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Inverse Faraday effect in massive Dirac electrons
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We study the inverse Faraday effect (IFE) in a Dirac Hamiltonian with random impurities using Keldysh
formalism and diagrammatic perturbation theory. The mass term in the Dirac Hamiltonian is essential for
IFE, where the spin magnetic moment induced by circularly polarized light is proportional to the frequency
of the incident light within the THz regime. For massive Dirac electrons, the corrections due to short-range
impurities on spin magnetic moment vertex exhibits mixing of the spin magnetic moment vertex and spin angular
momentum vertex. The spin magnetic density response is divergently enhanced by the vertex corrections near
the band edge, indicting a long-range diffusion of spin density profile in massive Dirac electrons.
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I. INTRODUCTION

The Dirac equation [1] successfully describes the dynamics
of relativistic electrons. Despite its background in high-energy
physics, the Dirac Hamiltonian and its variations are widely
exploited as low-energy effective Hamiltonians in condensed
matter physics, predominantly attributed to its inherent spin
(pseudo-spin) orbit interaction. Among its variations, Dirac
and Weyl semimetals [2–4], which exhibit gapless excita-
tions, have drawn much attentions recently [5–8]. The massive
Dirac Hamiltonian also describes various gapped systems
with quasilinear band dispersion, e.g., the L-point of the Bis-
muth [9–13].

The inherent spin-orbit coupling (SOC) enables the Dirac
electrons to exhibit various spin-related responses to the ex-
ternal electric field. For example, the ferromagnetic Dirac
Hamiltonian [11,14] was employed to study the theory of
the anomalous Hall effect. The massive Dirac Hamiltonian
has demonstrated a strong spin Hall effect inside the mass
gap [10,13]. In addition to dc electric field responses, the
optical responses of Dirac electrons have also been studied
theoretically, especially focusing on chirality-dependent phe-
nomena, e.g., the inverse Faraday effect (IFE) [15–19] and
circular photogalvanic effect (CPGE) [17,20]. Nevertheless,
theoretical investigation has been restricted to the massless
case of Dirac systems.

The inverse Faraday effect [21,22] phenomenologically
describes the static magnetization induced by circularly po-
larized light. The symmetry argument [23] gives a qualitative
expression of the induced effective magnetic field: Meff ∼
iE × E∗ where E is the complex electric field. In experiments,
IFE is able to reverse the magnetization of magnets with
strong laser pulse [24,25], providing an optical method of
ultrafast magnetization manipulation. As was demonstrated
recently, sensitive detection of the effective magnetic field
induced by a continuous laser can be carried out electrically
through the inverse spin Hall effect [26]. It is, thus, of in-
terest to investigate the IFE in a massive Dirac electron’s

system, which was demonstrated to exhibit a large spin Hall
effect [10].

The Dirac Hamiltonian is also featured by its particle-
hole symmetry. The negative energy states correspond to
electron vacancies (holes), and thus physical operators are
antisymmetric with respect to energy. However, it turns out
that physical operators are mixed by interactions with their
unphysical counterparts which is symmetric with energy. We
shall demonstrate that even an energy-conserving impurity
scattering leads to an entanglement of physical magnetic mo-
ment and unphysical spin (angular) vertices [27], resulting in
a significant enhancement of magnetic moment response at
the band edge. The entanglement is a result of an interference
between positive and negative energy states like the Zitterbe-
wegung [28] and is unique feature of Dirac electrons. Further,
the IFE is known to be dissipative and extrinsic [16,17,29],
wherefore the IFE of massive Dirac electrons is also a nice
paradigm to study the vertex corrections of the Dirac Hamil-
tonian.

In this paper, we study the spin responses under circu-
larly polarized light in massive Dirac electrons by using
the Keldysh Green’s function formalism. The spin magnetic
density correlates with the chirality of the incident light by
calculating the second-order perturbation of gauge coupling.
The response function holds for the general frequency of inci-
dent light, while the low-frequency expansion is employed for
analytical results. The electrons’ lifetime and the ladder-type
vertex corrections (VCs) are introduced by the short-range im-
purities. For impurity correction on the spin magnetic vertex,
mixing of the spin vertices in the massive scenario is investi-
gated in detail through concerning long-range diffusion.

II. MASSIVE DIRAC ELECTRONS

We start from the effective Hamiltonian describing Dirac
electrons:

H0 = h̄vkiρ1 ⊗ σ i + mρ3 ⊗ σ 0, (1)
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where v is the Fermi velocity and m is a mass term corre-
sponding to half of the band gap [12]. The ρμ, σ ν are Pauli
matrices spanning the particle-hole and spin space, respec-
tively (μ, ν = 0, 1, 2, 3). Note that the ρ0, σ

0 are identity
matrixes. h̄ is the reduced Planck’s constant and the repeated
indices indicate summation. The band energy is εη,k = ηεk

with η representing the positive (+1) and negative (+1) en-

ergy bands and εk ≡
√

h̄2v2k2 + m2.
The impurity scattering is assumed to be random and short-

ranged. The impurity potential is

Vimp = niuρ0 ⊗ σ 0, (2)

where ni is impurity density and u is the strength of δ-function
impurities. With the Born approximation, the retarded self-
energy [11,13] is

Im�R(ε) ≡ −γ0(ε)ρ0 ⊗ σ 0 − γ3(ε)ρ3 ⊗ σ 0, (3)

where γ0 and γ3 are

γ0(ε) = π

2
niu

2ν(ε + μ), (4a)

γ3(ε) = π

2
niu

2 m

ε + μ
ν(ε + μ), (4b)

in which the density of states is ν(ε + μ) ≡ 1/V
∑

η,k δ(ε +
μ − ηεk). V, μ are the volume of the system and chemical
potential, respectively. Note that Re, Im denote the real and
imaginary components. The density of states of the Dirac
Hamiltonian is asymptotically proportional to the square of
the energy, ν(ε) ∝ |ε|√ε2 − m2.

In massive Dirac electrons, γ0 is the damping coefficient
symmetric with respect to the positive and negative energy
bands, while γ3 is the antisymmetric damping coefficient
associated with the mass term. Including the self-energy,
the retarded Green’s function is GR

k (ω) = [h̄ω + μ − H0 −
Vimp − iIm�R(h̄ω)]−1. Note that ε = h̄ω is the energy mea-
sured from the chemical potential μ. Although the self-energy
is generally energy-dependent, in the following discussion
we focus on the scattering effect predominantly at the Fermi
surface ε = 0, μ = ηεk. With on-shell condition (μ + ε =
ηεk) [30], the damping coefficients are approximated as con-
stants in energy and have the following relationship: 
 =
γ0 + m/μγ3. Correspondingly, the electrons’ lifetime in the
on-shell condition is defined as

τ = h̄

2

= h̄

πniu2ν(μ)

μ2

μ2 + m2
. (5)

Note that the electrons’ lifetime diverges at the band edges
μ = ±m due to the vanishing of states.

III. INVERSE FARADAY EFFECT

The inverse Faraday effect is the nonlinear response of
the electrical field. The incident light is described by velocity
gauge [31] coupling

Hem(x, t ) = −eAi(x, t )vi, (6)

where A(x, t ) = ReAei(q·x−�t ) is the vector potential of in-
cident light and vi ≡ vρ1 ⊗ σ i is the velocity operator. The
gauge field is defined by the physical external electric field:
A = −iE/�. e is the elementary charge.

FIG. 1. Diagrammatic representation of the spin magnetic den-
sity induced by the circularly polarized light. The first diagram is
spin magnetic response without VCs for impurity and the rest are
corrections on the spin magnetic vertex and velocity vertices. The
shaded circle represents the corrected vertices.

A. Spin magnetic density response

The induced spin magnetic density is calculated through
Keldysh formalism. Thus, the expectation value of spin mag-
netic density is expressed by an equal space-time lesser
Green’s function

〈mk〉 = −ih̄Tr[mkG<(x, t ; x, t )], (7)

where the spin magnetic operator is mk ≡ ρ3 ⊗ σ k and its
prefactor −g∗μB/2[12] is neglected for simplicity where g∗
is an effective g-factor and μB is the Bohr magneton. Note
that G< is the Green’s function containing the gauge field A
which is treated in perturbative expansion later.

Since the IFE is qualitatively proportional to the cross
product of the external electric field [23] (Meff ∼ iE × E∗), it
can be traced from the second-order perturbation of the gauge
coupling in Eq. (7) whose corresponding diagram is shown in
Fig. 1. Note that we only keep the stationary response (0�) of
the spin magnetic moment and the oscillatory response (2�)
in second-order perturbation is neglected due to its oscillation
in time [32].

The spin magnetic density induced by the second-order
perturbation (see Fig. 1) of the gauge field reads

〈mk〉(2) = −i
[
χ k

i j (+�) + χ k
ji(−�)

]
EiE∗

j , (8)

where the spin magnetic response function is defined as

χ k
i j (�) ≡ h̄e2

4�2V

∑
k,ω

Tr[mkGk(ω)viGk(ω + �)v jGk(ω)]<.

(9)

In thermal equilibrium, the lesser Green’s function is given by
G<

k (ω) = f (ω)[GA
k (ω) − GR

k (ω)] with f (ω) is Fermi distribu-
tion function.

Utilizing the spherical symmetry of the Dirac Hamiltonian
and evaluating the trace term in Eq. (9), it is evidenced that the
response function is totally antisymmetric χ k

i j (�) ∝ εi jk , cor-
responding to the antisymmetry with respect to the chirality
of the incident light. The spin magnetic response in Eq. (8)
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can be rewritten as

χ k
i j (−�) + χ k

ji(+�) = χ k
ji(+�) − χ k

ji(−�). (10)

Apparently, only terms which are odd with external frequency � contribute to the IFE. To obtain an analytical expression, the
response function χ k

ji is expanded in the limit �τ 
 1. The first order of �-expansion inside the lesser Green’s function contains
the �−1 term

χ
k,(−1)
i j (�) = e2

4h̄�V

∑
k,ω

Tr
[

f ′(ω)
(
mkGR

k (ω)viGA
k (ω)v jGA

k (ω) − mkGR
k (ω)viGR

k (ω)v jGA
k (ω)

)

− f (ω)
(
mkGA

k (ω)vi
[
GA

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]2

v jGR
k (ω)

)]
. (11)

It is easily checked that the Fermi sea term [∝ f (ω)] vanishes after taking the trace and the Fermi surface term [∝ f ′(ω)] vanishes
at the boundary due to the spherical symmetry of the Dirac Hamiltonian. Thus, the �−1 term totally vanishes χ

k,(−1)
i j (�) = 0.

The third-order expansion contain the �1 term

χ
k,(1)
i j (�) = e2�

4h̄V
Tr

∑
k,ω

{
− h̄2

2
f ′(ω)

[
mk

[
GR

k (ω)
]2

vi
[
GA

k (ω)
]2

v jGA
k (ω) + mkGR

k (ω)vi
[
GA

k (ω)
]2

v j
[
GA

k (ω)
]2

− mk
[
GR

k (ω)
]2

vi
[
GR

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]2

v j
[
GA

k (ω)
]2]

− h̄3 f (ω)
[
mkGA

k (ω)vi
[
GA

k (ω)
]4

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]4

v jGR
k (ω)

]}
, (12)

where the Fermi sea contribution contains only retarded or ad-
vanced Green’s functions, which are of higher order [O(
1)]
than the Fermi surface term under the condition 
/μ 
 1.
The dominance of the Fermi surface contributions also justi-
fies our assumption that the self-energy is confined within a
small region near the Fermi surface. In the zero-temperature
limit, the spin magnetic density response function [χ k

i j (�) =
χ

k,(1)
i j (�)] without VCs is

χ k
i j (�) = εi jk h̄v2e2 m(μ2 − m2)(2μ2 + 3m2)

12μ3(μ2 + m2)2
ν(μ)�τ 2.

(13)

The calculation details are shown in Appendix. A. The re-
sult [Eq. (13)] indicates that IFE vanishes for the massless
(m = 0) case. Similarly, for the massless Weyl semimetal, the
photovoltaic chiral magnetic effect can only be induced with
unbalanced chemical potential [17]. The induced spin mag-
netic density changes sign for electron and hole states. Despite
the divergence of the lifetime τ at the band edge (μ = ±m),
the response function χ k

i j is proportional to (μ2 − m2)1/2 and,
thus, still vanishes at the band edge.

B. Spin angular density response

In the Dirac Hamiltonian, spin can also couple with the
electron and hole states equally via the spin angular operator
(sk ≡ ρ0 ⊗ σ k )[33] . Note that the spin angular operator is
not associated with the physical spin density but is essential
to the impurity vertex corrections (see Sec. III C). By simply
replacing the spin magnetic operator with the spin angular
operator in Eq. (9), we have the spin angular response function

�k
i j (�) = h̄e2

4�2V

∑
k,ω

Tr[skGk(ω)viGk(ω + �)v jGk(ω)]<

= εi jk h̄v2e2 (m2 − μ2)(μ2 + 2m2)

12μ2(μ2 + m2)2
ν(μ)�τ 2, (14)

where we similarly trace the second-order perturbation with
the gauge field coupling and take out the physical contribution
linear with �. The spin angular response function, instead, is
an even function with the chemical potential corresponding to
the same responses in the positive and negative energy bands
and does not vanish in the massless limit.

C. Impurity correction on spin magnetic and velocity vertices

The VCs on the spin magnetic vertex and velocity vertex,
represented by the infinite sum of the ladder diagrams (see
Fig. 2), need to be taken into account for a consistency with
inclusion of the self-energy. In the Dirac Hamiltonian, correc-
tions on the spin magnetic vertex and velocity vertex not only
iterate with themselves, but couple with its reciprocal vertices.
For example, the first-order correction of the spin magnetic
vertex mk contains two separate vertices, i.e., spin magnetic
and spin angular vertices

Mk,(1)
ω = niu2

V

∑
k

GR
k (ω)mkGA

k (ω)

= AM(ω)sk + SM(ω)mk, (15)

FIG. 2. Diagrammatic representation the VCs ladder of spin
magnetic vertex.
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where the symmetric SM(ω) and antisymmetric AM(ω) coef-
ficients are

SM(ω) =
2
3 (h̄ω + μ)2 + 1

3 m2

(h̄ω + μ)2 + m2
+ O(
2), (16a)

AM(ω) = (h̄ω + μ)m

(h̄ω + μ)2 + m2
+ O(
2). (16b)

The first-order correction of the spin angular vertex sk also
contains two separate vertices

Sk,(1)
ω = niu2

V

∑
k

GR
k (ω)skGA

k (ω)

= SM
2 (ω)sk + AM(ω)mk, (17)

where the symmetric coefficient SM
2 (ω) is

SM
2 (ω) =

1
3 (h̄ω + μ)2 + 2

3 m2

(h̄ω + μ)2 + m2
+ O(
2). (18)

The iterative structure of the ladder diagram can be written in
a matrix form(

Sk
ω

Mk
ω

)
=

∞∑
i=1

(
SM

2 (ω) AM(ω)
AM(ω) SM(ω)

)i(
sk

mk

)
, (19)

where the entanglement between the spin magnetic vertex and
spin angular vertex can be easily traced from the diagonal part
of the iterative matrix. The corrected spin magnetic vertex is,
thus,

Mk = (μ2 + m2)

2(μ2 − m2)2
[9mμsk + (6μ2 + 3m2)mk]. (20)

For massive Dirac electrons, the corrected spin magnetic ver-
tex diverges at the band edge. The divergence can be justified
by the fact that at the band edge all the scattering processes
are degraded due to the vanishing of the states, as will be dis-
cussed in Sec. III D. Note that for massless Dirac electrons, the
iterative matrix in Eq. (19) is diagonalized, indicating that the
spin magnetic and spin angular vertices are fully decoupled
and the corrected spin magnetic vertex is simply Mk

0 = 2mk ,
consistent with a previous investigation on the massless Weyl
fermion [17].

Similarly, we check the first-order correction on the veloc-
ity vertex:

�
i,(1)
ω,ω+� = niu2

V

∑
k

GR
k (ω)viGA

k (ω + �)

= S�(ω,ω + �)vi + A�(ω,ω + �)vs
i , (21)

with symmetric S� and antisymmetric A� coefficients

S�(ω,�) 
 1

3

(
1 − i

h̄�


(ω)

)
(h̄ω + μ)2 − m2

(h̄ω + μ)2 + m2
, (22a)

A�(ω,�) 

(

1 − i
h̄�


(ω)

)
2mγ0(ω)

(h̄ω + μ)2 + m2
. (22b)

Note that the reciprocal vertex vs
i ≡ ρ2 ⊗ σ i is often

referred as spin velocity [34]. Clearly, the antisymmetric
coefficient of the iterative matrix for velocity is negligible
compared with the symmetric one. Hence, the iterative matrix
for the velocity vertex is approximately diagonalized, indi-
cating the decoupling between the velocity vertex and spin
velocity even in massive Dirac electrons. After summing the
infinite ladder diagram, the corrected velocity vertex is

�i
� = μ2 − m2

2(μ2 + 2m2)

(
1 − i

h̄�




3(μ2 + m2)

2(μ2 + 2m2)

)
vi. (23)

Clearly, the corrected velocity vertex only contains terms as-
sociated with vi.

Including the VCs on both the spin magnetic and spin
velocity (see Fig. 1), the spin magnetic response function can
be separated into two contributions as

χ̃ k
i j (�) = χ̃

k,(1)
i j (�) + χ̃

k,(2)
i j (�), (24)

with

χ̃
k,(1)
i j (�) ≡

(
3(2μ2 + m2)(μ2 + m2)

2(μ2 − m2)2
+ μ2 − m2

μ2 + 2m2

)
χ k

i j (�),

(25a)

χ̃
k,(2)
i j (�) ≡ 9mμ(μ2 + m2)

2(μ2 − m2)2
�k

i j (�). (25b)

Due to mixing of the spin magnetic and spin angular ver-
tices, the corrected spin magnetic response χ̃ k

i j contains two

terms proportional to the spin magnetic χ̃
k,(1)
i j (�) ∝ χ k

i j (�)

and spin angular responses χ̃
k,(2)
i j (�) ∝ �k

i j (�), respectively.
In Fig. 3(b), we separately present the two contributions which
show opposite sign and both diverge at the band edges. The
total spin magnetic response χ̃ k

i j (�) including the VCs still
vanishes in the massless case, indicating the IFE only exists
in massive Dirac electrons. The response coefficient is dras-
tically enhanced in the vicinity of the band gap and shows
divergent behavior at the band edge [Fig. 3(a)], attributed to
the divergent behavior of the VC on the spin magnetic vertex
[see Eq. (20)]. Note that the present analysis breaks down only
at the band edge due to a divergence of the electrons’ lifetime.

D. Long-range diffusion

The divergence of VC indicates a long-range diffusion
[35]. In fact, considering the finite external wave vector q
and frequency ν, the VC of the spin magnetic vertex (see
Appendix. B) becomes

Mk (q, ν) 
 1

D̃q2τ − iντ̃ + K

×
(

mμ

(m2 + μ2)
sk + m2 + 2μ2

3(m2 + μ2)
mk

)
(26)
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FIG. 3. (a) The leading order [O(�1)] of spin magnetic response
with χ̃ k

i j or without χ k
i j vertex corrections. (b) Two contributions

χ̃
k,(1)
i j , χ̃

k,(2)
i j to the spin magnetic response with vertex correction.

The light frequency is set as �τ0 = 0.1. The unit of the response
coefficient is normalized by χ0 = h̄e2v2τ 2

0 ν0 with ν0 = m2/(π 2 h̄3v3)
and τ0 = h̄/(πniu2ν0 ).

with normalized diffusion coefficients D̃ and normalized life-
time τ̃ . The constant K ≡ 2(μ2−m2 )2

9(μ2+m2 )2 is the mass term of the
diffusion kernel, which gives the spin diffusion length λs:

λs =
√

D̃τ/K . (27)

The spin diffusion length diverges as λs ∝ (μ2 − m2)−1 at the
band edge for both the massive and massless cases. Note that
for the massless Dirac Hamiltonian, the band edge returns to
a single Dirac point (μ = 0). For the massless case, the mass
term K is a constant, wherefore the spin density profile dras-
tically decays at the Dirac point without divergence. For the
massive Dirac electron, the mass term K , however, vanishes
at the band edge, causing the divergence of the spin density
profile.

IV. DISCUSSION AND SUMMARY

We theoretically study the spin magnetic density induced
by the circularly polarized light in massive Dirac electrons
with random short-ranged impurities. The induced spin mag-
netic density only appears in the presence of the mass gap
and is linear with the photon energy up to the THz regime.
The vertex correction drastically enhances the spin magnetic
response in the vicinity of the band edge.

In the Dirac Hamiltonian, the vertex correction due to
short-ranged impurities on the spin magnetic vertex involves
the mixing between the spin magnetic vertex and spin angular
vertex in the massive case. In general, the VCs of the Dirac
Hamiltonian involves an entanglement between the original
vertex, denoted by O, and its counterpart vertex obtained from
the anticommutator with the mass term operator {O, ρ3 ⊗ σ 0}.
In the case of the velocity vertex, the mixing is negligible in
the order of 
/μ and the summation of the iterative ladders
converge trivially, while it is the same order as the original
vertex for the case of the spin and charge density vertex (see
Appendix C), resulting in the enhancement at band edge. The
entanglement of the vertices in VCs is the consequence of
the mixing between the positive and negative energy states in
massive Dirac electrons. The mixing is significant where the
chemical potential is close to the Dirac point. For example, the
corrected spin magnetic vertex [Eq. (20)] has a contribution
from the spin angular vertex with the order of m/μ. and the
VCs return to nearly a constants χ̃ k

i j ∼ 4χ k
i j , when μ is far

from the band edge.
For massive Dirac electrons, the occurrence of the IFE

do not require breaking the inversion symmetry, in contrast
to the massless Weyl semimetal [17]. One typical material
which could be effectively described by the Dirac Hamil-
tonian is the L-point of bismuth and its alloys [12]. We
estimate the induced spin magnetic field −g∗μB/2 〈m〉 by the
circularly polarized light with parameters v = 8.2 × 105 m/s,
m = 7.7 meV, g∗ ∼ 1000, τ = 4.2 × 10−13 s. The chemical
potential is chosen as μ = 10 meV near the band edge. For
the monochromatic light source, we set the frequency to the
THz regime: � = 1 THz with electric field strength |E| = 3.1
kV/m (I = 1.3 × 104 W/m2) [26] and the induced effective
magnetic field is 1.8 × 10−9 T. Such a spin magnetic mo-
ment excited by circularly polarized light at the surface is
proposed to be detectable through electrical measurement via
the inverse spin Hall effect [26]. For a pulse laser whose
electric field strength can rise to |E| = 0.27 GV/m (I =
1014 W/m2) [36], the induced effective magnetic field can
reach 13.6 T, possibly attributed to the large effective g∗ of
L-point in bismuth [37]. Our analytical calculation cannot
be applied to the frequency range of the visible light due to
the assumption in the expansion of photon energy �τ 
 1.
The extension to the visible light range could rely on the
numerical calculations based on the density functional theory
[18,19].
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APPENDIX A: CALCULATION OF SPIN MAGNETIC RESPONSE FUNCTION

Expanding the lesser component in Eq. (9), the spin magnetic response function χ k
i j (�) reads

χ k
i j (�) = e2

4h̄�2V

∑
k,ω

Tr
[
[ f (ω + �) − f (ω)]

(
mkGR

k (ω)viGA
k (ω + �)v jGA

k (ω) − mkGR
k (ω)viGR

k (ω + �)v jGA
k (ω)

)
+ f (ω)

(
mkGA

k (ω)viGA
k (ω + �)v jGA

k (ω) − mkGR
k (ω)viGR

k (ω + �)v jGR
k (ω)

)]
. (A1)

Assuming a small frequency of the external light �τ 
 1, the Green’s functions can be expanded in order of �:

GA
k (ω + �) = GA

k (ω) + �
d

dω

[
GA

k (ω)
] + �2

2

d2

dω2

[
GA

k (ω)
] + �3

6

d3

dω3

[
GA

k (ω)
] + O(�4)

= GA
k (ω) − h̄�

[
GA

k (ω)
]2 + h̄2�2[GA

k (ω)]3 − h̄3�3
[
GA

k (ω)
]4 + O(�4), (A2)

where we recall the identity about the partial derivatives of the Green’s functions: dωGR,A
k (ω) = −h̄[GR,A

k (ω)]2.
Note that all even order of � terms vanishes. Hence, we only consider the odd order of � terms. The first order of the

�-expansion in Eq. (A1) is the �−1 term

χ
k,(−1)
i j (�) = e2

4h̄�V

∑
k,ω

Tr
[

f ′(ω)
(
mkGR

k (ω)viGA
k (ω)v jGA

k (ω) − mkGR
k (ω)viGR

k (ω)v jGA
k (ω)

)

− f (ω)
(
mkGA

k (ω)vi
[
GA

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]2

v jGR
k (ω)

)]
= e2

4h̄�V

∑
k,ω

Tr

[
f ′(ω)

(
mkGR

k (ω)vi
∂GA

k (ω)

∂k j
− mk ∂GR

k (ω)

∂ki
v jGA

k (ω)

)

− h̄ f (ω)

(
mk ∂GA

k (ω)

∂ki

∂GA
k (ω)

∂k j
− mk ∂GR

k (ω)

∂ki

∂GR
k (ω)

∂k j

)]
. (A3)

It is easily checked that the Fermi sea term [∝ f (ω)] vanishes after taking the trace. By using the fact χ
k,(−1)
i j (�) =

1
2 (χ k,(−1)

i j (�) − χ
k,(−1)
ji (�)), the Fermi sea term becomes

χ
k,(−1)
i j (�) = e2

8h̄�V

∑
k,ω

f ′(ω)Tr
[
∂k j

(
mkGR

k (ω)viGA
k (ω)

) − ∂ki

(
mkGR

k (ω)v jGA
k (ω)

)]

= 2h̄v2e2γ3

�(2π )3

∑
ω

f ′(ω)
∫

dkidkk
εi jkk j

DR(ω)DA(ω)

∣∣∣k j=+∞

k j=−∞
= 0, (A4)

where we notice the integral vanishes due to the cyclic symmetry of k1, k2, k3 (spherical symmetry). Thus, the first order of the
� term vanishes totally, χ

k,(−1)
i j (�) = 0.

The third order of the �-expansion in Eq. (A1) is the �1 term

χ
k,(1)
i j (�) = e2�

4h̄V

∑
k,ω

Tr
[
h̄2 f ′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]3

v jGA
k (ω) − mkGR

k (ω)vi[GR
k (ω)]3v jGA

k (ω)
)

− 1

2
h̄ f ′′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi[GR
k (ω)]2v jGA

k (ω)
)

+ 1

6
f ′′′(ω)

(
mkGR

k (ω)viGA
k (ω)v jGA

k (ω) − mkGR
k (ω)viGR

k (ω)v jGA
k (ω)

)
− h̄3 f (ω)

(
mkGA

k (ω)vi
[
GA

k (ω)
]4

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]4

v jGR
k (ω)

)]
. (A5)

The Fermi sea term reads

h̄2e2�

4V
Im

∑
k,ω

f (ω)Tr
[
mkGA

k (ω)vi
[
GA

k (ω)
]4

v jGA
k (ω)

] = 2h̄2e2�

V
Re

∑
k,ω

f (ω)εi jk
(m + iγ3)(h̄ω + μ − iγ0)

[DA(ω)]4
= O(
1), (A6)

which is of higher order than 
 compared with the following Fermi surface term.
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For the Fermi surface term, the third term [∝ f ′′′(ω)] vanishes in the same way as Eq. (A4) and the rest of the terms can be
rewritten as∑

k,ω

Tr
[
h̄2 f ′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]3

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]3

v jGA
k (ω)

)

− 1

2
h̄ f ′′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]2

v jGA
k (ω)

)
=

∑
k,ω

Tr
[
h̄2 f ′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]3

v jGA
k (ω) − mkGR

k (ω)vi[GR
k (ω)]3v jGA

k (ω)
)

+ 1

2
h̄ f ′(ω)∂ω

(
mkGR

k (ω)vi
[
GA

k (ω)
]2

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]2

v jGA
k (ω)

)
=

∑
k,ω

Tr
[
h̄2 f ′(ω)

(
mkGR

k (ω)vi
[
GA

k (ω)
]3

v jGA
k (ω) − mkGR

k (ω)vi
[
GR

k (ω)
]3

v jGA
k (ω)

)

− 1

2
h̄2 f ′(ω)

(
mk

[
GR

k (ω)
]2

vi
[
GA

k (ω)
]2

v jGA
k (ω) + 2mkGR

k (ω)vi
[
GA

k (ω)
]3

v jGA
k (ω) + mkGR

k (ω)vi
[
GA

k (ω)
]2

v j
(
GA

k (ω)
)2

− mk
[
GR

k (ω)
]2

vi[GR
k (ω)]2v jGA

k (ω) − 2mkGR
k (ω)vi

[
GR

k (ω)
]3

v jGA
k (ω) − mkGR

k (ω)vi[GR
k (ω)]2v j

[
GA

k (ω)
]2)

=
∑
k,ω

−1

2
h̄2 f ′(ω)Tr

[
mk

[
GR

k (ω)
]2

vi
[
GA

k (ω)
]2

v jGA
k (ω) + mkGR

k (ω)vi
[
GA

k (ω)
]2

v j
[
GA

k (ω)
]2

− mk
[
GR

k (ω)
]2

vi[GR
k (ω)]2v jGA

k (ω) − mkGR
k (ω)vi

[
GR

k (ω)
]2

v j
[
GA

k (ω)
]2

]
, (A7)

with which χ
k,(1)
i j (�) gives Eq. (12).

At the zero-temperature limit, the derivative of the Fermi distribution returns to the δ-function ω = 0:

χ
k,(1)
i j (�) = h̄e2�

16πV

∑
k

Tr
[
mk

[
GR

k (0)
]2

vi
[
GA

k (0)
]2

v jGA
k (0) − mkGR

k (0)vi
[
GR

k (0)
]2

v j
[
GA

k (0)
]2

+ mkGR
k (0)vi

[
GA

k (0)
]2

v j
[
GA

k (0)
]2 − mk

[
GR

k (0)
]2

vi
[
GR

k (0)
]2

v jGA
k (0)

]
. (A8)

The first term (gRgRgAgAgA − gRgRgRgAgA) in Eq. (A8) is

h̄e2�

16πV

∑
k

1

(DRDA)2

⎛
⎝Tr

[
mk (gR)2vi(gA)2v jgA

]
DA

−
Tr

[
mkgRvi(gR)2v j (gA)2

]
DR

⎞
⎠

= h̄e2�

8πV

∑
k

Re

(
Tr[mk (gR)2vi(gA)2v jgA]

(DRDA)2DA

)
= εi jk h̄3v2e2 m(2μ2 − m2)

32μ3(μ2 + m2)
2
ν(μ)� + O(
0), (A9)

where DR,A and gR,A are short for DR,A(0) gR,A(0) for the denominator and numerator of the Green’s function at chemical potential
μ.

Note that it is easily checked that(
Tr[mk (gR)2vi(g

A)2v jg
A]

)∗ = −Tr[mkgRvi(g
R)2v j (g

A)2], (A10)

where in the last equity we employ the fact that the trace term changes sign when exchanging indices i, j.
The second term (gRgAgAgAgA − gRgRgRgRgA) in Eq. (A8) is

h̄e2�

16πV

∑
k

1

DRDA

(
Tr[mkgRvi(gA)2v j (gA)2]

(DA)3
− Tr[mk (gR)2vi(gR)2v jgA]

(DR)3

)

= h̄e2�

8πV

∑
k

Re

(
Tr[mkgRvi(gA)2v j (gA)2]

DRDA(DA)3

)
= −εi jk h̄3v2e2 m(2μ4 + μ2m2 + 3m2)

96μ3(μ2 + m2)2
2
ν(μ)� + O(
0). (A11)

The sum over two terms gives Eq. (13):

χ
k,(1)
i j (�) = εi jk h̄3v2e2 m(μ2 − m2)(2μ2 + 3m2)

48μ3(μ2 + m2)2
2
ν(μ)� = εi jk h̄v2e2 m(μ2 − m2)(2μ2 + 3m2)

12μ3(μ2 + m2)2
ν(μ)�τ 2. (A12)
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APPENDIX B: SPIN MAGNETIC VERTEX CORRECTION
WITH FINITE q, ν

For the spatial and time variation of the spin density, we
need to consider vertex correction on the spin magnetic vertex
with finite momentum and frequency q, ν. The vertex correc-
tion also involves a summation over the iterative matrix as
Eq. (19). We consider the first-order correction of the spin
magnetic vertex

Mk,(1)(q, ν) = niu2

V

∑
k

GR
k+q/2

(ν

2

)
mkGA

k−q/2

(
−ν

2

)
. (B1)

The integrand in Eq. (B1) is expanded to the second order
of qi and first order of ν:

GR
k+q/2

(ν

2

)
mkGA

k−q/2

(
−ν

2

)
= GR

k (0)mkGA
k (0)

+ ν

2

(
∂νGR

k (0)mkGA
k (0) − GR

k (0)mk∂νGA
k (0)

)
+ qi

2

(
∂iGR

k (0)mkGA
k (0) − GR

k (0)mk∂iGA
k (0)

)
− νqi

4

(
∂νGR

k (0)mk∂iGA
k (0) + ∂iGR

k (0)mk∂νGA
k (0)

)
+ qiq j

8
∂i∂ jGR

k (0)mkGA
k (0) + qiq j

8
GR

k (0)mk∂i∂ jGA
k (0)

− qiq j

4
∂iGR

k (0)mk∂ jGA
k (0) + O(q3, ν2). (B2)

The zeroth-order correction is already shown in Sec. III C.
We start from the the O(ν1) term:

niu2

V

∑
k

ν

2

(
∂νGR

k (0)mkGA
k (0) − GR

k (0)mk∂νGA
k (0)

)

= − ih̄νniu2

V
�

∑
k

GR
k (0)GR

k (0)mkGA
k (0). (B3)

The O(q) term is

iqiniu2

2V

(
GR

k (0)viGR
k (0)mkGA

k (0) − GR
k (0)mkGA

k (0)viGA
k (0)

)
= iqiniu2

2V
Im

∑
k

GR
k (0)viGR

k (0)mkGA
k (0) = 0, (B4)

which vanishes due to the wave vector ki and appears singly
in the k-integration.

The cross term O(qν) also vanishes due to the odd term of
ki in the k-integration

niu2

V

h̄νqi

2
Re

∑
k

GR
k (0)GR

k (0)mkGA
k (0)viGA

k (0) = 0. (B5)

In the second order O(qiq j ), the k-integral vanishes for i �=
j since the kik j terms appear in integration. For the i = j case,
it reads

niu2

V

q2

4
Re

∑
k

∂2
1GR

k (0)mkGA
k (0) − ∂1GR

k (0)mk∂1GA
k (0)

= niu2

V

q2

4
Re

∑
k

GR
k (0)v1GR

k (0)v1GR
k (0)mkGA

k (0)

− GR
k (0)v1GR

k (0)mkGA
k (0)v1GA

k (0), (B6)

where q = |q|. Note that we choose i = j = 1 for the cyclic
symmetry.

Evaluating the integration of O(ν1) and O(qiqi ) terms, the
iterative matrix Ms reads

Ms =
(

SM
2 AM

AM SM

)
, (B7)

where the matrix elements are

SM = (1 + iντ )
2μ2 + m2

3μ2 + 3m2
− Dq2τ

11μ2 + 4m2

18(μ2 + m2)
, (B8a)

AM = (1 + iντ )
μm

μ2 + m2
− Dq2τ

5mμ

6(μ2 + m2)
, (B8b)

SM
2 = (1 + iντ )

μ2 + 2m2

3μ2 + 3m2
− Dq2τ

4μ2 + 11m2

18(μ2 + m2)
, (B8c)

where we define diffusion constant D ≡ (μ2−m2 )v2τ

4μ2 . Appar-
ently, Eq. (B7) returns to Eq. (19) for q, ν = 0. Note that the
diffusion constant vanishes at the band edge

D = (μ2 − m2)v2τ

4μ2
∼ v2

√
μ2 − m2

4|μ|(μ2 + m2)
. (B9)

For the massless case, the diffusion constant diverges at the
Dirac point μ = 0.

Summing over the infinite ladder diagram, the power
series reads

∞∑
i=0

Mi
s = (1 − Ms)−1, (B10)

where the convergence of the series requires det(1 − Ms) �= 0.
Note that the trace of Ms is

TrMs = 1 − (
5
6 Dq2 − iντ

)
, (B11)

which is always smaller than 1 with finite q. With two positive
eigenvalues both smaller than 1, the summation is always
converged. Hence, the corrected spin magnetic vertex with
finite q, ν is approximately

Mk (q, ν) 
 1

D̃q2τ − iντ̃ + K

×
(

mμ

(m2 + μ2)
sk + m2 + 2μ2

3(m2 + μ2)
mk

)
, (B12)

with normalized diffusion coefficients

D̃ ≡ (13μ4 + 64μ2m2 + 13m4)

27(μ2 + m2)2
D, (B13a)

τ̃ ≡ (μ2 + 5m2)(5μ2 + m2)

9(μ2 + m2)2
τ, (B13b)

K ≡ 2(μ2 − m2)2

9(μ2 + m2)2
. (B13c)
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The spin diffusion length is

λs =
√

D̃τ

K

=
√

(13μ4 + 64μ2m2 + 13m4)

24μ2(μ2 − m2)
vτ

∝ (μ2 − m2)−1, (B14)

which is diverging at the band edge, similar with the electrons’
lifetime.

At the band edge, the mass term K for the diffusion term
vanishes. Thus, the corrected spin magnetic vertex diverges
in the q, ν = 0 limit. For the massless Dirac electron (m =
0), the mass term K is a constant despite the position of the
chemical potential. Thus, the corrected spin magnetic vertex
converges even in the q, ν = 0 limit.

APPENDIX C: CHARGE VERTEX CORRECTION
WITH FINITE q, ν

Here, we consider the impurity vertex correction on the
charge density c0 ≡ ρ0 ⊗ σ 0. The first-order correction of the
charge density expanded with small q, ν is

C (1)
0 (q, ν) = niu2

V

∑
k

GR
k+q/2

(ν

2

)
c0GA

k−q/2

(
−ν

2

)
, (C1)

where c3 ≡ ρ3 ⊗ σ 0 is the reciprocal operator of charge den-
sity. Note that the corrected c0-vertex can be decomposed into

c0 and c3 vertices for the massive case. Similarly, the corrected
c3-vertex can be also decomposed into c0 and c3.

In the static limit q, ν = 0, the iterative matrix Mc is

Mc = 1

μ2 + m2

(
μ2 mμ

mμ m2

)
, (C2)

in which we found M2 = M. Thus, the power series of the M
matrix is ∑

i

Mi = 1 + M + M + M + M · · · , (C3)

which is diverged despite the massless case (m = 0) or at the
band edge (μ = ±m). Thus, the vertex correction is diffusive.
It might be solved in the higher-order expansion of q and ν.

Summing the zeroth order O(q0, ν0), the first order of en-
ergy O(q0, ν1), and the second order of momentum O(q2, ν0)
terms, the iterative matrix Mc is

Mc = 1 − (Dq2τ − iντ )

μ2 + m2

(
μ2 mμ

mμ m2

)
, (C4)

where the diffusion constant is denoted as D ≡ − v2q2τ

4
μ2−m2

μ2 .
Due to the existence of the diffusion term, the summation
converges despite the chemical potential approaching the band
edges μ = ±m. The corrected charge density is

C0 = 1

Dq2 − iντ

×
(

μ2 + m2(Dq2 − iντ )

μ2 + m2
c0− mμ(1 − Dq2 + iντ )

μ2 + m2
c3

)
.

(C5)
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