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Quantum spin liquid with emergent chiral order in the triangular-lattice Hubbard model
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The interplay between spin frustration and charge fluctuation gives rise to an exotic quantum state in the
intermediate-interaction regime of the half-filled triangular-lattice Hubbard model, while the nature of the
state is under debate. Using the density matrix renormalization group with SU(2)spin ⊗ U(1)charge symmetries
implemented, we study the triangular-lattice Hubbard model defined on the long cylinder geometry up to
circumference W = 6. A gapped quantum spin liquid, with on-site interaction 9 � U/t � 10.75, is identified
between the metallic and the antiferromagnetic Mott insulating phases. In particular, we find that this spin
liquid develops a robust long-range spin scalar-chiral correlation as the system length L increases, which
unambiguously unveils the spontaneous time-reversal symmetry breaking. In addition, the degeneracy of the
entanglement spectrum supports symmetry fractionalization and spinon edge modes in the obtained ground state.
The possible origin of chiral order in this intermediate spin liquid and its relation to the rotonlike excitations have
also been discussed.
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I. INTRODUCTION

Since Anderson’s seminal work on the resonating va-
lence bond (RVB) state in quantum antiferromagnets [1,2],
searching for spin-liquid states and the consequent super-
conductivity after doping constitutes an exciting topic in
condensed-matter physics [3]. While it has been widely
accepted that spin frustration plays the key role for the emer-
gence of spin liquid in Mott insulators [4–6], it has also
been noticed that the strong charge fluctuations near the Mott
transition may add an additional active ingredient to the sys-
tem [7,8]. Although stable spin-liquid states in the half-filled
bipartite-lattice Hubbard models have not been established
[9], the frustrated triangular-lattice Hubbard (TLU) model,
harboring stronger spin and charge fluctuations at interme-
diate Hubbard interaction U , has raised great interest in the
possible intermediate spin-liquid state [10–16].

Meanwhile, experimental progress in the triangular-lattice
organic-salt compounds κ-(BEDT-TTF)2Cu2(CN)3 [17–22]
and EtMe3Sb[Pd(dmit)2]2 [23,24] also shed light on the spin-
liquid states near the Mott transition. The absence of spin
ordering down to the lowest experimental temperature and the
linear-T dependence of low-temperature specific heat suggest
a possible gapless spin liquid in these compounds [19,24].
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However, recent thermal conductivity measurements indicate
the absence of mobile gapless excitations [25,26]. The exper-
imental identification of the spin liquid and the pursuit of its
nature have further stimulated intensive theoretical studies.

To include the charge fluctuation effects, one can consider
the higher-order ring-exchange coupling in the effective spin
model [7,27–30] or simulate the Hubbard model directly. In-
deed, numerical simulations on the ring-exchange spin model
have identified a gapless spin-liquid state with the emergent
spinon Fermi surface [7,28,31], which can partly explain the
experimental findings. On the other hand, large-scale density
matrix renormalization group (DMRG) simulations on the
TLU itself have uncovered a spin-liquid phase near the Mott
transition [14,15]. However, the two different studies lead
to drastically distinct conclusions on the nature of this spin
liquid. While the finite-DMRG calculation [14] suggests a
Dirac-like gapless spin liquid preserving time-reversal sym-
metry (TRS), the more extensive infinite-DMRG study [15]
finds a gapped chiral spin liquid (CSL) with finite chiral
order [32–35]. Moreover, the spinon Fermi-surface state is not
found in these DMRG simulations, in contrast to the previous
understanding based on the effective spin model.

In this work, we further determine the precise nature of the
spin liquid phase in the TLU. After introducing the model and
method in Sec. II, we perform extensive DMRG calculations
on finite-size cylinders for a fixed width W = 4 (YC4; cf.
Fig. 1) in Sec. III, where we gradually increase the system
length up to L = 64. This goes far beyond the previous finite-
size DMRG [14] and thus significantly reduces finite-size
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FIG. 1. Model and phase diagram. (a) Triangular-lattice cylinder
with open (periodic) boundary conditions along the x (y) direction
and lattice spacing a = 1. Having a straight open edge, i.e., YC4
geometry, the columnar spacing is a′ = √

3/2. (For later reference,
an XC geometry has straight horizontal chains at distance a′ with
a zigzag open boundary left and right.) The DMRG simulations
employ a 1D “zigzag” mapping as indicated by the gray-shaded path
(with part of the site ordering also indicated). The yellow star denotes
the central reference site for which the spin-spin correlation is calcu-
lated, while the pink triangles for evaluating the chiral correlations
are ordered symmetrically away from the center. The arrows on the
bonds denote the current directions of the chiral order, having three
colors for the three different directions. (b) The phase diagram of
the TLU model consists of a metallic phase, a fully gapped CSL
phase, and a 120◦ spin-ordered phase, with the three colors of the
sites denoting the three-sublattice structure. (c)–(e) Typical static
spin structure factors Sq for U = 8, 10, and 12 in the three phases.

effects, which is followed by an analysis of width W = 6
cylinders (YC6) in Sec. III E, with strong evidence also for
a chiral phase there, albeit with slightly altered phase bound-
aries. Throughout, we emphasize the necessity to exploit the
SU(2)spin ⊗ U(1)charge symmetries in our DMRG simulation,
as this permits us to reliably reach large-scale systems. We
identify an intermediate nonmagnetic phase with ultrashort
single-particle and spin correlation lengths on the order of
one lattice spacing, having (Uc1 � 9t ) � U � (Uc2 � 10.75t )
for W = 4. On short cylinders we find exponentially decaying
chiral correlation in agreement with Ref. [14], but the result
changes fundamentally with increasing system length, show-
ing very robust long-range chiral correlation characterizing
spontaneous TRS breaking. We also find a large degeneracy
in the entanglement spectrum, which agrees with symmetry
fractionalization and the existence of an edge spinon in the
obtained ground state. Therefore, we conclude that the low-
energy physics of the TLU model at the intermediate-U is
governed by a gapped CSL. Our results show the importance
of a sufficiently large system length to overcome finite-size
effects for identifying TRS breaking in this system. In the

outlook in Sec. IV, we point out a possible link between the
present results and the chiral nature of excitations found in
the triangular lattice Heisenberg (TLH) model at finite tem-
perature [36].

II. MODEL AND METHOD

The TLU model is defined as

Ĥ = −t
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + H.c.) + U

2
(n̂i − 1)2, (1)

where 〈·, ·〉 represents the summation over the nearest-
neighbor (NN) couplings, ĉiσ (ĉ†

iσ ) denotes the fermionic
annihilation (creation) operator with spin σ ∈ {↑,↓} on site i,
and n̂i = ∑

σ n̂iσ , with n̂iσ ≡ ĉ†
iσ ĉiσ the particle number opera-

tor. We set t := 1 as the unit of energy, and the unit of distance
via the lattice spacing a := 1, throughout. In our DMRG cal-
culations [37], we mainly focus on YC4 cylinders as shown
in Fig. 1(a), but we also extend to XC4 and YC6 cylinders.
Throughout, we implement the SU(2)spin ⊗ U(1)charge sym-
metries based on the QSpace tensor library [38,39], which
enables us to retain up to D∗ = 8192 multiplets [equivalent to
about D ∼ 24 000 U(1) states] and ensures full convergence
with a truncation error �1 × 10−6.

III. WIDTH 4 CYLINDERS (YC4)

A. Ground-state phase diagram

We summarize our DMRG phase diagram in Fig. 1(b)
with a metallic phase for U < Uc1(�9), a 120◦ magnetically
coplanar-ordered phase [40–42] for U > Uc2(�10.75), and
an intermediate CSL phase with spontaneous TRS breaking.
Figures 1(c)–1(e) show the representative snapshots of the
static spin structure factors Sq ≡ ∑

j eiq·R0 j 〈Ŝ j · Ŝ0〉 in the dif-
ferent phases, where site 0 refers to a fixed site in the center
of the system [cf., the asterisk site in Fig. 1(a)]. In the metallic
phase (small U ), Sq is found to be featureless. In the CSL
phase [Fig. 1(d)], a peak emerges at the M point which is
related to short-range stripe correlation. Further increasing U ,
sharp peaks emerge around the K points [Fig. 1(e)], consistent
with a semiclassical 120◦ spin order. Even though the present
YC4 geometry is not fully compatible with the 120◦ order, the
feature of the dominant K point peak can still be observed.
For very large U � 20, eventually, the ground state on the
particular YC4 cylinder switches to an RVB ringlike state
[43], which is beyond the scope of interest here.

The phase boundaries of the CSL phase are estimated in
Fig. 2. By contrasting the U dependence of Sq at q = K with
M in Fig. 2(a) [44] , strongly enhanced magnetic correlations
at the M points appear in the intermediate regime, up to L =
64. For L = 18, this leads to two crossing points of SM with
SK . We use the upper crossing to estimate the phase bound-
ary towards the 120◦ order, resulting in Uc2 � 10.75. The
lower phase boundary towards the metallic phase represents a
metal-insulator transition that is more naturally characterized
by an analysis of the double occupancy nd ≡ 〈ψ |n̂0↑n̂0↓|ψ〉,
which is related to local charge or energy fluctuations of a
single site (computed at the central site i = 0 here). Start-
ing from half-filling, this expectation value acquires a finite
value for U � t via a second-order process. In the infinite-U
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FIG. 2. Hubbard U dependence of different quantities on the
YC4 × L cylinders. (a) Spin structure factors Sq at the K and M
points. The L = 64 data are also shown at U = 10. The asterisks
show data points for the significantly longer system that exhibits
long-range chiral correlations as analyzed in Fig. 4. (b) Double
occupancy shown as ndU 2. This also includes XC4 data, which
exhibit only one discontinuity around the metal-insulator transition.
(c) Distribution of nq vs qx in the momentum space along qy = π/2.
The dashed line plots nq for U = 0 on the torus system with the same
size 4 × 18. The white center region marks the first Brillouin zone.

limit, one can thus estimate for the magnetically completely
uncorrelated case nd � zt2

2U 2 , with z the coordination number.
Antiferromagnetic correlations tend to increase this value.
Also as U is lowered, charge fluctuations generally increase
via higher-order processes. Hence in the present case with
z = 6 and t = 1, we can consider ndU 2 � 3 a lower bound.
Also from a numerical perspective with U ∼ 10, we have for
the double occupancy nd � 1, such that accurate numerical
simulations are important. Now when plotting ndU 2 versus
U for the YC4 system [Fig. 2(b)], we observe the onset of a
kink around U � 9, which we thus interpret as the lower phase
boundary Uc1. Note, however, that this value for Uc1 does not
coincide with the lower crossing of SM versus SK in Fig. 2(a),
which may be due to the finite-size effects, considering that
the lower phase boundary is significantly more demanding nu-
merically given that both spin and charge gaps close there. For
YC4, the double occupancy ndU 2 shows another discontinuity
around the magnetic transition Uc2, and it stays rather constant
thereafter. For comparison, we also include data for the XC4
geometry in Fig. 2(b). In contrast to YC4, this only exhibits
one discontinuity around Uc1. Overall, it is smoother, varies
significantly less versus U , and remains higher for the largest
U . Together with the fact that 120◦ order is commensurate
with XC4, we take the above finding as an indication that the
intermediate chiral phase is absent for the XC4 geometry. As
such, it exhibits a lesser degree of frustration and favors the

large-U magnetic correlations already at smaller U . As an
aside, we note that the interpretation that frustration is less
pronounced for XC4 is also supported by Ref. [42], where no
dimerization was observed in the Heisenberg limit.

The metal-insulator transition also manifests itself in the
change of the Fermi surface with increasing U . For this,
we analyze the one-particle charge density in momentum
space, nq ≡ ∑

σ

∑
j eiq·R0 j 〈ĉ†

jσ ĉ0σ 〉 in Fig. 2(c). At U = 0,
nq is a steplike function (dashed line). With increasing U ,
the drop of nq is gradually smoothened until the Fermi sur-
face disappears [15]. To be specific, within the resolution for
L = 18, nq at U = 8 still exhibits an appreciable “jump” at
qx � ±3π/4 with fixed qy = π/2. However, for U � 9, nq

changes smoothly and the Fermi surface appears to be absent
(cf. Appendix D), indicating a metal-insulator transition. Our
estimates of the phase boundaries are roughly consistent with
those reported in previous studies [13–15,29,45]. Minor quan-
titative deviation of the lower boundary Uc1 is likely due to the
different geometry and system size.

B. Fully gapped spin liquid

Next we focus on the charge and spin excitations in the
spin-liquid phase. In Fig. 3(a), the single-particle Green’s
function 〈ĉ†

i ĉ j〉, averaged among all site pairs with the same
distance di j , decays exponentially versus di j with a short
correlation length ξc � 0.81. This is consistent with a sizable
charge (single-particle excitation) gap �c � 0.88 extrapolated
for 1/L → 0 (see Appendix G) and verifies that the spin liquid
resides in the Mott insulator phase.

In Fig. 3(b), we show the spin correlation 〈Ŝi · Ŝ j〉 versus
di j , which is well converged and clearly decays exponen-
tially, with a short correlation length ξs � 1.66. Such a short
correlation length implies gapped spin excitations, which do
not support a spinon Fermi surface state with algebraically
decaying spin correlation [7] but could be consistent with
either a gapped spin liquid or a Dirac-like gapless spin liquid
that is gapped due to finite size on narrow-width cylinders. As
shown in Fig. 3(c), this conclusion is further supported by the
saturated bipartite entanglement entropy SE vs subblock size
lx, following an area law [46].

By analyzing the convergence of the DMRG simulation
with increasing D∗ (see Appendices B and G for details), we
find that the chiral correlations become well-established only
once the accuracy of the energy per site reaches a resolution
of �eχ

∼= eg − e0
g � 10−3 for YC4 × 64 [e.g., see Fig. 9(h),

where the kink in the convergence of the ground-state energy
around 1/D∗ ∼ 5 × 10−4 with δeg � 10−3 relates to a signifi-
cant buildup of entanglement entropy in Fig. 9(g) still, before
it converges to a plateau]. Based on this, one may estimate a
sizable bulk gap �χ � N�eχ ∼ 0.26 with the chiral phase,
with N ≡ L W the total number of sites. Nevertheless, since
large system sizes are required to capture the chiral phase, the
bulk gap’s relative effect on the ground-state energy is very
small, thus requiring an energy accuracy of at least 0.2% for
the case of YC4 × 64. Therefore, sufficiently accurate simula-
tions on large systems are important. In the present case, this
is made possible by fully exploiting the SU(2) spin symmetry.
The sizable bulk gap �χ is consistent with the extremely short
spin and charge correlation lengths on the order of the lattice
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FIG. 3. Single-particle Green’s function, spin correlation, and
entanglement entropy obtained on the YC4 × 64 cylinder at U =
10. Log-linear plot of (a) single-particle Green’s function |〈c†

i c j〉|,
and (b) spin correlation |〈Si · S j〉| as a function of distance di j ,
which show exponential decay with short decay lengths ξc � 0.81
and ξs � 1.66, respectively. (c) Bipartite entanglement entropy SE =
− ∑

i ρi ln ρi for the reduced density matrix ρ when cutting the
system at bond lx vs. block size lx . This shows a well-developed
plateau for 12 � lx � 52, and hence obeys the area law in the bulk.
We include a linear extrapolation 1/D∗→0 (black symbols). SE is
also obtained from a complex wave function (red symbols; all other
data for a real wave function) with the value of the plateau in the
center reduced by ln(2 ± 0.1).

spacings itself, as seen in Fig. 3. Importantly, these correlation
lengths are already also much shorter than the width of the
YC4 cylinder analyzed here. In this sense, it appears plausible
that the chiral phase persists to wider systems in the low-
energy regime. And, indeed, as we will demonstrate further
below, we see a consistent picture including chiral long-range
correlations also for the YC6 cylinder.

C. Spontaneous time-reversal symmetry breaking

One key debate in the previous DMRG studies is whether
there exists a spontaneous TRS breaking [15] or not [14]. Here
we resolve this issue by calculating the spin chiral correlation
〈χ̂iχ̂ j〉 (see the Appendixes for more details) between two
three-spin triangles �i and � j symmetrically separated from
the system center, i.e., having i = − j or i = 1 − j, as shown

FIG. 4. Chiral correlation and entanglement spectrum of the chi-
ral spin liquid state. (a) Chiral correlations 〈χiχ j〉 for U = 10 on
the YC4 cylinders with different system lengths L = 16, 18, 64.
The orange horizontal line indicates the value of 〈χiχ j〉� 0.128 for
di j = 30. (b) Chiral correlations for U = 9, 10, 11 on the YC4 × 64
cylinder obtained by keeping the bond dimensions up to D∗ = 4096
multiplets. Entanglement spectra of the YC4 × 64 for both (c) real
and (d) complex wave functions, grouped by charge sectors (for
even Q), with spin labels color-coded as specified in the legend. The
bars and respective numbers with the Q = 0 column in (c) indicate
group degeneracy. The subtracted ground levels for the two cases are
λ0 � 0.08 and λ0 � 0.15, where a relative factor of ∼2 is observed.

in Fig. 1(a). The involved scalar chirality operator is χ̂i =
(σ̂α × σ̂β ) · σ̂γ , with α, β, γ ∈ �i in counterclockwise order
for the Pauli operators. Given that the Hermitian operator
χ̂i has purely imaginary matrix elements, using real-valued
DMRG with the real-valued Hamiltonian in Eq. (1) will al-
ways yield 〈χ̂i〉 = 0. Evidently, a real-valued wave function
cannot (spontaneously) break TRS. Hence we compute static
chiral correlations 〈χ̂iχ̂ j〉. Eventually, however, we do repeat
precisely the same DMRG calculations but using complex
arithmetic, which then permits a plain nonzero expectation
value of the order parameter 〈χ̂i〉.

We first check the system-length dependence of the chi-
ral correlation at U = 10. As shown in Fig. 4(a), for small
length L = 16 and 18, the chiral correlations decay expo-
nentially in the same sign, in agreement with the previous
study [14]. Interestingly, by further increasing the system
length, a very robust chiral correlation is established over
long distances, with

√〈χ̂iχ̂ j〉 � 0.36 for di j = 30 already
well-converged over distance for D∗ � 3444 [cf. the orange
horizontal guide in Fig. 4(a)]. We also perform a complex-
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valued DMRG simulation in the YC4 × 64 system, to directly
estimate the chiral order parameter 〈χ̂〉 � 0.35 in the bulk,
in excellent agreement with previous infinite-DMRG value
χiDMRG(U = 10) � 0.34 [15]. Our results indicate that the
system length is crucial for identifying the spontaneous TRS
breaking in the DMRG calculations, which reconciles the
different observations in previous studies. In Fig. 4(b) we also
compute the chiral correlations in the neighboring phases. In
either case, (U = 9) � Uc1 and (U = 11) > Uc2, chiral cor-
relations decay exponentially, consistent with the preserved
TRS in the two phases.

In addition, we also studied the XC cylinder, i.e., with one
of the bond directions along the x-axis, with circumference
up to W = 6. There, however, even for large L, we find
no strong signature of long-range chiral correlation (see the
Appendices for more details). Such different behaviors of
chiral correlation on different geometries have also been ob-
served in the DMRG study of a triangular spin model with
further-neighbor interactions [35], where the chiral order on
the XC cylinder emerges only at large circumference. We
suspect that long-range chiral correlation ultimately also can
be found on wider XC cylinder in future studies.

D. Degeneracy in the entanglement spectrum

In addition to the long-range chiral correlation, we observe
systematic large degeneracy in the entanglement spectra (ES)
defined by Ei ≡ − ln(λi), with λi the Schmidt spectrum of
the reduced density matrix of half the system. As shown in
Fig. 4(c), the spectrum levels are grouped versus the charge
quantum number Q (relative to half-filling) of the subblock,
and color-coded based on the spin quantum number S. The
levels are symmetric for Q → −Q because the ES are ob-
tained in the system center. There due to the mirror symmetry,
removing (adding) a particle from the left subblock necessar-
ily adds (removes) it from the right one.

In the infinite-DMRG calculation [15], the ground state
on the YC4 system is found in the semion sector of gapped
CSL, where a degeneracy of 2 is observed due to the free
spin-1/2 edge mode. Our finite-size DMRG simulations ul-
timately also lead to the same conclusion based on the ES
structures in Figs. 4(c) and 4(d) in the chiral regime at U = 10.
However, by comparison to Ref. [15], we find even larger ES
degeneracies. In Fig. 4(c) the levels show at least an eightfold
degeneracy. For example, there is systematic grouping of two
singlets with two triplets (two blue and red dots, respectively).
A factor 2 of this degeneracy is due to our wave function
being real while the system is spontaneously TRS-broken.
This yields the systematic doubling of any spin multiplet in
Fig. 4(c), which can be precisely reduced by conducting the
same simulation with complex arithmetic in Fig. 4(d). Cor-
respondingly, an approximately ln(2) reduction of SE is also
seen in Fig. 3(c).

In addition to this twofold degeneracy, our remaining four-
fold degeneracy between S = 0 and 1 can be understood as
a consequence of the SU(2) DMRG simulation on the state
with S = 1/2 edge spinons, similar to the Haldane phase with
S = 1/2 edge modes in the open spin-1 chain [47]. When
computing the ES, we cut the system into two halves such
that additional fictitious edge S = 1/2 degrees of freedom ap-

pear at the subblock boundary. This leads to a direct product
of the S = 1/2 edge spinon with the fictitious S = 1/2, and
thus it gives rise to the sum of a singlet and a triplet, i.e.,
1
2 ⊗ 1

2 ≡ 0 ⊕ 1. Similarly, with a boundary S = 3/2 excitation,
one arises at 3

2 ⊗ 1
2 ≡ 1 ⊕ 2 [red and purple dots in Figs. 4(c)

and 4(d)]. The degeneracy of the ES levels agrees with the ob-
tained ground state in the semion sector [48]. Importantly, we
find that the low-lying 0 ⊕ 1 levels satisfy the (1, 1, 2, 3, . . .)
near-degenerate counting, which is consistent with the SU(2)1

chiral conformal field theory [49] and thus provides further
strong support for the gapped CSL [50].

E. Width 6 Cylinders (YC6)

In this section, we proceed to YC6 cylinders. A major in-
centive to look at YC6 is the fact that the 120◦ phase for large
U fits naturally into YC6, but not into YC4 (for this reason,
YC4 switches into an RVB-like phase for very large U � 20,
as already pointed out earlier [43]). As we will see, the chi-
ral intermediate phase also persists in YC6. We take this as
strong support for the existence of the intermediate CSL po-
tentially also in the 2D thermodynamic limit. While the YC6
simulations are considerably more challenging, ultimately we
encounter a rather similar and thus consistent overall picture
as for YC4 [15]. Once the cylinders just become long enough,
we observe clear long-range chiral correlations. Let us recall
the following: the YC4 cylinders established long-range chiral
correlations when (i) the cylinder was sufficiently long [which
turned out to be much longer than the circumference, L > 18
for W = 4 in Fig. 4(a)], and at the same time (ii) the relative
energy accuracy was clearly below 1%. Assuming that the
bulk gap remains about the same, we have to aim at an even
better relative energy accuracy given the increased number
of sites here for YC6 × 64, before one can start expecting
to see long-range chiral correlations. This makes the YC6
calculations much more challenging. Yet as we show below,
we succeed to demonstrate the buildup and full establishment
of long-range chiral correlations also for YC6. This is in full
agreement with Szasz et al. [15], which based on iDMRG
concluded that there is also a chiral intermediate phase for
YC6. However, our results are in stark contrast, e.g., to the
more recent variational Monte Carlo simulations [51]. While
they confirmed a chiral intermediate phase for W = 4, they
concluded the chiral phase to be absent in the low-energy
regime of W = 6 and thus also in the 2D limit. Similarly,
the thermal simulations of Wietek et al. [52] argued in favor
of a gapless stripy intermediate phase (or a gap too small to
be detected within their DMRG-based approach of minimally
entangled thermal states on YC4 cylinders). We speculate that
such conclusions are related to the challenges in the DMRG
simulations, as also clearly encountered here based on the re-
quirement of large system sizes. Once under control, however,
the spin bulk gap in the chiral intermediate phase is estimated
to be large, i.e., of order 1 or similarly of order Jeff � 4t2

U ≈
0.44. For reference, a finite spin-gap in the TLU at interme-
diate Coulomb interaction has also been reported recently in
experimental studies on κ-(BEDT-TTF)2Cu2(CN)3 [22].

The phase boundaries of the intermediate chiral phase can
be expected to be weakly shifted for YC6 as compared to
YC4. Indeed, we do not find evidence for long-range chiral
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The lowest energies are extrapolated in a linear fashion towards
δρ → 0, with the resulting ground-state energy per site as shown.
(b) Maximum entanglement entropy around the system center vs
1/D∗, with D∗ the number of multiplets kept in the simulation.
The inset shows the discarded weight vs 1/D∗. The lines in panels
(a) and (b) combine data from equivalent sweeps, such as the two-site
update (line with symbol) when increasing D∗, or the subsequent four
bond updates [for all other lines, see the legend to (a)]. (c) Chiral
correlations vs distance. While these data show exponential decay,
the correlation length is strongly dependent on D∗ still. Here the
various lines are derived from different combinations of up and
down triangles vs distance. Different levels of color intensity refer
to different D∗ (D) as indicated in the legend. (d) Analysis of the
parameters from the exponential fits in (c) vs discarded weight δρ.

correlation for U = 10, as used for YC4 in Fig. 4(a). This is
consistent with the analysis in [15], which also showed for
W = 6 that the upper phase boundary for the chiral inter-
mediate phase moves towards slightly lower values, having
U YC6

c2 � 10 just below U = 10. Hence we focus on U = 9 for
the YC6 system. In Fig. 5 we present a DMRG simulation
on the YC6 × 64 system using real-valued arithmetic. This
is complemented in Fig. 6 by an identical simulation, except
that it used complex-valued arithmetic, which thus permits
spontaneous TRS breaking. In these simulations, for the sake
of efficiency, the number D∗ of kept multiplets was ramped up
quickly by a factor of 2 in a two-site update, followed by four
sweeps with a plain bond-update at the same D∗.

For the real-valued DMRG simulations on YC6 in Fig. 5,
we plot the ground-state energy versus the discarded weight
δρ in Fig. 5(a). The data converge uniformly, except that
they start to show an onset towards a stronger decrease of
the ground-state energy for the very smallest δρ � 2×10−5.
This is related to the fact that for the real-valued DMRG
simulations on YC6 we cannot converge the chiral long-range
correlations [Fig. 5(c)], despite keeping up to D∗ = 8192 mul-
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FIG. 6. DMRG simulation (complex-valued) on YC6 × 64 at
U = 9. (a)–(c) Identical analysis as in Fig. 5. (d) Having complex
arithmetic, this permits a nonzero expectation value for the chiral
order parameter 〈χi〉, showing the square for direct comparison with
(c). We note that 〈χi〉 has the same sign for all triangles and, consis-
tent with (c), converges towards |〈χ〉| ≈ 0.25 (horizontal red dashed
line). The data in (d) correspond to the last three entries in the legend
in (c).

tiplets (corresponding to D = 22 743 states). To be precise,
while the chiral correlations in Fig. 5(c) appear to decay
perfectly exponentially over long distances, the correlation
length ξ is not converged in that it keeps increasing with
increasing D∗, i.e., chiral correlations become stronger. The
maximum entanglement entropy in the system center versus
1/D∗ is tracked in Fig. 5(b), where its inset relates D∗ to the
respective discarded weight in the DMRG simulation. Since
D∗ is ramped up very quickly according to the DMRG sweep-
ing protocol specified above, it looks as if δρ extrapolates to a
finite value δρ0 � 1.22 × 10−5 for 1/D∗ → 0 (horizontal red
dashed line). This is artificial, of course, due to the sweeping
protocol, and it is attributed to the overall strong truncation
still given that the system barely started to move into the
low-energy chiral regime. Nevertheless, from a practical point
of view, based on that inset in Fig. 5(b), computed quantities
may thus be extrapolated to δρ → δρ0 > 0 for quantitative
estimates, rather than δρ → 0.

The exponentially decaying chiral correlations in Fig. 5(c)
were fitted by |χ0|2 e−di j/ξ . The resulting fitting parameters
|χ0| and inverse correlation length 1/ξ (slope) are summa-
rized in Fig. 5(d) versus δρ. This suggests that at the same
time as 1/ξ extrapolates to zero at δρ � δρ0 [vertical red
dashed line, identical to the red dashed line in the inset to
Fig. 5(b)], the long-range chiral correlation assume the fi-
nite value |χ | ≈ 0.25 (horizontal red dashed line). Therefore,
despite the fact that the real DMRG simulation cannot be
converged to explicitly show long-range chiral correlations,
a careful extrapolation of the data versus δρ → 0 (or rather
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δρ → δρ0) does support the conclusion that the YC6 × 64
cylinder based on real-valued DMRG simulations is chiral for
U = 9.

This can be significantly more substantiated still by repeat-
ing precisely the same DMRG simulation, yet with complex
arithmetic, with the results presented in Fig. 6. While the
convergence of the ground-state energy in Fig. 6(a) looks
nearly identical to Fig. 5(a), the maximal entanglement en-
tropy SE around the system center in Fig. 6(b) already starts
to level off and converge for the smallest 1/D∗ (largest D∗ =
8192). In particular, the entanglement entropy from the two-
site update (blue) remains already the same for the smallest
1/D∗ when compared to the subsequent bond updates still
(other solid lines). In Fig. 6(c), one can explicitly observe
how the long-range chiral correlations build up for over the
last DMRG sweeps, resulting in long-range chiral correlations
of approximately |χ | ≈ 0.25, which is in agreement with the
earlier extrapolation in Fig. 5(d). For the complex DMRG, we
can also compute the chiral order parameter |χ | directly for
a line of triangles along the cylinder as shown in Fig. 6(d).
The data agree well in magnitude, and thus they are consistent
with the chiral correlations shown in Fig. 6(c).

The nonextrapolated DMRG ground-state energy of the
complex simulation (e0 � −0.522 70) also agrees well with
the real-valued calculation (e0 � −0.522 29). The former is
just slightly lower as it can explicitly make use of the TRS
breaking. After simple linear extrapolation of the ground-
state energies versus δρ → 0, one obtains e0 � −0.5273(1).
On a more conservative level, extrapolating ρ → ρ0 yields
e0 � −0.5245(6), which lowers the ground-state energy still
by about 0.34%. Now given the presence of a downward kink
in the convergence of the ground-state energy at the smallest
energies reached, as already also seen for YC4, the subsequent
extrapolated energy gain may thus again be attributed to the
presence of a chiral bulk gap. Here for YC6, the estimate
yields �χ

∼= N · (0.0034 e0) ∼ 0.69, with N = LW the total
number of sites. The estimate for �χ here for YC6 is about
a factor of 2.7 larger as previously obtained in the same
manner for YC4. The difference may be attributed to the
slower sweeping protocol used in the DMRG for YC4, which
thus underestimated the actual gap there. Importantly, in the
present case the gap estimate compares well to the charge gap
�c � 0.88 explicitly evaluated for YC4 in Appendix E (cf.
Fig. 12).

F. The need for long cylinders

All of the systems above required an a priori surpris-
ingly large degree of asymmetry in the aspect ratio of the
cylinder geometry in order to realize the intermediate phase
with long-range chiral correlations. Specifically, this required
the cylinders to be much longer (i.e., in the direction of the
open boundary) as compared to their circumference (periodic
boundary). With the notion in mind that for a topological
system the bulk gap needs to close towards the boundary, the
finite open boundary of the cylinders studied, in principle, can
affect the cylinder considerably into the bulk itself. Naively,
one may have speculated that the effects of the open edges
diminish quickly as with the bulk correlation lengths for spin
or charge, which, based on the data in Fig. 3 for YC4, are
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FIG. 7. Correlations in the YC6 × 64 system after the last sweep
in the complex DMRG simulation at D∗ = 8192 in Fig. 6: (a) Spin
〈Si·S j〉 and charge correlations 〈c†

i ·c j〉 (where the dot product sums
over spin) relative to the system center. The exponential fit ∝
e−x/ξ (straight line in matched light color) yields the corresponding
correlation length as shown with the legend. The correlations are
computed along a tilted straight path of length L − 1 in units of lattice
spacing from left to right YC boundary [cf. Fig. 1(a)]. (b) Chiral cor-
relations, (c) spin correlations, (d) charge correlations, all at constant
vertical distance dy = 3 ( j = 2, 5) vs position x along the cylinder.
Here x is the distance from the boundary of the cylinder converted to
column index x/a′ ∈ [1, L] [cf. Fig. 1(a)].

ultrashort on the order of a single lattice spacing. But this
ignores the fact that the bulk gap actually needs to physically
close towards the open boundary. The lengthscale over which
this occurs is, a priori, far from clear.

To gain further insight into the effect of the open boundary,
we look more closely into correlations also with reference
to the boundary for YC6 × 64. The results are summarized
in Fig. 7 where we take the ground state from the complex-
valued DMRG simulation as in Fig. 6 after the last sweep.
While D∗ = 8192 already ensures visible convergence and
established long-range chiral correlations, the variations in the
data in Figs. 7(b)–7(d) around the system center x ∼ L/2 =
32 need to be taken with a grain of salt, bearing in mind the
residual variations in the data of the last sweep in Fig. 6(d)
itself.

To start with, the bulk spin and charge correlations for
YC6 remain extremely short-ranged, as seen Fig. 7(a). The
correlation lengths are of about one lattice spacing, consistent
with the YC4 data in Fig. 3. Given the slightly smaller U = 9
here, the correlation length for charge transfer is slightly
increased, (ξc = 0.81 → 0.91), yet the spin-spin correlation
length is actually reduced (ξs = 1.66 → 1.20), bringing the
two correlation lengths closer to each other.

Now in order to analyze effects versus distance from the
boundary, we compute chiral, spin, and charge correlations
at fixed vertical distance dy = 3 of site i relative to site
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j (i.e., taken halfway around the cylinder) versus position
x/a′ = 1, . . . , L along the cylinder, with the results shown
in Figs. 7(b)–7(d), respectively. While superficially the data
behave similarly, the magnitudes vary considerably, with the
scale of values decreasing from chiral to spin to charge cor-
relations, in agreement with the expected respective relevance
in the low-energy regime. Furthermore, one notices that all
data show pronounced oscillatory behavior close the boundary
with a period of around four columns in YC6, i.e., λ � 4a′.
More importantly, the enveloping amplitude decays rather
slowly into the bulk, taking about �x ∼ 5λ, i.e., 20 columns
from the open boundary of the YC6 cylinder to diminish.
Together with the right boundary, this suggests that in order
for the effects of the open boundary to have significantly
decayed to actually see bulk behavior in the system center,
one needs a rather long cylinder with L � 10λ ∼ 40 columns.
For shorter systems, the two boundaries can thus be expected
to interfere with each other, which can be detrimental to the
development of long-range chiral correlations, as observed,
for example, for the shorter YC4 systems in Fig. 4.

IV. SUMMARY AND CONCLUSIONS

We show clear numerical evidence for an intermediate
chiral spin-liquid phase on long yet finite-size YC4 and YC6
cylinders of the half-filled triangular lattice Hubbard model
for sizable U ∈ [Uc1,Uc2] based on exact large-scale DMRG
simulations. This phase is surrounded by a metallic phase for
U < Uc1 (or possibly a Luther-Emery liquid [16,53]), and a
120◦ magnetic insulating phase for U > Uc2. For YC4 we find
Uc1 � 9 and Uc2 � 10.75, whereas for YC6, Uc2 � 10. The
intermediate spin-liquid phase has been debated intensely in
recent literature, with contradicting conclusions on whether it
represents a chiral spin liquid or not. Our results demonstrate
that finite-size effects can drastically alter the conclusions.
Here, the system length in DMRG simulation constitutes a
key factor to identify the spontaneous TRS breaking in the
CSL state.

In the effective spin model derived from the Hubbard
model [7,28–30], the ring-exchange couplings have order
t4/U 3. Previous study estimated the metal-insulator transition
to occur at U/t � 5 [10], leading to important ring-exchange
couplings that can drive a spinon Fermi surface state [7].
However, DMRG studies find the Mott transition at U/t � 9,
which indicates the much weaker ring-exchange couplings
and may explain why the spinon Fermi surface state is not
found. Properly accounting for spin couplings in an effective
spin model allows one to understand the emergence of the
gapped CSL of Kalmeyer-Laughlin type [30].

A hand-waving argument on a possible origin of the CSL
phase at the intermediate U may be taken from the phase
diagram at finite temperature [52]. In the large U limit, TLU
reduces to an effective Heisenberg spin model. Besides the
long-wavelength soft modes at the K point corresponding to
the 120◦ order, there exists additional rotonlike modes near the
M point at higher energy [36]. The softening of the M-point
rotonlike excitations, either by quantum fluctuations [54] or
thermal fluctuations [36,43], seems to be accompanied by an
emergent liquidlike phase with anomalously enhanced chiral
fluctuations. Here the charge fluctuations also lead to a spin-

liquid phase with long-range chiral order and enhanced spin
fluctuations at the M point, naturally implying the softening of
the rotonlike excitations and spinon deconfinement in the tran-
sition with decreasing U . Therefore, it would be interesting
and important to explore the spin dynamics of this Hubbard
model in future study.
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APPENDIX A: SYMMETRIC CONSTRUCTION
OF A CHIRAL OPERATOR

With spin rotation SU(2) symmetry implemented, the spin
operators need to be reorganized into an irreducible operator
(irop), i.e., the spinor also schematically depicted in Fig. 8(a)
[38],

Ŝq=1,m ≡

⎛
⎜⎝

−1√
2
Ŝ+

Ŝz

1√
2
Ŝ−

⎞
⎟⎠, (A1)

with the ladder operators S+ = (Sx + iSy), S− = (Sx − iSy).
Here the components Ŝ1,+1, Ŝ1,0, and Ŝ1,−1 transform like an
irreducible representation (irep) |S; Sz〉 with Sz = +1, 0,−1,
respectively. For this, the relative sign on the first component
is important. The spin operator always corresponds to the ad-

S
q

q

q

q
(a) (b)

P

site: 

P-operator

(c)

(d)

1j-symbolSU(2) spinor

q

q
0

S SS P

FIG. 8. Symmetric tensor representation of (a) SU(2) spinor Sq

[Eq. (A1)], (b) P-operator, (c) the 1j-symbol, and (d) the scalar
chirality operator order χ [cf. Eq. (A2b)].
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joint representation, i.e., S = 1 for SU(2). The normalization
of the irop in Eq. (A1) is chosen such that Ŝ†

i · Ŝ j corresponds
to the standard Heisenberg interaction Ŝi · Ŝ j where, never-
theless, when having Eq. (A1), the dagger on Ŝi becomes
important.

Next we can build the scalar chirality, which we expand as

χ̂i jk = (σ̂i × σ̂ j ) · σ̂k ≡ 8 (Ŝi × Ŝ j ) · Ŝk (A2a)

= 4i
(
Ŝ+

i Ŝ−
j Ŝz

k + Ŝz
i Ŝ+

j Ŝ−
k + Ŝ−

i Ŝz
j Ŝ

+
k − H.c.

)
. (A2b)

Now while this may look somewhat tedious, in practice
there is a simple transparent procedural way for dealing with
it from a tensor network perspective with SU(2) spin sym-
metry enabled. As is required for an observable, the chiral
operator is a scalar operator with nonzero eigenvalues ±√

12.
It combines three spin operators Ŝ into a scalar operator χ̂ .
As depicted in Fig. 8(d), one needs to “tie together” the three
S = 1 irop indices (horizontal leg for each S). This can be
simply achieved by fusing two S = 1 multiplets (ingoing) into
S = 1 (outgoing). From a symmetry perspective, this is also
the only possible combination here. The result corresponds
to a tensor P̂ that is proportional to the Clebsch-Gordan co-
efficient tensor (CGT) C1

1,1 ≡ (1, 1|1) ∝ P [Fig. 8(b)]. With
this, the chiral term can be compactly written as the nested
contractions (denoted by ∗)

χ̂i jk = (Ŝi ∗ (Ŝ j ∗ P̂)) ∗ Ŝ†
k , (A3)

where the precise order of pairwise contractions by the brack-
ets is irrelevant. Optionally, this expression can be further
symmetrized. The direction of an arrow (leg) can be reversed
based on a so-called “1 j” symbol [39]. In the present case, this
corresponds to the CGT (1, 1|0) = 1√

3
U that fuses two S = 1

multiplets into a singlet. The index with the outgoing S = 0
is a singleton dimension and hence can be skipped. After
proper normalization, this reduces to a unitary operator U
[Fig. 8(c)]. Thus inserting U † ∗ U = 1, having U = U † here,
and contracting one U onto the outgoing index of P, denoted
as PA ≡ P ∗ U [a green dot contracted onto a blue triangle in
Fig. 8(d)], and the other U onto S†

k (which effectively removes
the dagger), the chiral term becomes [Fig. 8(d)]

χ̂i jk = (Ŝi ∗ (Ŝ j ∗ P̂A)) ∗ Ŝk , (A4)

now with all three spin operators Ŝ on an equal symmetric
footing. Here PA is a completely antisymmetric tensor for
its three indices, all of which are incoming now. As such, it
corresponds to a Wigner 3 j symbol, which in the present case
precisely corresponds to the Levi-Civita tensor as it appears in
the original definition of the chiral operator in Eq. (A2a), up
to an overall purely imaginary normalization factor.

APPENDIX B: CONVERGENCE OF THE DMRG
CALCULATION

In this Appendix, we show the computed entanglement
entropy SE and ground-state energy per site eg versus bond
dimension 1/D∗. As can be seen below, the results shown in
the main text for the intermediate chiral spin liquid (CSL) and
large-U regimes are well-converged versus D∗. In practice, to

ensure convergence of the data, we ramp up the bond dimen-
sion D∗ for sweep n in the uniform exponential manner, as
described by D∗

n = D∗
0an. Here a is a parameter that controls

the speed of increase of D∗ from one sweep to the next, until
the final bond dimension D∗

nmax
is reached. We start with an

initial bond dimension D∗
0 during a random initialization in

the global symmetry sector (S, Q) = (0, 0), where S and Q
denote the spin and charge quantum numbers, respectively.
In this work, we use D∗

0 = 512, a = 21/5, D∗
nmax

= 8192, and
thus nmax = 20 sweeps. This leads to well-converged results in
most cases. In addition, we may slow down the ramping of D∗
by actually performing up to five sweeps for a given “stage” n,
before moving on to the next stage n + 1 with increased bond
dimension D∗

n+1, e.g., seen as vertical stacking of data points
in Fig. 9.

In the left panels of Fig. 9, we show particular specifics
of the block-entanglement entropy simulations as we ramp up
the number of multiplets D∗ in our DMRG simulations. We
show both the maximum values of entanglement entropy SE

(labeled by “Max”) and the ones cutting at the center bond
of the system (labeled by “Mid”). In Fig. 9(a), for U = 8, we
can see the fast growth of entanglement entropy SE , expected
in a metallic state that is extremely challenging for the DMRG
calculation, even though overall convergence, e.g., of the
ground-state energy, already appears systematic. For the CSL
phase at U = 10 [panels (c),(g)] and the magnetically ordered
phase at U = 12 [panel (e)], SE results are well converged
versus 1/D∗.

In the right panels of Fig. 9, we check the convergence of
the ground-state energy eg. We linearly extrapolate it towards
1/D∗ → 0 based on the last three data points (red line in the
insets). We use the extrapolated value e0

g ≡ lim1/D∗→0 eg(D∗)
to estimate the “error” of finite-bond-dimension energy as the
difference εe ≡ eg(D∗) − e0

g, as shown in the main right panels
in Fig. 9. From these we see that, within their respective sys-
tem size, at L = 18 the energies are converged to εe ∼ 10−4

for U = 8 and to εe ∼ 10−5 for U = 10, 12; and at L = 64,
the energies are converged to εe ∼ 10−4 for U = 10.

Overall, convergence is not always smooth with increasing
bond dimension D∗. For example, there may be excitations
in the system due to the arbitrary initialization of the wave
function for small D∗ which, nevertheless, get ironed out early
on. Certain low-energy excitation as well as edge modes can
be dealt with over longer distances only once a sufficient
accuracy, i.e., sufficiently large D∗, has been reached, which
then may lead to a rather sharp drop or increase in the maximal
block entanglement across the entire system, as well as a
rapid drop of energy, as observed for intermediate and also
larger D∗.

On a physical level, a certain choice of D∗ permits a certain
energy resolution, as evident from the analysis of the right
panels of Fig. 9. This gives insights into the energy scales
of the system under consideration. Consider, for example, the
bottom panels of Fig. 9 for the chiral intermediated state at
U = 10 for L = 64. There the chirality of the ground state
only emerges for D∗ � 2500 (1/D∗ � 4 × 10−4), which leads
to a sharp rise in the entanglement entropy [Fig. 9(g)]. This by
itself already suggests a significant change in the underlying
DMRG wave function, e.g., as also seen in the convergence
of the chiral long-range correlation in Fig. 4(a) of the main
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FIG. 9. Entanglement entropy SE (left panels) and ground-state
energy (right panels) vs 1/D∗ for YC4 for (a),(b) U = 8; (c),(d) U =
10; (e),(f) U = 12 at L = 18; and (g),(h) U = 10 at L = 64. Entan-
glement entropy SE labeled “Max” are the maximal entanglement
among all bonds throughout the system, while the “Mid” ones
are values measured at the center of the systems. The linear ex-
trapolations with 1/D∗ are shown in the inset of all right panels
(b),(d),(f),(h). Although the calculations are very challenging in the
metallic phase with U = 8, the data have reached very good conver-
gence for U = 10 and 12.

text. Indeed, the systematic degeneracies in the entanglement
spectra also only emerge once the sufficiently large D∗ � 2500
is reached in the present case. Simultaneous with a strong rise
in the entanglement entropy in Fig. 9(g), one also observes a
kink in the convergence of the ground-state energy [Fig. 9(h)].

This suggests that for the chiral state to be seen in the
DMRG simulations, one needs an energy resolution such as
that found at the kink, that is, �eχ

∼= eg − e0
g � 10−3. If one

were to interpret this to reflect an actual energy gap below
which the DMRG convergence is accelerated, the correspond-
ing estimate would be �χ

∼= LW �eχ � 0.25 and thus sizable.
Increasing the ground-state energy of the L = 64 system by

FIG. 10. Entanglement spectrum (ES) along the system and in
between full columns of a DMRG scan along a YC4 × 100 cylinder.
For this we tune U ∈ [8, 12] linearly along the cylinder. We keep
the bond dimensions up to D∗ = 5793 (D � 17 053). The lines are
color-coded according their symmetry sector (S, Q) as indicated.

adding �eχ , it still has a significantly lower energy than
the L = 18 system, given that �e0

g = e0
g(L = 18) − e0

g(L =
64) ∼ 0.011. Conversely then, a nonchiral state may be seen
if the energy of a given (eigen)state is higher by �χ above
the ground state for a given width W = 4 system, either due
to insufficient D∗ or due to finite-length effects. The latter is
demonstrated by comparison to the same U = 10 Hamilto-
nian, yet for the significantly shorter L = 18 in Figs. 9(c) and
9(d). From the above estimates, the finite size correction for
this smaller system size is significantly larger than �χ , and so
we do not yet see a chiral signature in its converged ground
state [see also Fig. 13(a)]. Therefore, also the entanglement
profile in Fig. 9(c) evolves much more smoothly as compared
to Fig. 9(g), and the convergence of the ground-state energy
in Fig. 9(d) also shows no kink.

APPENDIX C: DMRG SCAN OF THE CYLINDER WITH
SMOOTHLY CHANGING U

To study the phase diagram of the model, we also per-
formed a linear DMRG scan [55] for a YC4 × 100 system
with the varying U for different columns i as Ui = U1 +
i−1
L−1 (UL − U1). Here, we set U1 = 8 for the first column and
UL = 12 for the last one. The results are shown in Fig. 10,
where we compute and collect the entanglement spectra for
each cut between the columns i and i + 1. Since each column
i corresponds to a unique Ui, the ES “flows” as U changes
along the cylinder.

In the present YC4 system, three possible phases can be
discerned in the entanglement spectrum, separated by the two
critical points at Uc1 � 9.5 and Uc2 � 10.5. The ES is nonde-
generate in the small-U (U < 9.5) phase, while it approaches
fourfold and eightfold degeneracy in the intermediate-U
(9.5 < U < 10.5) and large-U (U > 10.5) regime (two- and
four-multiplet degeneracy, respectively). When approaching
the open right boundary of the cylinder at U = 12, the degen-
eracy starts to split again. This is consistent with the splitting
in the ES between the S = 0 and 1 multiplets already dis-
cussed with Figs. 4(c) and 4(d) in main text.

APPENDIX D: DESTRUCTION OF THE FERMI SURFACE

In Fig. 11, we show the electron density in momentum
space nq on the YC4 × 18 system. The distribution nq of the
free fermion system at U = 0 in the thermodynamic limit
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(b)

(c) (d)

(a)

FIG. 11. Electron density in the momentum space nq on the
YC4 × 18 systems with (a) U = 0, (b) U = 8, (c) U = 9, and
(d) U = 10. Gray hexagons represent the boundary of first Brillouin
zone, and the horizontal dotted lines represent the allowed momenta
qy for the YC4 cylinder.

is also included in Fig. 11(a) as a reference, which shows a
perfect Fermi surface. In Figs. 11(b)–11(d), the calculated nq

exhibits a recognizable Fermi surface at U = 8. With further
growing U , the Fermi surface gets significantly blurred at
U = 9 and 10, characterizing a metal-insulator transition with
A destructed Fermi surface.

APPENDIX E: CHARGE GAP

In this Appendix, we directly calculate the charge (single-
particle excitation) gap,

�C = 1
2

[
E

(
1
2 ,+1

) + E
(

1
2 ,−1

) − 2E (0, 0)
]
,

where E (S, Q) denotes the lowest eigenenergy with total spin
S, and charge Q is taken as the number of particles relative
to the half-filling. For the ground state we have S = Q = 0.
As shown in Fig. 12 for U = 10, �C decreases with system

FIG. 12. Charge gap �C calculated on the YC4 cylinders with
different lengths L = 8, 12, 16, 18. The linearly extrapolated value
with L → ∞ is �C � 0.88.

FIG. 13. Energy difference �S between the total spin-0 and total
spin-1 sectors. We calculate the YC4 cylinders with system length
L = 8, 12, 16, 18. This shows an exponential decay with ξ � 5.8
with increasing L as indicated.

length L, and the linear extrapolation over 1/L results in a
large nonzero gap �C � 0.88. This confirms that the spin
liquid resides in the Mott insulating phase.

APPENDIX F: IDENTIFICATION OF EDGE SPINONS
FROM SPIN EXCITATION

In the CSL phase, we have found the obtained ground
state (on the YC4 cylinder) in the semion topological sector,
with a spin-1/2 spinon on each open boundary. Therefore,
we expect a fourfold ground-state degeneracy (S = 0 ⊕ 1) for
sufficiently long cylinders. This may be seen analogous to
the Haldane phase of the open S = 1 spin chain, where also
spin-1/2 edge modes are weakly coupled. Thus, the energy
difference between the total spin-0 and spin-1 sectors is ex-
pected to decay exponentially with growing system size [56].

Here, we use A similar strategy to identify the edge spinons
in the semion sector of the CSL state. We show the energy
difference �S between the total spin-0 and spin-1 sectors with
growing system length in Fig. 13. Clearly, �S is very small
and indeed decays exponentially with L. Since the spin triplet
excitation is gapped in the bulk (cf. Fig. 3 in THE main text),
this vanishing energy difference must be ascribed to the edge
spinon modes in the semion sector of the CSL.

L=18 L=64

FIG. 14. Entanglement spectrum calculated at the center of YC4
systems with (a) L = 18 and (b) L = 64 [cf. Fig. 4(c) in the main
text], grouped by charge sectors (showing even Q only), with spin
labels color-coded as specified in the legend.
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1/D   0

XC4 64 U = 9.5

FIG. 15. Chiral correlations calculated in a U = 9.5 XC4 × 64
system with bond dimensions D∗ = 4096, 5793, 8192 show no long-
range correlations. The black line depicts the results of linear
extrapolation 1/D∗ → 0 from the above bond dimensions. Here, the
filled symbol indicated the positive sign of chiral correlation, and
otherwise the sign is negative.

APPENDIX G: FINITE-SIZE EFFECT OF TRS
BREAKING DETECTION

To further emphasize the absence OF long-range chiral
correlation on short systems, we also contrast the ES for
L = 18–64 in the main paper. As seen in Fig. 14, L = 18 is
still clearly qualitatively different. An obvious difference from
the ES for L = 64 [Fig. 14(b)] is the complete absence of
degeneracies, which, in particular, demonstrates that the two
low-lying real wave functions that respect TRS are still split

by a relatively large gap due to finite-size effects. Therefore,
simulations on such short systems may lead to the premature
conclusion of no chiral order. However, with growing system
length L, this gap decreases and eventually becomes negligi-
ble. This then allows DMRG calculation to obtain the minimal
entangled state with spontaneous TRS breaking [57].

APPENDIX H: CHIRAL CORRELATION
ON AN XC4 SYSTEM

In this Appendix, we show the chiral correlations 〈χiχ j〉
between two triangles labeled i and j with distance d = |i −
j|, in XC4 × 64 systems for the case of U = 9.5. As shown in
Fig. 15, with a bond dimension up to D∗ = 8192 SU(2) multi-
plets (corresponding to D > 22 000 individual states), chiral
correlations are strongly suppressed. We further perform a
linear 1/D∗ → 0 extrapolation from the correlation data of
the largest three bond dimensions D∗ = 4096, 5793, 8192,
and still see no sign of long-range chiral correlation. Hence
XC4 behaves very differently from YC4 or YC6, where for
cylinders of the same length already robust long-range chi-
ral correlations were observed, having χ2 = 0.128 for YC4
at D∗ = 4096 (Fig. 4), or χ2 ≈ 0.25 for YC6 at D∗ � 8192
(Fig. 6). Here for XC4, the chiral correlations drop rapidly
over short distances di j < 10. However, they appear to gain
weak support for di j > 10 around the much smaller value
χ2 ∼ 10−4. While the long-distance correlations still gain
strength with increasing D∗, nevertheless the chiral correla-
tions do show (weak) decay with distance, even within the
numerically converged range di j � 25. In this sense, we see
no clear support for long-range chiral correlation in XC4
cylinders.
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