f and differ significantly from their isotropic-FP values [5].

VIII. OTHER EXAMPLES

Similar phase diagrams pertain to the structural transitions
in uniaxially stressed perovskites, which are described by the
cubic model [5,12,17]. Similarly to the XXZ antiferromagnet,
the almost isotropic SrTiO3 (with p4 � 0) yielded an appar-
ent bicritical phase diagram. However, the more anisotropic

RbCaF3 did yield the diagram in Fig. 1(c), as expected by the
RG calculations [5].

In reality, cubic anisotropic antiferromagnets are subjected
to both the anisotropic and cubic terms, U4 and Uc (or other
crystal-field terms). In most magnetic cases, the cubic terms
are small [7]. Since both P4,4 and Uc scale with the same small
exponent λ4, we expect the same qualitative flow diagrams
as discussed above. However, the competition (within this
subgroup) between the biconical and the cubic FPs (which
are degenerate at linear order), which can only be settled by
including higher-order terms in the RG recursion relations,
still awaits further analysis. Studies with other crystal symme-
tries (e.g., tetragonal), and detailed studies of the sixth-order
terms which dominate the fluctuation-driven tricritical point,
also await a detailed analysis (and corresponding dedicated
experiments).

For larger values of n = n1 + n2 > 3, the biconical FP
becomes unstable, being replaced by the decoupled FP, at
which uD

× = 0 [35]. The latter paper concentrated on the
scenario in which the RG trajectories flow to the this stable
FP, implying a tetracritical phase diagram. This has been
particularly expected for the SO(5) theory aimed to describe
the competition between superconductivity (n1 = 2) and an-
tiferromagnetism (n2 = 3) in the cuprates [36]. In contrast,
Monte Carlo simulations of this model gave a bicritical phase
diagram, with isotropic n = 5 critical exponents [37]. Similar
results were reported for the iron pnictides [38]. Repeating
the above calculation for this case, we find that the RG results
are qualitatively the same: p0 and p2 decay fast, and p4(�)
grows slowly away from the isotropic O(5) FP. The Monte
Carlo experiments can thus be explained if p4 < 0, yielding a
crossover from a bicritical to a triple point also in that case.
This would resolve that puzzle, and many similar ones (also
in field theory).

A very recent experiment [39] which studied a critical
pressure-temperature phase diagram, with competing ferro-
magnetic and antiferromagnetic phases, is also apparently in
contrast to the RG results, which predict for n1 = n2 = 3
an asymptotic decoupled tetracritical phase diagram (or a
crossover to a triple point). It would be interesting to study
the RG trajectories for these experiments.

Competing order parameters, with larger values of n, also
arise in certain field-theory models [20,40], which are similar
in structure to the standard model of particle interactions.
It would be interesting to see whether those theories yield
puzzles of the sort discussed here.

IX. SUMMARY

In conclusion, experiments and simulations do not con-
tradict the renormalization-group predictions. The system
of recursion relations presented here, which is based on
group-theoretical exact coefficients for an expansion near the
isotropic fixed point, clearly shows that the simulations and
experiments are in a crossover regime, between the bicritical
point and the triple point. Our quantitative estimates show that
it will probably be very difficult to reach the triple point ex-
perimentally. However, in principle the renormalization group
also supplies intermediate effective exponents [5], whose
measurements can confirm its validity. Dedicated experiments
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(carried out on larger samples, at temperatures closer to the
multicritical point), and exploiting a wider range of the initial
Hamiltonians, which will allow increasing p4(0) by mov-
ing away from the parameters characterizing the isotropic
fixed point (e.g., by adding single-ion anisotropies [41]),
may find the tetracritical or the triple point, or—at least—

detect the variation of the nonasymptotic (effective) critical
exponents.
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