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Hole spectral function of a chiral spin liquid in the triangular lattice Hubbard model
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Quantum spin liquids are fascinating phases of matter, hosting fractionalized spin excitations and uncon-
ventional long-range quantum entanglement. These exotic properties, however, also render their experimental
characterization challenging, and finding ways to diagnose quantum spin liquids is therefore a pertinent chal-
lenge. Here, we numerically compute the spectral function of a single hole doped into the half-filled Hubbard
model on the triangular lattice using techniques based on matrix product states. At half-filling the system has
been proposed to realize a chiral spin liquid at intermediate interaction strength, surrounded by a magnetically
ordered phase at strong interactions and a superconducting/metallic phase at weak interactions. We find that the
spectra of these phases exhibit distinct signatures. By developing appropriate parton mean-field descriptions, we
gain insight into the relevant low-energy features. While the magnetic phase is characterized by a dressed hole
moving through the ordered spin background, we find indications of spinon dynamics in the chiral spin liquid.
Our results suggest that the hole spectral function, as measured by angle-resolved photoemission spectroscopy,
provides a useful tool to characterize quantum spin liquids.

DOI: 10.1103/PhysRevB.106.094417

I. INTRODUCTION

Quantum spin liquids are quantum disordered ground
states that are characterized by fractionalized excitations and
long-range topological entanglement [1,2]. Powerful theoret-
ical frameworks have been introduced to classify these exotic
states of matter [3–6], and exactly solvable models provide
crucial insights into their fundamental properties [7,8], as-
pects of which have recently been studied on quantum devices
[9,10]. Moreover, numerical approaches based on tensor net-
works as well as variational Monte Carlo simulations suggest
that quantum spin liquids are stabilized in various models.
In particular, recent matrix product state (MPS) calculations
on cylinder geometries indicate that the Hubbard model on
the triangular lattice realizes at half-filling a chiral spin liquid
for intermediate interaction strength [11–14]. The chiral spin
liquid [15,16] is surrounded by a long-range ordered phase
with a 120◦ spiral order at strong interactions [17,18] and
a possibly superconducting or metallic phase at weak inter-
actions [11,19–21]; see Fig. 1(c) for a sketch of the phase
diagram.

Triangular lattice systems have several potential exper-
imental realizations, including organic compounds [22,23],
transition-metal dichalcogenides [24–26], and triangular lat-
tice materials [27,28]. However, due to the absence of any
conventional order, it is challenging to experimentally detect
quantum spin liquids. Spectroscopic probes offer a promising
route to identify characteristic signatures of quantum spin
liquids at finite frequencies. Among them is inelastic neutron
scattering, often leading to spectral features that are smeared
out over the Brillouin zone at comparatively high energies;
cf. [29,30]. Spin-polarized scanning tunneling microscopy

[31,32] and nitrogen-vacancy (NV) -center magnetometry
[33] can provide an alternative route to probe charge neutral
edge states in chiral spin liquids. All these dynamical probes
measure in some form the dynamical structure factor, which
creates spin-1 excitations of the underlying state. However,
since the fundamental excitations of quantum spin liquids are
fractionalized, it seems pertinent to investigate probes that of-
fer a more direct view on spinons that carry spin 1/2 [34,35].

In this work, we compute the spectral function of a sin-
gle hole injected in the ground state of the triangular lattice
Hubbard model at half-filling. The hole excitation carries
spin 1/2 and charge, and its spectrum is directly measured
with angle-resolved photoemission spectroscopy (ARPES).
Recent theoretical work has shown that ARPES can be used to
probe fractional excitations in square-lattice antiferromagnets
[35,36] and in frustrated quantum magnets [34]. We compute
the spectral function numerically with algorithms based on
MPS, and we find that the hole spectral functions are distinct
in the different phases of the triangular lattice Hubbard model.
We furthermore develop parton mean-field descriptions for
the relevant low-energy excitations in the different phases.
Our findings suggest that ARPES can be a useful probe for
characterizing quantum spin liquids.

II. MODEL AND METHOD

We consider the Hubbard model on the triangular lattice,

H = −t
∑
〈i, j〉

σ=↑,↓

(c†
iσ c jσ + H.c.) + U

∑
j

n j↑n j↓, (1)
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(a) (b)

(c)

FIG. 1. Triangular lattice Hubbard model. (a) Our matrix product
state calculations are performed on elongated cylinder geometries,
with open boundary conditions in the x-direction and periodic ones in
the y-direction (yellow sites are identified with each other). (b) First
Brillouin zone with dots indicating the allowed momenta for the
lattice geometry shown in (a). (c) The proposed phase diagram of
the triangular lattice Hubbard model on cylinder geometries [13]
consists of a metal/Luther-Emery (LE) liquid [19–21], a chiral spin
liquid (CSL), and a 120◦ magnetically ordered phase. The hole spec-
tral functions are clearly distinct in the metallic and in the ordered
phase. In this work, we show that the hole spectrum of the chiral spin
liquid is distinct from the other phases.

where t is the hopping matrix element, and U is the
on-site interaction strength. Fermions with spin σ are
created/annihilated by c†

jσ /c jσ , and n jσ = c†
jσ c jσ are the cor-

responding number operators.
We compute the optimal MPS representation of the ground

state |ψ0〉 of the triangular lattice Hubbard model at half-
filling with DMRG (using the library TeNPy [37]) on
elongated cylinders, depicted in Fig. 1(a). Open boundary
conditions are assumed in the x-direction, and periodic ones
in the y-direction.

We compute the hole spectral function by time-dependent
MPS simulations,

A(k, ω) =
∑

σ=↑,↓

∫
dτ eiτω〈ψ0|c†

kσ (τ )ckσ (0)|ψ0〉. (2)

The maximum time until we can accurately simulate the
evolution with MPS methods is limited by the growth of
entanglement, which leads to a finite frequency resolution in
the spectral function. Here, we use a variation on established
methods [38,39]: Instead of evolving the action of a local
operator, we time-evolve a plane wave with fixed momentum
k on a finite cylinder. Following hydrodynamic arguments,
finite momentum excitations will decay exponentially at late
times (with a decay constant proportional to |k|2), leading
to a reduced entanglement growth. As a consequence, for a
given bond dimension we can evolve the state to longer times

(a) (b)

FIG. 2. Hole spectral function in the ordered phase. (a) Spectral
function A(k, ω) for U = 12.0 t along the two distinct cuts of the
cylinder. The most prominent branch is described by the mean-field
dispersion (green line). The full spectral function is compared with
a variational MPS calculation, which picks up the lower edge of the
spectrum, which for most momenta carries only little spectral weight
(cf. magnified data on the right-hand side). (b) Illustration of the
long-range-ordered state with 120◦ spiral order.

and thus obtain better resolution of the spectral function. This
intuition is also supported by direct numerical comparisons
in the Appendixes, in which additional details on the method
are presented; see Appendix A. We furthermore implement
U(1) × U(1) symmetries for particle number and spin conser-
vation, respectively, as well as the momentum conservation
in the y-direction [40,41]. This allows us to use bond dimen-
sions of up to χ = 1500 for the time-evolved state. Despite
these efforts, the MPS simulations are challenging for these
two-dimensional systems, since the numerical cost grows
exponentially with the cylinder circumference. To keep the
truncation error small for the bond dimension stated above, we
restrict ourselves to cylinders with Ly = 3. The Brillouin zone
associated with this lattice geometry is sketched in Fig. 1(b).

We complement these spectral function calculations by
a variational computation of the lowest-lying excited states.
In this method, we start from an MPS approximation for
the ground state on the infinite cylinder, and we optimize
a variational ansatz that models the excited states on top of
the ground-state MPS with fixed momentum. This variational
approach, which can be interpreted as the MPS version of the
single-mode approximation, was introduced for computing
the spectrum of spin chains [42] and recently extended to
cylindrical geometries [43].

III. MAGNETICALLY ORDERED PHASE

Using this algorithm, we compute the hole spectral func-
tion in the long-range ordered phase for strong interactions
U = 12.0 t ; see Fig. 2. The excitation energies of the hole
are shifted by a chemical potential μ, chosen such that both
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particle and hole excitation energies are equal. This allows us
to directly read off half of the charge gap from the smallest
excitation energy in the spectral function. The spectrum is
dominated by a single branch, which for all wave vectors
carries most of the spectral weight.

To understand the origin of the well-defined excitation
branch, we consider a mean-field description of a hole on
a triangular lattice which experiences an effective magnetic
field arising from the long-range 120◦ spiral order of the
ground state,

Hmf = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + h
∑

i

Mi · Si. (3)

Here, t is the hopping matrix element and h is the ef-
fective magnetic field. The spin operators are defined
as Si = 1

2 (c†
i↑, c†

i↓)σ(ci↑, ci↓)T , where σ is the vector of
Pauli matrices. The 120◦ magnetic order is set by Mi =
( cos(Q · Ri), sin(Q · Ri), 0) with Q = (0, 4π

3 ), as sketched in
Fig. 2(b). Such a Hamiltonian is also regularly used as a
starting point for variational Monte Carlo simulations to de-
scribe the magnetically ordered phase on the triangular lattice
[44–47]. By diagonalizing the Hamiltonian, we obtain the
effective hole dispersion

ωmf
k = 1

2

(
εk + εk±Q +

√
(εk − εk±Q)2 + h2

)
, (4)

where εk is the single-particle dispersion on the triangular
lattice with a bandwidth that is proportional to the hopping
strength t .

To quantitatively compare the mean-field dispersion ωmf
k

with our spectral function obtained from time-evolving the
MPS, we identify the effective field strength h with its mean-
field value h = Um, where m is the magnetic order parameter
m = 〈Mi · Si〉 of the MPS ground state. To determine m, we
explicitly have to break the SU(2) symmetry with a small
pinning field on every third lattice site [18]. With this identifi-
cation of the effective magnetic field h, the mean-field ansatz
quantitatively reproduces the dominant branch of the hole
spectrum without any additional fit parameters; see Fig. 2(a).

The dominant branch of the spectral function in the mag-
netically ordered phase can hence be understood as a hole
moving in an effective field, which is generated by the spin
background. Apart from the main branch, continua are visible
in particular for the P-K cut, indicating the importance of
many-body excitations. Moreover, a rather well defined high-
energy branch exists as well.

These results are supported by the variational MPS calcu-
lations which find the lowest energy excitations for a given
momentum and fixed quantum numbers, irrespective of their
spectral weight. As a consequence, we expect the results from
the variational ansatz to coincide with the lower edge of the
full spectrum. As shown in the zoom in Fig. 2(a), there is
a good agreement at the P-K momentum cut between the
different approaches. However, at the 	-M cut the variational
MPS dispersion differs strongly because most of the spectral
weight is carried by the mean-field branch. This observa-
tion is confirmed by calculating the spectral weight directly
from the variational excited-state wave function, which is
very small for all momenta except at the K-point. There the
variational dispersion touches the dominant spectral branch.

(a) (b)

FIG. 3. Hole spectral function in the chiral spin liquid. (a) Spec-
tral function A(k, ω) for U = 7.6 t along the two distinct cuts of the
cylinder. The parton mean-field theory captures the dominant spec-
tral response at low energies along both cuts. Variational MPS again
picks up the lower edge of the spectrum. (b) Sign pattern of the chiral
order parameter on our finite-size cylinders where |χ+| �= |χ−|. The
unit cell consists of two sites, leading to two bands in the parton
mean-field theory.

Furthermore, our results are in good agreement with recent
calculations based on the self-consistent Born approximation
[48].

IV. CHIRAL SPIN-LIQUID PHASE

We now turn our attention to the chiral spin liquid, which
was found to occur at intermediate interactions [11]. Specif-
ically, we choose an interaction strength of U = 7.6 t in the
middle of the small parameter range for the intermediate
phase. It is apparent in Fig. 3(a) that the spectrum at low
energies looks qualitatively very different from the magnet-
ically ordered phase. The spectral weight is not concentrated
in one main branch anymore but rather is broadened over a
wide range of energies with some noticeable features. The
dispersion at low energies has drastically changed: While in
the magnetically ordered phase the minimal excitation energy
is at the K point, in the chiral spin liquid the lower edge of the
spectrum has a maximum at this momentum.

A strong indication for the chiral spin liquid, which breaks
time-reversal symmetry spontaneously, is a nonvanishing or-
der parameter χi jk = Si · (S j × Sk ) around triangles in the
ground state. We indeed find similar values for the order pa-
rameter as in Ref. [11], and we also observe the same pattern
of triangles with different magnitude and opposing signs of
χ ; see Fig. 3(b). However, this particular pattern is a distinct
aspect of the three-leg cylinder [13].

To gain an understanding of the hole dynamics, we com-
pare our MPS results to a parton mean-field ansatz. In
Ref. [49] the authors present a spinon mean-field Hamiltonian
for a hole-doped U(1) chiral spin liquid as well as an ansatz
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for a projected d + id superconductor. Here we modify this
mean-field approach to account for the particular flux pat-
tern on the three-leg cylinder. We start from the mean-field
Hamiltonian

Hmf
parton =

∑
〈i, j〉,σ

(Ji j f †
iσ f jσ + H.c.), (5)

where f †
iσ ( fiσ ) create (annihilate) spinons at low energies. The

hopping terms are chosen with equal amplitude but different
phases Ji j = Jeiθi j , such that the sum of θi j around each trian-
gle leads to the pattern shown in Fig. 3(b). We now determine
the values of θi j from the phase of 〈c†

iσ c jσ 〉 in the MPS
representation of the three-leg cylinder ground state. This is
motivated by performing a Schrieffer-Wolf transformation, in
which to leading order the spinons couple to the dynamically
generated gauge field in the effective spin Hamiltonian [50].
Therefore, the spinons directly inherit the flux penetrating
through the triangles. When setting the amplitude of the hop-
ping to the superexchange energy, which is the typical energy
scale for spinons, J = 4(1 − 7t2/U 2)t2/U [14], we find a
remarkable fit to the dispersion of the lower spectral edge,
again without additional fitting parameters; see Fig. 3(a).
Therefore, we have strong indications that the dominant low-
energy physics is actually determined by spin dynamics. The
alternating sign of the chiral order parameter effectively leads
to a doubling of the unit cell, which is directly reflected both
in the numerical and in the mean-field spectrum. Crucially,
the mean-field Hamiltonian not only captures the shape of the
dispersion quite well, but it also predicts the distribution of
spectral weight properly; see Appendix B. In the Appendixes,
we also demonstrate that our modified, microscopic mean-
field ansatz indeed shows better agreement than the generic
approach of Ref. [49], which may be suitable for larger sys-
tems and hence also for experimental realizations.

For this phase, the excitations found by the variational
MPS approach again provide a lower bound on the full spec-
trum. Similar to the magnetic phase, the deviations could
be caused by complex many-body excitations with very low
spectral weight. Nevertheless, the variational results coincide
approximately with the low-energy edge of the full spectrum
for the P-K cut. With both methods we find two humps, and
in particular a local maximum of the dispersion at the K point,
in stark contrast to the magnetically ordered phase.

V. DISCUSSIONS AND OUTLOOK

Our results demonstrate that the hole spectral function of
the chiral spin liquid in the triangular lattice Hubbard model
is clearly distinct from the one in competing phases. Doping a
hole in the ground state can be interpreted as simultaneously
creating a spinless holon and a spinon that carries spin-1/2.
A hole excitation thus has the potential to offer a more direct
view on fractionalized excitations. Our parton mean-field de-
scription of an excitation moving in the chiral order parameter
field captures key features of the low-energy spectrum. In
particular, the dispersion of the lower spectral edge is set
by the superexchange energy scale, which suggests dynamics
originating from spinons rather than dressed holes.

For future studies, it would be interesting to investigate
the effective interaction between the holon and the spinon.

At finite doping, holons can condense and spinons determine
the low-energy properties of the spectrum [49,51–53]. Similar
spectral signatures are expected for a single spinon deconfined
from the holon. Alternatively, there could in principle be a
holon-spinon bound state, as on the square lattice antifer-
romagnet [35,54]. We have investigated the possibility of a
holon-spinon binding via geometric strings [55,56] on the
triangular lattice. However, since the local correlations are
much smaller there than on the square lattice, the minimum
size of the bound object, if it exists, exceeds by far the cir-
cumference of our lattice. Hence, a spinon-holon binding via
geometric strings is unlikely for our small system, but it could
be interesting to explore in future work. Furthermore, a better
understanding of the interaction between the constituting par-
tons would help to gain further insights into the high-energy
features of the spectra, certain aspects of which seem similar
in the distinct phases.

Our results suggest that dynamical hole spectra, as exper-
imentally measured by ARPES, are potentially a very useful
probe to characterize the low-energy dynamics of spin-liquid
materials and, in particular, analyze the fractionalization of
the elementary excitations. Given the recent progress on find-
ing new candidate materials, especially the triangular-lattice
systems, this avenue opens up the exciting possibility of ex-
perimentally observing spin-liquid physics in a more direct
way.

The MPS code and data analysis are available on Zenodo
upon reasonable request [57].
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APPENDIX A: DETAILS ON THE METHOD

Here we give additional details on the MPS method for
evaluating the spectral function. Our simulations were per-
formed with the tensor network library TeNPy [37]. We have
used U(1) × U(1) symmetries for particle number and spin
conservation, respectively. Additionally, we work in a mixed
real and momentum space to impose momentum conservation
around the cylinder [40,41], gaining an extra Z3 symmetry.
The time evolution is obtained from an MPO representation
of the time evolution operator (the WII operator [38]) with a
variational truncation scheme with fixed MPS bond dimension
and step size δτ = 0.025/ t .

For evaluating the spectral function, we have used a vari-
ation of the standard approaches in the MPS literature [39].
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Instead of time-evolving an initial state with a local excita-
tion, we use a plane wave with a fixed momentum, which
is common in other MPS approaches for computing spectral
functions [58–60]. We first determine an MPS approximation
for the ground state at half filling |ψ0〉 using the DMRG al-
gorithm on a finite Ly × Lx system, with Ly = 3 and Lx = 24,
chosen such that boundary effects do not play a role. On top
of this state, the time-dependent correlation function is given
by

Cσ
i j (τ ) = 〈ψ0|eiτH c†

jσ e−iτH ciσ |ψ0〉. (A1)

We assume that |ψ0〉 is a good approximation to the ground
state with energy E0. We indeed confirm this by time-evolving
e−iτH |ψ0〉, which yields e−iτ (E0+δε)|ψ0〉. The small error δε

from the time evolution method is then corrected for the
spectral function. Therefore, Eq. (A1) reduces to

C̃σ
i j (τ ) = 〈ψ0|c†

jσ e−iτH ciσ |ψ0〉. (A2)

This quantity is usually evaluated by time-evolving the state
after hole creation at the origin, and then taking the overlap
with the states where a hole is inserted at site j. As explained in
the main text, in the case of U = 7.6 t our MPS approximation
to the ground state explicitly breaks translational symmetry in
the rx-direction such that we also have to compute the time
evolution after hole creation at the site next to the origin.

This procedure is limited by the time for which we can
feasibly represent the state as an MPS with a certain bond
dimension, as the entanglement entropy in the time-evolved
state is expected to grow linearly in time.

However, we are actually interested in the spatial Fourier
transform of this quantity,

Ãσ (k, τ ) =
∑

j

e−ik·r j C̃σ
0 j (τ ). (A3)

Therefore, instead of computing the time evolution for the
initial state where a single hole is created locally at the origin,
we can also perform a time evolution of a state with the hole
inserted as a plane wave,

Ãσ (k, τ ) =
(

〈ψ0|
∑

j

e−ik·r j c†
jσ

)
e−iHτ (c0σ |ψ0〉). (A4)

By evolving the momentum superposition (bra-vector) in-
stead of a local-hole state (ket-vector), we can hope that the
entanglement growth is smaller, because correlations decay
faster. Indeed, in Fig. 4 we observe that although the initial
entanglement of the plane wave is larger (due to the fact that a
plane wave is a superposition of MPS), it acquires much less
entanglement over time.

A disadvantage of the plane waves is that we have to do a
separate time evolution for each allowed value of the momen-
tum. However, this process can be easily parallelized. Finally,
note that the time evolution operator in Eq. (A4) can be split
into τ = τ1 + τ2 to perform two separate time evolutions, one
on the bra-vector and one on the ket-vector, which further
increases the latest time to feasibly represent the MPS.

Although the plane waves allow for evolution to longer
times, we are still restricted to maximal times of order τmax ≈
10, which will yield a finite frequency resolution for the spec-
tral function. Hence, we use linear prediction [61] combined

FIG. 4. Growth of entanglement entropy. We compare the growth
of the half-cylinder entanglement entropy after inserting a single hole
locally in the ground state for U = 12 t and after inserting a hole as
a plane wave with momentum kx = 0.

with a Gaussian envelope before taking the temporal Fourier
transform

A(k, ω) =
∑

σ

∫
dτ eiτ (E0+ω)Ãσ (k, τ ). (A5)

To ensure that the time evolution is indeed well converged
for late times, we compare the results for MPS with different
bond dimensions in Fig. 5. For small times A(k, τ ) does not
depend on the value of χ . However, for longer time evolutions
we can see deviations between the various bond dimensions.
Nevertheless, the qualitative behavior remains the same.

APPENDIX B: PARTON MEAN-FIELD THEORY
FOR THE CHIRAL SPIN LIQUID

As discussed in the main text, we construct a parton mean-
field Hamiltonian to understand the low-energy features of
the MPS hole spectrum in the chiral spin liquid phase at

FIG. 5. Convergence of spectral function. The spectral function
in time at the K point is converged for different values of the maximal
MPS bond dimension χ , and only small deviations arise at late times.
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(a) (b)

(c)

FIG. 6. Comparison of mean-field theories. (a) We compare the
MPS spectrum to the U(1) chiral spin liquid and the projected d + id
superconductor from [49] as well as our flux pattern ansatz on
the cylinder. (b) The doubled unit cell and corresponding hopping
phases used in Eq. (B1). (c) The spectral weight of the mean-field
approaches compared to the MPS data. For the U(1) ansatz, the
weight is only shown for the band that fits the MPS spectrum.

U = 7.6 t ,

Hmf
parton =

∑
〈i, j〉,σ

(Jeiθi j f †
iσ f jσ + H.c.). (B1)

This ansatz is motivated by the U(1)2 chiral spin liquid that
was introduced by Kalmeyer-Laughlin [15] and recently in-
vestigated in the context of hole doping [49]. There the phases
θi j were taken to incorporate a π/2 ± 3θ flux through up-
/down-pointing triangles.

We also introduce a modification of the U(1)2 chiral spin
liquid. Instead of the π/2 ± 3θ flux, we follow the MPS
results more closely and choose the θi j to reproduce the same
chiral order sign pattern as measured on the cylinder in the
ground state. Imposing this pattern to the flux, we are still left
with four free parameters θi for the phases around the doubled
unit cell shown in Fig. 6(b), which we determine directly from
the corresponding expectation values in the MPS ground state:

θ1 ≈ 0.004, θ2 ≈ 0.004,

θ3 ≈ 0.322, θ4 ≈ −0.001,

θ5 = θ1 + θ2 − θ4,

θ6 = −2θ1 − 2θ2 − θ3.

The equations for θ5 and θ6 ensure the correct pattern for the
mean-field Hamiltonian, where the fluxes can only differ in
sign but not in absolute value. Since the MPS has |χ+| �=
|χ−|, the measured values of θ5 and θ6 vary slightly.

Besides the U(1)2 chiral spin liquid and our modified flux
pattern ansatz, we compare the spectrum to a projected d + id
superconductor,

Hd+id
parton =

∑
k,σ

εk f †
kσ

fkσ +
∑

k

�k ( f †
k↑ f †

−k↓ + H.c.), (B2)

where εk is the single-particle dispersion on the triangular
lattice, and with ω = ei2π/3 the pairing is given by

�k = 2�[cos(k · rx)+ω cos(k · ry) + ω2 cos (k · (ry − rx))].
(B3)

This ansatz is used as a starting point for variational Monte
Carlo simulations [46,47], and hole doping was studied for
this ansatz in Ref. [49].

In Fig. 6(a), we show the dispersion of the three different
mean-field theories compared to the MPS spectrum. At the
	-M cut, there is only very little weight at low energies.
Therefore, we concentrate on the P-K and adjust all free
parameters of the U(1)2 chiral spin liquid and the d + id
superconductor to fit the well-defined spectral edge.

In our flux pattern ansatz, shown in the main text, all flux
parameters are determined by MPS expectation values. Thus
the only adjustable variable is the hopping constant J . We find
very good agreement when setting this to the superexchange
energy J = 4(1 − 7t2/U 2)t2/U [14]. Note that the flux pat-
tern mean-field Hamiltonian has a doubled unit cell, and hence
we get two different bands, which overlap on the 	-M cut but
slightly differ for the P-K cut.

The U(1)2 ansatz has a doubled unit cell as well. However,
it was not possible to fit both bands to the full spectrum. One
of the two branches fits well to our data when selecting θ

in the vicinity of θ = ±π/6, at which the ansatz describes
a Dirac spin liquid. However, the second branch hosting the
Dirac cones is absent in the numerical spectrum. Setting the
hopping constant to the superexchange energy gives the best
agreement for the bandwidth.

When comparing to the d + id superconductor, we can not
only adjust the hopping constant, but we have also the free
variable �, which is optimized to fit the low-energy spectrum
in the P-K cut at around � ≈ 0.4 J . The bandwidth is again
determined by the superexchange scale.

In summary, for all three mean-field theories we find J =
4(1 − 7t2/U 2)t2/U , indicating that the basic constituents are
spinons rather than (dressed) holes. Moreover, we compare
the spectral weight Z (k) predicted by the mean-field ap-
proaches to the MPS results; see Fig. 6(c). To extract the
weight from the MPS spectrum, we fit the height and width
of a Gaussian to the first peak. We find that the weight distri-
bution is similar for all three mean-field approaches.
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