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Effective modeling of magnitude-fluctuated magnetization dynamics:
Dynamic precursor effect in magnets
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Effective modeling of magnetization dynamics is key to understanding the nature of exotic magnetic structures
and behaviors such as magnetic skyrmions and spin waves. Although the modeling of magnitude variation of
magnetizations is crucial for magnets at finite temperatures (especially near the Curie temperature with the
precursor effect), it is restrained in common micromagnetic simulations. Here, we propose an effective method-
ology for modeling the magnitude-fluctuated magnetization dynamics based on Ginzburg-Landau theory, which
includes both the precession motion and adjustable magnitude of magnetizations simultaneously. Our model
includes the intrinsic synergy of precession motion and adjustable magnitude of magnetizations, i.e., dynamic
precursor effect. Therefore, in this paper, we provide an advanced simulation methodology and introduce an
intrinsic dynamic modulation in magnetic system, which is anticipated to be a starting point for the future study
of the dynamics of magnetization, magnetic domains, and topologies in magnets.
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I. INTRODUCTION

Magnetization M is a vector that expresses the density
of magnetic moments in a continuum model [1,2], and a
region with uniform direction of magnetizations is called
a magnetic domain [1,3]. Topological magnetic structures
like skyrmions [4,5] are topological stable magnetic do-
mains with specific configurations of magnetizations. They
are all scientifically significant due to their promising dynamic
applications in spintronics [6–9]. The dynamic behaviors
of magnetizations, magnetic domains, and topologies under
physical fields are generally described by the Landau-
Lifshitz-Gilbert (LLG) [10–12] equation, which shows the
precessional motion of magnetizations. However, in LLG
equation-based simulations, the constant temperature assump-
tion [13–20] is widely used for numerical implementation, in
which the magnitude of magnetization |M| is constrained to
a constant and only considers the direction of the unit vector
of magnetization m. However, the Ginzburg-Landau theory
[1] demonstrated that the magnetization magnitude |M| can
be changed by physical fields (such as temperature). Espe-
cially the adjustable magnitude of magnetization is reported to
be crucial near the Curie temperature, where magnetizations
become soft, i.e., easy to change in magnitude, due to the
precursor effect [4,21]. The magnetization magnitude there-
fore even becomes inhomogeneous in space, which forms
more complicated magnetic domains [22,23]. Therefore, the
variation of magnetization magnitude is nonnegligible. In the
literature, there are two popular ways to address the variation
of magnetization magnitude in magnetic simulations. One
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way is changing the LLG equation to the Landau-Lifshitz-
Bloch (LLB) form [24–28] by adding a thermal stochastic
field into the discrete spin model, which is from the view of
microscopic quantum theory. However, the precursor effect
is introduced by the continuum magnetization model from
the thermodynamic macroscopic theory [4]. Therefore, the
other way comes out by reducing the LLG equation to the
time-dependent Ginzburg-Landau (TDGL) form [29–31] in
the continuum model based on the overdamped assumption
[30,32–37], but it neglects the precession motion of magneti-
zations [38], thereby lacking accuracy in dynamic scenarios.
Thus, to simulate the precursor effect in dynamic scenarios,
introducing the macroscopic Ginzburg-Landau theory into the
LLG equation with less restraint, then simultaneously describ-
ing the magnitude variation of magnetizations, the precursor
effect, and the precessional nature of magnetization dynamics
in a continuum model is the aim of this paper.

II. RESULTS AND DISCUSSIONS

We start our discussion in detail. The general LLG equation
[10–12] can be written as

∂M
∂t

= −γ1M × Heff − γ2M × (M × Heff ), (1)

where γ1 = γ /(1 + α2), γ2 = αγ /[(1 + α2)Ms] (γ is
the gyromagnetic ratio, α is the Gilbert damping, Ms is
the saturated magnetization), Heff = (−1/μ0)(δF/δM) =
(−1/μ0)[(∂ f /∂Mi) − (∂/∂x j )(∂ f /∂Mi, j )] is the effective
magnetic field [33,35], and F = ∫ f dv is the total
free energy, in which f is the free energy density [33].
The free energy density of a ferromagnetic system with the
Dzyaloshinskii-Moriya interaction (DMI) [39,40] is generally
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expressed as

f = fLandau + fexchange + fDM + fmagnetic + felastic, (2)

where fLandau, fexchange, fDM, fmagnetic, and felastic are the
Landau, exchange, DMI, magnetostatic, and elastic energy
densities, respectively. The detailed forms of them are shown
in Appendix A. Particularly, the Landau energy density
[1,4,41] is presented by the Ginzburg-Landau theory [1] to re-
veal the temperature-controlled magnitude of magnetizations,
which is the theory basis of the precursor effect [4,21] and the
second-order phase transition of magnetization [1,42–46]. It
can be written as

fLandau = a(T − Tc)M2 + bM4, (3)

where a and b are the Landau energy coefficients, T is tem-
perature, and Tc is the Curie temperature. Therefore, to realize
the aim of this paper, the Landau energy density fLandau should
be included in the LLG equation via the effective field Heff .
However, the Landau energy-induced effective field HLandau

eff
always makes the gyromagnetic term M × HLandau

eff of the
LLG equation equal to zero, which leads to the general LLG
equation constraining the magnitude of magnetization and
makes it a technical challenge for describing the magnitude
variation in magnetization dynamics. Therefore, two common
assumptions are introduced for this problem in the litera-
ture. One is the constant temperature assumption [13], i.e.,
the magnitude of magnetization is constrained to saturated
magnetization (|M| = Ms), and only the unit vector of mag-
netization m is solved in the LLG equation [15,16,18,19,47],
in which the temperature effect and the variation of magneti-
zation magnitude are totally neglected. The other assumption
is the overdamped assumption [32,33,35], which exaggerates
the damping motion [γ2 term in Eq. (1)] and neglects the
precession of magnetizations [γ1 term in Eq. (1)]. With this
assumption, the LLG equation can be reduced to the form of
the TDGL equation [29,30] as

∂M
∂t

= −L
δF

δM
, (4)

where L = γ Ms/αμ0 is the kinetic coefficient for magnetiza-
tion evolution. By this method, the field-controlled magnitude
of magnetization and the precursor effect are included in
the simulation (without the neutralizing of M × HLandau

eff = 0),
but the precessional nature of magnetization is abandoned,
which is unconscionable in the dynamic scenarios. Therefore,
both previous assumptions are inappropriate for magnetiza-
tion dynamics and may even reach unconscionable config-
urations of magnetic domains due to strong confines of the
evolution process and magnitude of magnetizations. For ex-
ample, a 90◦ change of moving direction has been reported
in a current-driven skyrmion due to the precessional nature
of magnetization [48]. The inhomogeneous physical field-
induced skyrmion motion has been demonstrated to be related
to the magnetization magnitude [33]. Near the Curie tempera-
ture, a new skyrmionic A phase occurs due to the softening of
the magnetization magnitude by the precursor effect [22,23].

To get closer to the dynamic behaviors of magnetization
with the precursor effect, the Landau energy needs to be
implemented in the LLG equation without neglecting the
precessional gyromagnetic term. Here, by using the relation-

ship of a × (b × c) = (a · c)b − (a · b)c, the LLG equation
Eq. (1) can be written as

∂M
∂t

= −γ1M × Heff − γ2(M · Heff )M + γ2M2Heff . (5)

On the right side of Eq. (5), the first term is the gyro-
magnetic term, which describes the precession velocity of
magnetization; the second term shows the longitudinal veloc-
ity of magnetization associated with precession motion [31];
and the third term represents the damping effect, which drives
the magnetization in the direction of the effective field, i.e.,
effective field-driven velocity. Thereby, the variation of the
magnetization magnitude |M| can be driven by the longitudi-
nal velocity of magnetization (in the second term) and by the
effective field (in the third term). However, magnitude change
driven by the effective field (via thermodynamic free energy)
is assumed much more dominant than being driven associated
with magnetization precession [31]. Therefore, here, we adopt
that the variation of the magnetization magnitude is only
controlled by the free energy inside the effective field in our
methodology. Mathematically, it is stated as

γ2(M · Heff )M = 0. (6)

By applying this assumption in Eq. (5), the modified equa-
tion for the magnetic dynamics is yielded as

∂M
∂t

= −γ1M × Heff + γ2M2Heff . (7)

Equation (7) breaks the limitation of constrained magne-
tization magnitude and keeps both precession and damping
motions of magnetizations. Meanwhile, the temperature- and
magnetization magnitude-related Landau energies can be im-
plemented in the damping γ2 term without neutralizing.
Therefore, it is expected to become a promising governing
equation of the magnetization dynamics, which can reflect the
precession motion, damping motion, variation of magnetiza-
tion magnitude, and the temperature-related precursor effect
at the same time.

Then a steady-state motion of magnetic domains is em-
ployed to check the reliability of the assumption and Eq. (7)
analytically. The dynamic properties of magnetic domains
are mathematically described by a kinetic equation, i.e., the
Thiele equation [49], which is derived from the general LLG
equation. With our assumption, the Thiele equation of Eq. (7)
is derived accordingly as follows. Taking the cross-product of
Eq. (7) with the magnetization M leads to

M ×
(

∂M
∂t

+ γ1M × Heff − γ2M2Heff

)
= 0. (8)

Therefore, we have

M × Heff = 1

γ2M2
M × ∂M

∂t

− γ1

γ2M2
[(M · Heff )M − M2Heff ]. (9)

Substituting Eq. (9) into Eq. (8) yields

M ×
(

α

γ Ms

∂M
∂t

+ 1

γ M2
s

M × ∂M
∂t

− Heff

)
= 0. (10)
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This means that the magnetization M is parallel to the
vector of the bracket, which means spatial derivatives of the
magnetization M are perpendicular to this vector [50]:

∂M
∂xi

·
(

α

γ Ms

∂M
∂t

+ 1

γ M2
s

M × ∂M
∂t

− Heff

)
= 0, (11)

or in Einstein notation:

∂Mk

∂xi
·
(

α

γ Ms

∂Mk

∂t
+ 1

γ M2
s

e jlkMj
∂Ml

∂t
− H eff

k

)
= 0, (12)

where e jlk is the permutation symbol. For the steady motion
of the magnetic domain [49] with velocity v j , there are

Mi = Mi(x j − Xj ), (13a)

Xj = v jt, (13b)

∂Mi

∂t
= −v j∂Mi

∂x j
, (13c)

where x j are field positions, and Xj are magnetic domain
positions. By using Eq. (13), Eq. (12) can be written as

− α

γ Ms

∂Mk

∂xi

∂Mk

∂x j
v j − 1

γ M2
s

e jlkMj
∂Mk

∂xi

∂Ml

∂xn
vn

− H eff
k

∂Mk

∂xi
= 0. (14)

Substituting the driving force density [49–51] on the mag-
netic domain fi = −H eff

k ∂Mk/∂xi into Eq. (14), we derive

− α

γ Ms

∂Mk

∂xi

∂Mk

∂x j
v j − 1

γ M2
s

e jlkMj
∂Mk

∂xi

∂Ml

∂xn
vn + fi = 0.

(15)

The dissipation matrix and gyrocoupling vector are defined
by Thiele [49] as

di j =
(

− α

γ Ms

)(
∂Mk

∂xi

)
∂Mk

∂x j
, (16a)

gm =
(

− 1

γ M2
s

)
δmni

jlk Mj

(
∂Mk

∂xi

)
∂Ml

∂xn
, (16b)

where δmni
jlk = emnie jlk is a generalized Kronecker symbol.

With the definition of Eq. (16), Eq. (15) can be written as

di jv j + emnigmvn + fi = 0, (17)

which can be expressed by vector notation as

d · v + g × v + f = 0. (18)

Obviously, Eq. (18) is the conventional Thiele equation
for the magnetic domain motion [49]. It has a consistent
form with the kinetic equation derived from the general LLG
equation analytically and clearly shows the gyrocoupling
and dissipation velocities of the magnetic domain under a
driving force. This result demonstrates that the assumption
we adopted in this paper [Eq. (6)] indeed does not influ-

TABLE I. Material parameters of MnSi [32–34,41,57–59].

Landau energy coefficients Curie temperature

a0 6.44×10−7 JA−2 m−1 K−1 Tc 29.5 K
b 3.53×10−16 Jm A−4

Exchange energy coefficient DMI constant

A 1.27×10−23 Jm A−2 D 1.14×10−14 J/A2

Vacuum permeability Saturated magnetization

μ0 4π×10−7 Hm−1 Ms 1.63×105 A/m
Elastic constants Magnetostrictive coefficients

C11 2.83×1011 J/m3 λ100 3.04×10−6

C12 0.64×1011 J/m3 λ111 2.26×10−6

C44 1.17×1011 J/m3

Gyromagnetic ratio Damping

γ 2.2×105 m/(As) α Mentioned in main text

ence the steady motion of magnetic domains. It implies that
the methodology of this paper is suitable for the dynam-
ics of magnetic topologies (like skyrmions), which can be
regarded as steady motion due to their topological stable
structures [52].

To further verify the accuracy of our methodology for the
case that the Thiele equation cannot cover, the numerical re-
sults of magnetization switching are discussed subsequently.
By a finite element method, we solved Eq. (7), along with the
mechanical equilibrium equation:

∂σi j

∂x j
= ∂

∂x j

(
∂ f

∂εi j

)
= 0, (19)

and Maxwell’s equation:

∂Bi

∂xi
= ∂

∂xi

(
− ∂ f

∂Hi

)
= 0, (20)

where σi j , εi j , Bi, and Hi are stress, strain, magnetic induc-
tion, and magnetic field, respectively. Ferromagnetic MnSi is
chosen as an example material for all simulations in this
paper. The detail of the finite element method is shown in
Appendix B, and the material parameters are shown in Table I.

At first, the trajectory of a single magnetization switching
under an external magnetic field is simulated. As shown in
the schematic in Fig. 1(a), at the temperature of 0 K, the

FIG. 1. (a) Schematic of the initial position of the magnetization
and the direction of the external magnetic field. (b) Trajectories
of magnetizations under an external magnetic field with different
damping at 0 K.
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FIG. 2. Relationship of spontaneous magnetizations and tem-
peratures (M-T curve). Red line with squares is the result of our
simulation (left y axis), and gray dots are the normalized experimen-
tal results from Ref. [46] (right y axis).

initial position of the magnetization is parallel to the x1 di-
rection, with the spontaneous magnitude of 1.63×105 A/m.
Then an external magnetic field is applied along the x3 direc-
tion as H3 = 20×105 A/m. As the simulated results show in
Fig. 1(b), under the excitation of the external field, the mag-
netization starts to move toward the direction of the magnetic
field. Specifically, the magnetization has precession rotation
due to its gyromagnetic nature, and it approaches the external
field by the damping effect gradually until it is parallel to
the external field as the stable state. In addition, when the
damping α is increased from 0.05 to 1.0, the approaching
process of the magnetization is faster, and the precession
of it is suppressed accordingly. These results clearly show
the precession and damping nature of the magnetization
motion.

Next, to show the magnetization magnitude-related Landau
energy is physically sound in the simulation without neutral-
izing, the spontaneous magnetization at different temperatures
is simulated and shown in Fig. 2. The red line with squares is
the result of our simulation; it reproduced well the analytical
value of the Landau theory, and the gray dots are the experi-
mental results as a comparison. The details of the comparisons
of the results between the Landau theory, experiment, mi-
croscopic model, and our simulation model are shown in the
Supplemental Material [53]. As shown in Fig. 2, it accurately
reveals the phenomenon that the spontaneous magnetization
decreases with the increase of temperature and vanishes at the
Curie temperature of 29.5 K for MnSi, which is consistent
with the second-order phase transition from ferromagnetic to
paramagnetic phase [1,46]. Therefore, our simulation model
reveals the magnetization magnitude change in finite tem-
peratures well by the Landau theory and magnetic dynamic
equation.

Further, in addition to the spontaneous magnetization re-
lated to the system temperature, the magnetization magnitude
is also controlled by other physical fields such as external
magnetic field or strain field [54]. The well-known evi-

dence is the magnetic field-induced magnetization above the
Curie temperature, in which the spontaneous magnetization is
absent. Therefore, the magnetization-magnetic field (M−H )
curves at different temperatures are simulated by our model
in Fig. 3(a). The result demonstrates the magnetic field-
controlled magnetization is revealed at finite temperatures.
Especially the external magnetic field-induced magnetization
in the paramagnetic state at 30 K is predicted [the green line
in Fig. 3(a)]. Meanwhile, Fig. 3(b) shows the magnetostrictive
strain induced by magnetic fields in different temperature
fields. They further demonstrated that the magnetization mag-
nitude can be controlled by the competition of multiphysics
fields such as temperature, magnetic, and strain fields. This re-
sult demonstrates that the methodology successfully includes
the adjustable magnitude of magnetization by the thermody-
namic Ginzburg-Landau theory.

In the end, to compare with other existing methodolo-
gies, Fig. 4 shows the magnetization switching trajectories
in methodologies with different assumptions, i.e., (a) the
constant temperature assumption, (b) the overdamped as-
sumption, and (c) the assumption of this paper. Like Fig. 1,
the initial magnetization in Fig. 4 is along the x1 direction,
and it is driven by an external magnetic field in the x3 di-
rection. At first, Fig. 4(a) shows the magnetization trajectory
calculated with a constant temperature assumption [55,56]. It
is the representative result for existing micromagnetic simula-
tions [13,47], which constrain the magnetization magnitude.
It clearly shows the precession and damping motion of a
magnetization but cannot consider the variation of the magne-
tization magnitude, in which the confined magnetization only
moves on a sphere with a constant magnitude. Then Fig. 4(b)
shows the magnetization trajectory calculated with an over-
damped assumption by the TDGL form of the equation. It
indeed reflects the variation of the magnetization magnitude in
different temperatures but neglects the precession of magneti-
zation. Next, Fig. 4(c) shows the result from the methodology
of this paper. Here, the precession and damping motion of
magnetization are well simulated, and at the same time, the
magnitude evolution of magnetizations is soundly reflected,
i.e., the magnetization magnitude is governed by temperature
and magnetic fields. The magnetization is no longer restrained
in a constant sphere like Fig. 4(a).

Further, in Fig. 4(c), the magnetization magnitude is hard
to change at 0 K (red line), while it becomes soft near the
Curie temperature. The magnitude change by the magnetic
field is 82.2% at 29 K (green line), which clearly reveals
the precursor effect (detailed in the Supplemental Material
[53]). This result demonstrates that our model successfully
simulated the precursor effect and the precession motion of
magnetization at the same time. Therefore, the diverse tra-
jectories of magnetization can be created by the synergy
of precession motion and adjustable magnitude of magne-
tizations. This result indicates that the precessional nature
of magnetization along with the precursor effect may cre-
ate more complicated evolution processes and configurations
of magnetizations, which can be named as the dynamic
precursor effect. With this intrinsic dynamic modulation of
magnetizations, several magnetization behaviors that were
previously suppressed will emerge, especially near the Curie
temperature.
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FIG. 3. (a) M-H curves in different temperatures. The saturation magnetization under external magnetic field at 0, 10, 20, and 30 K are
1.8834, 1.6617, 1.424, and 1.175×105 A/m, respectively. (b) Magnetostrictive strain-magnetic field curves in different temperatures.

FIG. 4. (a) Trajectory of magnetization by the constant temper-
ature assumption from Ref. [52]. (b) Trajectory of magnetization by
the overdamped assumption. (c) Trajectory of magnetization by the
assumption of this paper.

III. CONCLUSIONS

In summary, we combined the Ginzburg-Landau theory
and the LLG equation to realize the synergy of directional
motions and the magnitude variation of magnetizations in a
continuum model. The analytical deduction demonstrated this
model is especially suitable for the dynamics of magnetic
topologies (like skyrmions). The numerical simulation shows
the methodology can reproduce well multitudinous dynamic
motions of magnetizations in physical fields. The trajectory
result further indicates the intrinsic dynamic precursor effect
can be simulated by the methodology of this paper. In this
paper, we provide an advanced magnetic simulation method-
ology including the dynamic precursor effect, which is an
intrinsic modulation for magnetizations. It will trigger a series
of phenomena in magnetic dynamic behaviors (such as the
unprecedented behaviors of spin waves or skyrmion motions
near the Curie temperature), which is a benefit for their ap-
plication in spintronic devices. Therefore, we anticipate this
paper to be an update for existing magnetic simulations to ex-
ploit an intriguing avenue for the future research on magnetic
dynamics.
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APPENDIX A: DETAIL OF FREE ENERGY DENSITY

The total free energy density in the ferromagnetic system
[33] can be written as

f = fLandau + fexchange + fDM + fmagnetic + felastic, (A1)

where fLandau, fexchange, fDM, fmagnetic, and felastic are the
Landau, exchange, DMI, magnetostatic, and elastic en-
ergy densities, respectively. The Landau energy density
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[1,4,32,33], which includes the temperature effect, can be
expressed as

fLandau = a(T − Tc)M2 + bM4, (A2)

where a and b are the Landau energy coefficients, T is temper-
ature, and Tc is the Curie temperature. The exchange energy
density can be written as

fexchange = A
(
M2

1,1 + M2
1,2 + M2

1,3 + M2
2,1 + M2

2,2 + M2
2,3

+M2
3,1 + M2

3,2 + M2
3,3

)
, (A3)

where A is the exchange energy coefficient, and Mi, j =
∂Mi/∂x j denotes the derivative of magnetization Mi with re-
spect to x j . The bulk-type DMI energy density of MnSi can be
expressed as

fDM = D(M1M3,2 − M1M2,3 + M2M1,3 − M2M3,1

+M3M2,1 − M3M1,2), (A4)

where D is the DMI constant. The magnetostatic energy den-
sity is written as

fmagnetic = −μ0

2

(
H2

1 + H2
2 + H2

3

)
− μ0(H1M1 + H2M2 + H3M3), (A5)

where Hi represents the magnetic field intensity in the
material, and μ0 is the vacuum permeability. The elastic
energy density including pure elastic energy density and
magnetostrictive energy density, which expresses the magne-
tostrictive effect, can be written as

felastic= 1
2C11

(
ε2

11 + ε2
22 + ε2

33

) +C12(ε11ε22 + ε11ε33 + ε33ε22)

+ 2C44
(
ε2

12 + ε2
13 + ε2

23

) − 3λ100

2M2
s

(C11 − C12)

× (
ε11M2

1 + ε22M2
2 + ε33M2

3

) − 6λ111

M2
s

× C44(ε12M1M2 + ε23M3M2 + ε13M1M3), (A6)

where C11, C12 and C44 are the elastic constants, λ100 and λ111

are the magnetostrictive coefficients, and Ms is the saturated
magnetization.

APPENDIX B: FINITE ELEMENT METHOD FOR SOLVING GOVERNING EQUATIONS

The governing equations of our magnetic simulation methodology are the modified LLG equation:

∂M
∂t

= −γ1M × Heff + γ2M2Heff , (B1)

the mechanical equilibrium equation:

∂σi j

∂x j
= ∂

∂x j

(
∂ f

∂εi j

)
= 0, (B2)

and Maxwell’s equation:

∂Bi

∂xi
= ∂

∂xi

(
− ∂ f

∂Hi

)
= 0. (B3)

A nonlinear finite element method is employed to solve the above governing Eqs. (B1)–(B3). The weak form of the governing
equation is

∫
V

[
∂ f

∂εi j
δεi j + ∂ f

∂Hi
δHi +

(
− γ1

μ0
Mj

∂ f

∂Mk
ejki + ∂Mi

∂t
+ γ2M2

μ0

∂ f

∂Mi

)
δMi +

(
− γ1

μ0
Mlelki

∂ f

∂Mk, j
+ γ2M2

μ0

∂ f

∂Mi, j

)
δMi, j

]
dV

=
∫

S
(tiδui + BjnjδφM + πMiδMi )dS, (B4)

in which ti is the traction on the surface, ui is the mechanical displacement, Bjnj is the normal component of the magnetic

induction, φM is magnetic potential, and πMi = ( γ2M2

μ0

∂ f
∂Mi, j

− γ1

μ0
Mlelki

∂ f
∂Mk, j

)n j , respectively. Equation (B4) can be expressed in
matrix form as∫

V
{{δε}T [c]{ε} − {δε}T [Q]{M} − {δH}T [μ0]{H} − {δH}T [μ0]{M} − {δM}T [D1γ ]{M}

− {δM}T [μγ ]{M} − {δM}T [eγ ]{M} + {δM}T [Mi,t ] + {δM}T [α]{M} + {δM}T [D1]{Mi, j}
+ {δM}T [μ]{H} + {δM}T [e]{ε} − {δMi, j}T [Aγ ]{M} − {δMi, j}T [D2γ ]{M} + {δMi,j}T [A]{Mi, j}

+ {δMi, j}T [D2]{M}}dV =
∫

S
{{δu}T {T} + BnδφM + {δM}T {πM}}dS. (B5)
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In the space discretization, an eight-node hexahedral ele-
ment with 11 degrees of freedom at each node is employed.
The degrees of freedom are three displacement components,
one magnetic potential, and three magnetization components.
The displacement, scalar magnetic potential, and magnetiza-
tion are derived from the linear interpolation of the quantities
of nodal variables in each element, which have the forms as

{u} = [Nu]{uI}, φM = 〈Nφ〉{φI
M

}
, {M} = [NM]{MI}, (B6)

where [Nu], 〈Nφ〉, and [NM] are the interpolation function
matrices [35]. The quantities of nodal variables are {uI}, {φI

M},
and {MI}, in which I donates the node number. The strains,
magnetic fields, and magnetization gradients are also derived

from the quantities of nodal variables as

{ε} = [Bu]{uI}, {H} = −[Bφ]
{
φI

M

}
, {Mi, j} = [BM]{MI}.

(B7)

The surface traction, normal component of magnetic in-
duction, and the gradient flux of ferromagnetic materials are
similarly derived from the interpolation functions and quanti-
ties of nodal variables as

{T} = [NT ]{TI}, Bn = 〈NB〉{BI
n

}
, {πM} = [Nπ ]

{
π I

M

}
, (B8)

where [NT ], 〈NB〉, and [Nπ ] are interpolation function ma-
trices [35]. Substitution of Eqs. (B6)–(B8) into Eq. (B5), the
nonlinear equations in terms of the quantities of nodal vari-
ables are obtained:

∫
V
{{δuI}T

[Bu]T [c][Bu]{uI} − {δuI}T
[Bu]T [Q][NM]{MI} − {

δφI
M

}T
[Bφ]T [μ0][Bφ]

{
φI

M

}
.

× {
δφI

M

}T
[Bφ]T [μ0][NM]{MI} − {δMI}T

[NM]T [D1γ ][NM]{MI} − {δMI}T
[NM]T [μγ ][NM]{MI}

− {δMI}T
[NM]T [eγ ][NM]{MI} + {δMI}T

[NM]T [Mi,t ] + {δMI}T
[NM]T [α][NM]{MI}

+ {δMI}T
[NM]T [D1][BM]

{
MI

} − {δMI}T
[NM]T [μ][Bφ]{φI

M} + {δMI}T
[NM]T [e][Bu]{uI}

− {δMI}T
[BM]T [Aγ ][NM]{MI} − {δMI}T

[BM]T [D2γ ][NM]{MI} + {δMI}T
[BM]T [A][BM]{MI}

+ {δMI}T
[BM]T [D2][NM]{MI}}dV =

∫
S
{{δu}T {T} + BnδφM + {δM}T {πM}}dS, (B9)

which can be written as⎡
⎣Kuu 0 −KuM

0 −Kφφ KφM

KMu −KMφ KMM + KD1 + KD2 + Kex − KD1γ − Kμγ − Keγ − KAγ − KD2γ

⎤
⎦

⎧⎨
⎩

uI

φI
M

MI

⎫⎬
⎭ =

⎧⎨
⎩

FS

BS

�MS

⎫⎬
⎭, (B10)

where

[Kuu] =
∫

V
[Bu]T [c][Bu]dV,

[KuM] =
∫

V
[Bu]T [Q][NM]dV,

[Kφφ] =
∫

V
[Bφ]T [μ0][Bφ]dV,

[KφM] =
∫

V
[Bφ]T [μ0][NM]dV,

[KMu] =
∫

V
[NM]T [e][Bu]dV,

[KMφ] =
∫

V
[NM]T [μ][Bφ]dV,

[KMM] =
∫

V
[NM]T [α][NM]dV,

[KD1] =
∫

V
[NM]T [D1][BM]dV,

[KD2] =
∫

V
[BM]T [D2][NM]dV,

[Kex] =
∫

V
[BM]T [A][BM]dV,
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[KD1γ ] =
∫

V
[NM]T [D1γ ][NM]dV,

[Kμγ ] =
∫

V
[NM]T [μγ ][NM]dV,

[Keγ ] =
∫

V
[NM]T [eγ ][NM]dV,

[KAγ ] =
∫

V
[BM]T [Aγ ][NM]dV,

[KD2γ ] =
∫

V
[BM]T [D2γ ][NM]dV,

{Fs} =
∫

S
[Nu]T [NT ]dS

{
TI

}
,

{Bs} =
∫

S
〈Nφ〉T 〈NB〉dS

{
BI

n

}
,

{�Ms} = −
∫

V
[NM]T {Mi,t }dV +

∫
S

[NM]T [Nπ ]dS
{
π I

M

}
. (B11)

The equations in Eq. (B10) are a set of nonlinear equations including 56 nodal variables for each element and must be solved
by an iteration method. A Newton method [35] is employed to solve these equations. Equation (B10) can be written as

Ri(d) = 0 (i = 1, 2 . . . , 56), (B12)

where d = {uIφI
MMI}T . To implement a Newton method, it is necessary to linearize the residual equations of Eq. (B12). The

Newton equation may be written as

R(k+1)
i = Rk

i + ∂Ri

∂d j

∣∣∣∣
(k)

�d(k)
j = 0. (B13)

Equation (B13) becomes a linear equation with new unknown variables �d(k)
j for given values of d at previous iterative step

k. If we define S(k)
i j = − ∂Ri

∂d j
|(k), then Eq. (B13) becomes

[
S(k)

i j

]{
�d(k)

j

} = {
Rk

i

}
. (B14)

After finding the solution of Eq. (B14), the values of d j at the next iterative step k + 1 are updated as

d(k+1)
j = d(k)

j + �d(k)
j = 0. (B15)

The element tangent matrix is

[
S(k)

i j

] =

⎡
⎢⎢⎣

Kuu 0 −KS
uM

0 −Kφφ KφM

KMu − KSu
eγ −KMφ − KS

μγ KS
Mt + KS

Mu + KS
MM + KD1 + KD2 + Kex − KD1γ

−KS
D1γ − Kμγ − KSM

eγ − KAγ − KS
Aγ − KS

D2γ

⎤
⎥⎥⎦,

(B16)

where
[
KS

uM

] =
∫

V
[Bu]T [QS][NM]dV,

[
KS

Mu

] =
∫

V
[NM]T [eS][NM]dV,

[
KS

MM

] =
∫

V
[NM]T [αS][NM]dV,

[
KS

Mt

] =
∫

V
[NM]T [MS

i,t ][NM]dV,

[
KS

D1γ

] =
∫

V
[NM]T [D1γ S][BM]dV,

094423-8
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[
KS

μγ

] =
∫

V
[NM]T [μγ S][Bφ]dV,

[
KSu

eγ

] =
∫

V
[NM]T [eγ Su][Bu]dV,

[
KSM

eγ

] =
∫

V
[NM]T [eγ SM][NM]dV,

[
KS

Aγ

] =
∫

V
[BM]T [Aγ S][BM]dV,

[
KS

D2γ

] =
∫

V
[BM]T [D2γ S][NM]dV. (B17)
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